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Abstract: We propose an extended version of the classical Karhunen-Loève expan-

sion of a multivariate random process, termed a normalized multivariate functional

principal component (mFPCn) representation. This takes variations between the

components of the process into account and takes advantage of component depen-

dencies through the pairwise cross-covariance functions. This approach leads to a

single set of multivariate functional principal component scores, which serve well

as a proxy for multivariate functional data. We derive the consistency properties

for the estimates of the mFPCn, and the asymptotic distributions for statistical

inferences. We illustrate the finite sample performance of this approach through

the analysis of a traffic flow data set, including an application to clustering and

a simulation study. The mFPCn approach serves as a basic and useful statistical

tool for multivariate functional data analysis.

Key words and phrases: Karhunen-Loève expansion, Mercer’s theorem, multivariate

functional data, normalization, traffic flow.

1. Introduction

Multivariate functional data typically comprise several simultaneously

recorded time course measurements for a sample of subjects or experimental

units. They are realizations sampled from multivariate random functions. Sta-

tistical methods for analysis of multivariate functional data that consider simul-

taneous variations of more than one random function are important, but have

received relatively less attention than univariate functional data methods.

Functional principal component analysis (FPCA) has been widely used and

serves as a fundamental tool for developing advanced methods for functional

data analysis (FDA). Recent works that discussed the functional principal com-

ponent (FPC) method and/or its asymptotic properties mostly focused on uni-

variate functional data. These include, but are not limited to, approaches of the

smoothed FPCA based on a roughness penalty (e.g., Rice and Silverman (1991)

and Silverman (1996)), the FPC methods for sparsely sampled functional data

(e.g., James, Hastie, and Sugar (2001), Yao, Müller, and Wang (2005)), and the
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asymptotic properties of the classical FPCA (e.g., Boente and Fraiman (2000),

Hall and Hosseini-Nasab (2006), and Li and Hsing (2010)).

Methods for analyzing multivariate functional data that utilize univariate

FPCA can be found sporadically. These include that the dynamical correlation

analysis for multivariate longitudinal observations (Dubin and Müller (2005)), the

modeling of the relationship of paired longitudinal observations (Zhou, Huang,

and Carrol (2008)), regularized FPCA for multidimensional functional data

(Kayano and Konishi (2009)), and linear manifold modeling to quantify func-

tional dependence between the components of multivariate random processes

(Chiou and Müller (2014)). As well, a method that repeatedly applies the clas-

sical PCA pointwise was investigated by Berrendero, Justel, and Svarc (2011).

While the development of FPCA is based on the Karhunen-Loève (K-L)

representation of a random function, Balakrishnan (1960) and Kelly and Root

(1960) independently derived a vector-valued version of the K-L representation

of multivariate random processes that hinges on a vector-valued version of the

Mercer’s Theorem. Deville (1974) discussed statistical and computational meth-

ods for functional data based on the K-L representation, including extensions of

the methods to vector-valued processes. Dauxois, Pousse, and Romain (1982)

discussed asymptotic theory for FPCA of a vector random function, treating the

random process as an operator.

When the components of multivariate functional data are measured in the

same units and have similar variation, classical multivariate FPCA that concate-

nates the multiple functions into one to perform univariate FPCA can work well.

A successful example is the bivariate FPCA of children’s gait cycles (Ramsay

and Silverman (2005, p.166)). However, when a particular component in the

multivariate random functions has relatively large variability, the classical mul-

tivariate functional principal components (FPCs) may not do so well, as will be

illustrated in Section 4.

We propose a normalized multivariate functional principal component

(mFPCn) method. It accounts for differences in degrees of variability and units

of measurements among the components of the multivariate random functions

when defining the mFPCs. We propose to normalize each random function as a

preliminary step, and discuss the normalization effects on the estimation of the

multivariate FPC (mFPC) model. The multivariate approach leads to a single set

of mFPC scores for each subject, which serves well as the proxy of multivariate

functional data. This feature leads to natural extensions from univariate to

multivariate FDA in many statistical methods. Weighted least squares estimates

of themFPCn scores are suitable for dense, regular cases and for sparse, irregular

designs. We derive the asymptotic properties for the mFPCn scores the relevant

asymptotic distributions of the predicted functions for inference purposes.



MULTIVARIATE FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS 1573

The article is organized as follows. Section 2 discusses the proposed mFPCn

approach. Section 3 presents the estimation of the mFPCn model components.
Section 4 gives a data application to traffic flow analysis, including an application
to clustering and a simulation study, with additional numerical results compiled
in Supplements S1-S2. Section 5 presents the asymptotic results relevant to the
mFPCn analysis, and Section 6 provides the technical proofs, with additional
details in Supplement S3. Concluding remarks are in Section 7.

2. Multivariate Functional Principal Component Analysis

Let {Xk}k=1,...,p be a set of random functions with each Xk in L2(T ), a
Hilbert space of square integrable functions with respect to Lebesgue measure
dt on an interval T = [a, b], a < b. Write X = (X1,X2, . . . ,Xp)

⊤ as a vector in
a Hilbert space of p-dimensional vectors of functions in L2(T ), denoted by H.
We assume that X(t) has a continuous mean function µ(t) = (µ1(t), . . . , µp(t))

⊤,
µk(t) = E(Xk(t)), and covariance functionG(s, t) = {Gkl(s, t)}1≤k,l≤p, Gkl(s, t) =
cov(Xk(s),Xl(t)). Here G is symmetric in the sense that G(s, t) = G(t, s)⊤.
The inner product of f and g in L2(T ) is ⟨f, g⟩ =

∫
f(t)g(t)dt with the norm

∥ · ∥ = ⟨·, ·⟩1/2. For f = (f1, f2, . . . , fp)
⊤ and g = (g1, g2, . . . , gp)

⊤ in H, the

inner product is ⟨f , g⟩H =
∑p

k=1⟨fk, gk⟩, and the norm ∥ · ∥H = ⟨·, ·⟩1/2H . More
generally, the inner product is ⟨f , g⟩H =

∑p
k=1wk⟨fk, gk⟩, where wk is a weight

associated with the kth function that needs to be pre-specified or estimated. A
possible approach to this is to take the inverse of wk as the square root of the sam-
ple functional variance (Suyundykov, Puechmorel, and Ferre (2010)). Here we
adopt the inner product without weighting, and take into account heteroscedas-
ticity between components of multivariate random functions through a modeling
approach.

2.1. The mFPCn method

Let D(t) = diag(v1(t)
1/2, . . . , vp(t)

1/2), where vk(t) = Gkk(t, t) for k =
1, . . . , p, and t ∈ T . We consider a stochastic representation for multivariate
random functions,

X(t) = µ(t) +

∞∑
r=1

ξr (Dϕr) (t). (2.1)

Here the fixed components µk and vk are the mean and the variance functions of
Xk, and {ϕr}r=1,2,... is a set of orthonormal basis functions in H satisfying

⟨ϕr,ϕq⟩H =

p∑
l=1

⟨ϕlr, ϕlq⟩ = δrq, (2.2)

where ϕr = (ϕ1r, . . . , ϕpr)
⊤, and δrq = 1 if r = q and 0 otherwise. The set

of random coefficients {ξr} is independent of k. Observing that the random
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coefficients {ξr} are representative of X, the weight D in (2.1) takes the uneven

extent of variations among {Xk} into account.

If Zk(t) = vk(t)
−1/2 {Xk(t)− µk(t)}, then

Z(t) =

∞∑
r=1

ξr ϕr(t), (2.3)

where Z(t) = (Z1(t), . . . ,Zp(t))
⊤. Here

ξr = ⟨Z,ϕr⟩H =

p∑
k=1

⟨Zk, ϕkr⟩. (2.4)

The expression of Z(t) in (2.3) is a multivariate version of the classical Karhunen-

Loève representation based on the multivariate version of Mercer’s Theorem (e.g.,

Balakrishnan (1960), Kelly and Root (1960)) that relies on a properly defined

integral operator on the covariance kernel associated with the basis functions

{ϕr}.
Let Ckl(s, t) = {vk(s)vl(t)}−1/2Gkl(s, t), where 1 ≤ k, l ≤ p, and let Ck =

(Ck1, . . . ,Ckp)
⊤ and C(s, t) = {Ckl(s, t)}. We define an integral operator A :

H → H with the covariance kernel C(s, t), for any given f ∈ H, such that

(Af)(s) =
∫

C(s, t)f(t)dt =

 ⟨C1(s, ·),f⟩H
...

⟨Cp(s, ·),f⟩H

 , (2.5)

where ⟨Ck(s, ·),f⟩H =
∑p

l=1⟨Ckl(s, ·), fl⟩. Since A is linear, an eigenvalue λ and

an eigenfunction f in H satisfy (Af)(s) = λf(s).

Since the covariance kernel C is continuous, symmetric, and nonnegative-

definite (⟨Af ,f⟩H ≥ 0 for any f ∈ H), by the multivariate version of Mercer’s

theorem (cf., Withers (1974)), there exists a set of orthonormal basis functions

ϕr in H such that

⟨Ck(s, ·),ϕr⟩H =

p∑
l=1

⟨Ckl(s, ·), ϕlr⟩ = λrϕkr(s) (2.6)

for k = 1, . . . , p and all r. Here, λr is the r-th eigenvalue, in non-increasing order,

with the corresponding eigenfunction ϕr. With the eigen-equations (2.6) and un-

der the constraint (2.2), we have E(ξr) = 0, and E(ξrξq) = λrδrq. The multivari-

ate covariance function C has the representation C(s, t) =
∑∞

r=1 λrϕr(s)ϕr(t)
⊤,

with the (k, l) element Ckl(s, t) of C(s, t)

Ckl(s, t) =

∞∑
r=1

λrϕkr(s)ϕlr(t). (2.7)
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The representation of C(s, t) in (2.7) converges absolutely and uniformly in both

s and t. We note that the existence of {ϕr} in (2.6) requires A in (2.5) to be a

compact self-adjoint operator, based on Hilbert-Schmidt theorem (e.g., Section

7.5 in Hutson and Pym (1980)). It is easy to show that the symmetry property of

C is a sufficient condition for the integral operator A in (2.5) to be self-adjoint.

2.2. Comparison with the classical approach

For comparisons, we give the classical multivariate functional principal com-

ponent model (mFPCu). We define a linear operator B similar to A, but with

the covariance kernel G rather than C. For Gk = (Gk1, . . . ,Gkp), there ex-

ists a set of orthonormal basis functions ψr = (ψ1r, . . . , ψpr)
⊤ in H such that

⟨Gk(s, ·),ψr⟩H =
∑p

l=1⟨Gkl(s, ·), ψlr⟩ = θrψkr(s), for 1 ≤ k ≤ p and all r ≥ 1.

Here, θr is the r-th eigenvalue in non-increasing order with the corresponding

eigenfunction ψr(s) satisfying ⟨ψr,ψq⟩H=
∑p

l=1⟨ψlr, ψlq⟩=δrq. Then the random

vector of functions X has the representation, based on the covariance kernel G,

X(t) = µ(t) +

∞∑
r=1

ζrψr(t), (2.8)

where the random coefficients are ζr = ⟨X−µ,ψr⟩H =
∑p

k=1⟨Xk−µk, ψkr⟩, with
E(ζr) = 0 and E(ζrζq) = θrδrq.

The random coefficients {ξr} in (2.1) minimize ∥Z −
∑∞

r=1 ξrϕr∥2H with re-

spect to ξr, whereas {ζr} in (2.8) minimize of ∥X−µ−
∑∞

r=1 ζrψr∥2H with respect

to ζr. Here ζr could be influenced by a particular term ⟨Xl − µl, ψlr⟩ for some l,

which dominates the other terms. Each random function may require a different

number of FPCs, due to different degrees of variabilities among the multivari-

ate random functions. The random coefficients {ξr} for the truncated expansion

of (2.1) and (2.3), taking into account the discrepant amount of variabilities

among the random functions {Xk} through {vk}, well represents the multivari-

ate random function Z in practice.

We demonstrate in Section 4 that the proposed mFPCn approach (2.1) per-

forms better than the classical mFPCu approach (2.8) in approximating X in

terms of prediction errors, even though the variance functions are unknown and

need to be estimated.

3. Estimation and prediction of multivariate trajectories

Suppose {Xi}i=1,...,n are sampled from a stochastic process X in H, Xi(t) =

(X1i(t), . . . ,Xpi(t))
⊤. Each Xi(t) is associated with Zi(t) = (Z1i(t), . . . ,Zpi(t))

⊤,

where Zki(t) = vk(t)
−1/2 {Xki(t)− µk(t)}. Let Yij = (Y1ij , . . . ,Ypij)

⊤ be the jth

observation of the ith subject observed at Tij , contaminated with measurement

errors ϵij , such that
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Yij = Xi(Tij) + ϵij = µ(Tij) +

∞∑
r=1

ξri {(Dϕr)(Tij)}+ ϵij , (3.1)

where µ(·), (Dϕr)(·), and {ξri} are as before, and ϵij = (ϵ1ij , . . . , ϵpij)
⊤ are mutu-

ally independent with mean 0 and variance σ2 =
(
σ21, . . . , σ

2
p

)⊤
. Here, the record-

ing times Tij are observed and treated as fixed scalars, sampled from a density

function fT (·). Similarly, each Yij is associated with an Uij = (U1ij , . . . ,Upij)
⊤

with Ukij = vk(Tij)
−1/2 (Ykij − µk(Tij)) andUij = Zi(Tij)+εij =

∑∞
r=1 ξriϕr(Tij)+

εij , where εij = (ε1ij , . . . , εpij)
⊤ are mutually independent with mean 0 and vari-

ance ς2ij =
(
ς21ij , . . . , ς

2
pij

)⊤
, ς2kij = σ2k/vk(Tij).

3.1. Estimation of the fixed model components

Let K : R → R be a symmetric kernel density functions with support [−1, 1]

for the smoothing procedures. In estimation of µk, we apply local linear regression

(see, e.g., Fan and Gijbels (1996)) with the bandwidth bµk
to the pooled data

{(Tij ,Ykij); i = 1, . . . , n, j = 1, . . . ,mi} for each k, such that µ̂k(t) = α̂0, where

(α̂0, α̂1) = argmin
(α0,α1)

1

n

n∑
i=1

1

mi

mi∑
j=1

{Ykij − α0 − α1(t− Tij)}2K
(
Tij − t

bµk

)
. (3.2)

Here the weighting adjustment (1/mi) follows the approach of Li and Hsing

(2010).

To estimate the variance function vk(t), let G̃kk(Tij , Tij′) = {Ykij − µ̂k(Tij)}
{Ykij′−µ̂k(Tij′)} be a raw covariance estimate for 1 ≤ k ≤ p. We apply the pooled

data {(Tij , Tij′ , G̃kk(Tij , Tij′))} to fit a local linear plane with the bandwidth

(bGk
, bGk

) such that Ĝkk(s, t) = β̂0, where (β̂0, β̂1, β̂2) is the minimizer of

1

n

n∑
i=1

1

Mi

∑
1≤j ̸=j′≤mi

{
G̃kk(Tij , Tij′)−β0−β1(s− Tij)−β2(t− Tij′)

}2

K

(
Tij−s

bGk

)
K

(
Tij′−t

bGk

)
,

(3.3)

where Mi = mi(mi − 1) is the number of pairs (j, j′) in the summation for

1 ≤ j ̸= j′ ≤ mi, assuming mi ≥ 2. We then obtain the variance function

estimates v̂k(t) = Ĝkk(t, t) and the covariance function estimates Ĉkk(s, t) =

{v̂k(s)v̂k(t)}−1/2 Ĝkk(s, t).

To estimate the cross-covariance functions Ckl(s, t) for k ̸= l, let

Ũkij =
{Ykij − µ̂k(Tij)}

v̂k(Tij)1/2
, (3.4)

and C̃kl(Tij , Tij′) = ŨkijŨlij′ . We apply the pooled data {(Tij , Tij′ , C̃kl(Tij , Tij′))}
to fit a local linear plane with bandwidth (hk, hl) such that Ĉkl(s, t) = γ̂0, where
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(γ̂0, γ̂1, γ̂2) is the minimizer of

1

n

n∑
i=1

1

Mi

∑
1≤j ̸=j′≤mi

{
C̃kl(Tij , Tij′)−γ0−γ1(s− Tij)−γ2(t−Tij′)

}2

K

(
Tij−s

hk

)
K

(
Tij′−t

hl

)
.

(3.5)

Given Ĉ(s, t) = {Ĉkl(s, t)}1≤k,l≤p and Ĉk(s, t) = (Ĉk1(s, t), . . . , Ĉkp(s, t))
⊤

obtained from (3.3) and (3.5), the estimates of the eigenvalues and eigenfunctions

correspond to the discrete approximations of the solutions to the eigenequations

⟨Ĉk(s, ·), ϕ̂r⟩H = λ̂rϕ̂kr(s), (3.6)

subject to ⟨ϕ̂r, ϕ̂q⟩H =
∑p

l=1⟨ϕ̂lr, ϕ̂lq⟩ = δrq. The eigenfunction estimates are

approximated by discretizing the smooth variance-covariance functions.

For the estimates of the measurement error variances σ2k, the diagonal values

of the covariance Gkk(t, t) plus the constant measurement error variance σ2k,

Wk(t) = Gkk(t, t) + σ2k, can be estimated by the smooth estimate of the data{
(Tij , G̃kk(Tij , Tij))

}
through a local linear regression with bandwidth hWk

such

that Ŵk(t) = η̂0, where (η̂0, η̂1) is the minimizer of

1

n

n∑
i=1

1

mi

∑
1≤j≤mi

{
G̃kk(Tij , Tij)− η0 − η1(t− Tij)

}2
K

(
Tij − t

hWk

)
. (3.7)

Following Yao, Müller, and Wang (2005), the estimate of σ2k, where k = 1, . . . , p,

can be obtained as

σ̂2k =
2

|T |

∫
T1

{
Ŵk(t)− Ĝkk(t, t)

}
dt, (3.8)

where |T | denote the length of T and T1 is the interval T1 = [inf{x : x ∈
T }+ |T |/4, sup{x : x ∈ T } − |T |/4]. For the estimate of ς2kij , we simply plug in

the estimates of σ2k and vk(Tij) to obtain

ς̂2kij =
σ̂2k

v̂k(Tij)
. (3.9)

When applying one- and two-dimensional local polynomial regression meth-

ods to obtain the estimates, we need to choose the bandwidths. One way to

choose the bandwidths data-adaptively is to apply the leave-one-subject-out

cross-validation method (Rice and Silverman (1991)). In numerical studies, we

use the generalized cross-validation method to choose the bandwidths.

3.2. Estimation of mFPCn scores

In practice, the infinite series in the expansions on the right-hand-side of (2.1)

and (2.3) are truncated at L, chosen data-adaptively. In this study, we choose
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L as the minimal number of components such that the leading L FPCs explains

100δ0% of the total variability. With L determined, we assume that the remaining

term supt∈T
∑∞

r=L+1 ξriϕr(t) is negligible or is confounded with the measurement

error εij . Let ξi,L = (ξ1i, . . . , ξLi)
⊤, where ξri = ⟨Zi,ϕr⟩H. While ϕr can be es-

timated, Zi is observed through {Ũkij} and contaminated with measurement er-

rors. To estimate ξi,L, let Ũi = (Ũ⊤
1i, . . . , Ũ

⊤
pi)

⊤, where Ũki = (Ũki1, . . . , Ũkimi
)⊤,

and let φ̃i,L = (ϕ̃1i, ϕ̃2i, . . . , ϕ̃Li)
⊤, where ϕ̃ri = (ϕ̃⊤1ri, . . . , ϕ̃

⊤
pri)

⊤ and ϕ̃kri =

(ϕkr(Ti1), . . . , ϕkr(Timi))
⊤. Further, let ε̃i = (ε̃⊤1i, . . . , ε̃

⊤
pi)

⊤ with ε̃ki = (εki1, . . .,

εkimi
)⊤, and Γi = cov(ε̃i) = diag

(
(ς21i)

⊤, . . . , (ς2pi)
⊤
)
with ς2ki = (ς2ki1, . . . , ς

2
kimi

)⊤.

Given Ũi, φ̃i,L and Γi, we consider the weighted least squares (WLS) estimate

of ξi,L, minimizing

(Ũi − φ̃⊤
i,L ξi,L)

⊤Γ−1
i (Ũi − φ̃⊤

i,L ξi,L),

such that ξWLS
i,L = (ξWLS

1i , ξWLS
2i , . . . , ξWLS

Li )⊤ = Ψ−1
i φ̃i,LΓ

−1
i Ũi, where Ψi =

φ̃i,LΓ
−1
i φ̃

⊤
i,L.

Let ϕ̂ri = (ϕ̂⊤1ri, . . . , ϕ̂
⊤
pri)

⊤ with ϕ̂kri = (ϕ̂kr(Ti1), . . . , ϕ̂kr(Timi))
⊤. By substi-

tuting ϕ̃ri in φ̃i,L with ϕ̂ri and ς
2
kij in Γi with ς̂

2
kij , we obtain Γ̂i = diag((ς̂21i)

⊤, . . .,

(ς̂2pi)
⊤) with ς̂2ki = (ς̂2ki1, . . . , ς̂

2
kimi

)⊤, and Ψ̂i = φ̂i,LΓ̂
−1
i φ̂

⊤
i,L. The estimate of

ξWLS
i,L is

ξ̂WLS
i,L = Ψ̂−1

i φ̂i,LΓ̂
−1
i Ũi. (3.10)

Alternatively, we can extend the conditional expectation (CE) approach of

Yao, Müller, and Wang (2005) from the univariate to the proposed mFPCn

model, which is especially useful when data are very sparse. By assuming

that the scores ξri and the measurement errors εij are jointly Gaussian, the

mFPCn scores obtained by the conditional expectation E(ξi,L|Ũi) are ξCE
i,L =

(ξCE
1i , ξCE

2i , . . . , ξCE
Li )⊤ = HiΣ

−1
Ui

Ũi, where Hi = (λ1ϕ̃1i, λ2ϕ̃2i, . . . , λLϕ̃Li)
⊤ and

the (k, l)th mi × mi block element of ΣUi is {Ckl(Tij , Tir) + ς2kijδkljr}1≤j,r≤mi ,

with δkljr being 1 for k = l and j = r and 0 otherwise. Substituting the unknown

quantities λr and ϕ̃ri, Ckl, and ς
2
kij with λ̂r and ϕ̂ri, Ĉkl, and ς̂

2
kij in (3.3), (3.5),

and (3.9) leads to the estimate

ξ̂CE
i,L = ĤiΣ̂

−1
Ui

Ũi. (3.11)

3.3. Prediction of multivariate random trajectories

Let ϑ be a superscript indicating either the WLS or CE approach used to

estimate the mFPCn scores. The predicted random functions Zi and Xi for

subject i with the leading L random components are
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ẐL,ϑ
i (t) =

L∑
r=1

ξ̂ϑriϕ̂r(t), (3.12)

X̂L,ϑ
i (t) = µ̂(t) +

L∑
r=1

ξ̂ϑri (D̂ϕ̂r)(t), (3.13)

where D̂(t) = diag
(
v̂1(t)

1/2, . . . , v̂p(t)
1/2

)⊤
.

Let ξϑi,L = (ξϑ1i, . . . , ξ
ϑ
Li)

⊤ be the vector of themFPCn scores for the L leading

components based on ϑ= WLS or CE. For the WLS estimates, the covariance

of (ξWLS
i,L − ξi,L) is ΩWLS

i,L = Ψ−1
i . By extending the CE approach from the

univariate to the multivariate setting, we obtain the covariance of (ξCE
i,L − ξi,L),

ΩCE
i,L = Λ−HiΣ

−1
Ui

H⊤
i , where Λ = diag(λ1, . . . , λL).

Substituting the unknown quantities λr, ϕ̃ri, Ckl, and ς
2
kij with λ̂r, ϕ̂ri, Ĉkl,

and ς̂2kij leads to the estimates Ω̂WLS
i,L = Ψ̂−1

i and Ω̂CE
i,L = Λ̂ − ĤiΣ̂

−1
Ui

Ĥ⊤
i . Let

ϕL,t = (ϕ1(t), . . . ,ϕL(t))
⊤, ϕ̂L,t = (ϕ̂1(t), . . . , ϕ̂L(t))

⊤, and ZL
i (t) = ϕ⊤

L,tξi,L,

ẐL,ϑ
i (t) = ϕ̂⊤

L,tξ̂
ϑ
i,L. The distribution of

{
ẐL,ϑ
i (t)− ZL

i (t)
}

is approximately nor-

mal N(0, ϕ̂⊤
L,tΩ̂

ϑ
i,Lϕ̂L,t) for large n. More details will be given in Section 5.

Given a scalar p-vector a = (a1, . . . , ap)
⊤, the (1 − α) asymptotic pointwise

confidence intervals and simultaneous confidence bands (with respect to time t)

for a⊤ẐL,ϑ
i (t) can be obtained by the arguments for the univariate case of Yao,

Müller, and Wang (2005, Sec. 2.4),

[zϑ,zϑ] = a⊤ẐL,ϑ
i (t)± ψ−1

(
1− α

2

){
a⊤ ϕ̂⊤

L,t Ω̂
ϑ
L ϕ̂L,t a

}1/2
, (3.14)

[zϑB, z
ϑ
B] = a

⊤ẐL,ϑ
i (t)±

{
X 2
L,1−αa

⊤ ϕ̂⊤
L,t Ω̂

ϑ
L ϕ̂L,t a

}1/2
, (3.15)

where ψ−1(1 − α/2) is the (1 − α/2)th percentile of the standard Gaussian dis-

tribution and X 2
L,1−α is the (1 − α)th percentile of the chi-squared distribution

with L degrees of freedom. In particular, when taking a = ek as a unit vector

whose k-th component is one, (3.14) and (3.15) reduce to the standard uni-

variate case for component Zk. The (1 − α) asymptotic point wise confidence

intervals and simultaneous confidence bands for Xk can be approximated by

[µ̂k(t) + z
ϑv̂

1/2
k (t), µ̂k(t) + zϑv̂

1/2
k (t)] and [µ̂k(t) + zϑB v̂

1/2
k (t), µ̂k(t) + zϑB v̂

1/2
k (t)]),

respectively.

4. Application to Traffic Flow Analysis and Simulation

In road traffic monitoring, vehicle speed (average speed in kilometers per

hour), flow rate (vehicle count per unit time), and occupancy (time percentage
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Figure 1. Samples of observed daily speed-flow-occupancy trajectories.

of a unit length of roadway occupied by a vehicle) are the basic quantities that

provide input to intelligent transportation systems. These quantities are continu-

ously recorded by vehicle detectors that are installed in the pavement of selected

roads at regular intervals, the most common type of vehicle detector being an

inductive loop. Vehicle speed, flow rate, and occupancy then form a triplet of

multivariate random functions that play a central role for describing the traffic

stream.

Large sets of such multivariate functional data are constantly generated for

road networks. We specifically analyze data that were recorded by a single dual-

loop detector on Highway 5 in Taiwan, for 92 days (3 months) in 2009. We

take X1 as speed, X2 as flow and X3 as occupancy. Figure 1 illustrates 5 ran-

domly selected samples of daily traffic monitoring profiles, illustrating the three

components corresponding to continuously observed traffic characteristics for one

24-hour day. There is substantial random variation across these trajectories. The

notion of taking daily traffic flow rates as realizations of a stochastic process was

adopted for traffic flow prediction by Chiou (2012). We notice that the profiles of

flow and occupancy give rise to similar shapes, while that of speed stands apart.
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Figure 2. Upper: Estimates of the eigenfunctions {ϕ̂kr} in (3.6) for r = 1
(blue), r = 2 (green), r = 3 (red) and r = 4 (gray). Middle: Estimates of the
variance functions v̂k. Bottom: Direction of variation adjusted by variance

function, v̂
1/2
k ϕ̂kr.

4.1. The mFPCn analysis and application to clustering multivariate

functional data

The five leading FPCs based on mFPCn, accounting for 67%, 15%, 5%,

2% and 1%, explain just above 90% of the total variance. Figure 2 displays

the first four eigenfunctions in (3.6) and the estimated variance functions for

each of the variables. While the directions of variation in flow and occupancy

behave similarly, variation in speed is in the opposite direction. The first and

the second eigenfunctions show a contrast to each other between day and night

hour traffic for the three parameters. The overall shapes of the variance function

estimates look similar, with the peak of variation occurring around 8 a.m. (middle

panels). The bottom panels display the relative directions of variations v̂
1/2
k ϕ̂kr,

the direction of variation adjusted by the effect of the variance function. Figure 3



1582 JENG-MIN CHIOU, YU-TING CHEN AND YA-FANG YANG

Figure 3. The predicted curves, superimposed on the observed trajectories,
with the asymptotic 95% pointwise confidence intervals (shaded in orange)
and simultaneous confidence bands (shaded in cyan) for a random sample of
multivariate traffic trajectories, based on mFPCn.

Figure 4. Pairwise scatterplot of the first three mFPCn scores marked for
holiday (blue), weekday (green) and weekday-before-holiday (red).

shows the 95% pointwise confidence intervals and the simultaneous confidence

bands as obtained in (3.14) and (3.15) for a randomly selected observation. The

pairwise scatterplots of the three leadingmFPCn scores are displayed in Figure 4.

We mark the mFPCn scores for holidays (blue), weekdays (green) and weekday-

before-holidays (red), indicating three typical daily traffic patterns.

The information of distinct daily traffic flow patterns is useful in traffic con-

trol and prediction. For univariate functional data clustering, a simple method

clusters the set of the univariate FPC (uFPC) scores by the classical K-means

algorithm for multivariate data. A more advanced method applies K-centers
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Figure 5. Cluster memberships of uFPC [(a)–(c)] versus mFPCn [(d)–(f)]
for 2, 3 and 4 clusters.

functional clustering (Chiou and Li (2007)) for considering distinct patterns in

the mean and covariance functions. However, using the univariate approach to

multivariate functional data can lead to inconsistent results of cluster member-

ships for different variables within the same unit or subject. This issue can be

resolved using the single set of mFPCn scores for the multivariate trajectories,

in contrast to the multiple sets of uFPC scores with each corresponding to a ran-

dom function. We compare the clustering results for the traffic flow data based

on clustering the mFPCn and uFPC scores as displayed in Figure 5 with 2–4

clusters. The cluster memberships of the days based on uFPC approach (upper

panels) are not consistent for the same day across speed, flow, and occupancy.

4.2. Comparison in prediction

We define the cluster-specific average squared errors (cASE) between the

observed Yki(tij) and the predicted X̂
(c)
ki (tij) trajectories, for the kth variable, by

cASEk = N−1
c

Nc∑
c=1

n−1
c

nc∑
i=1

mi
−1

mi∑
j=1

{
X̂

(c)
ki (tij)− Yki(tij)

}2
, (4.1)

where Nc is the number of clusters. The numerical results based on cASE for

comparing the univariate (uFPC), the classical multivariate (mFPCu) and the

proposed multivariate mFPCn approaches are given in Table 1.

The relative performance of mFPCn tomFPCu is summarized in the column

R1, the ratio of cASE of mFPCn to mFPCu. Most of the values are significantly

smaller than 1, indicating that mFPCn performs better. For the single cluster
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Table 1. Prediction performance for the traffic data based on cASE for
mFPCn, mFPCu and uFPC, with R1, cASE ratio of mFPCn to mFPCu,
and R2, cASE ratio of mFPCn to uFPC.

WLS CE
mFPCu mFPCn uFPC R1 R2 mFPCu mFPCn uFPC R1 R2

(1 cluster)
Speed 0.686 0.507 0.467 0.739 1.086 0.630 0.514 0.467 0.816 1.101
Flow(×102) 2.622 1.890 2.547 0.721 0.742 2.738 2.084 2.548 0.761 0.818
Occupancy 0.233 0.154 0.202 0.661 0.762 0.208 0.175 0.202 0.841 0.866

(2 clusters)
Speed 0.642 0.404 0.401 0.629 1.008 0.645 0.423 0.402 0.656 1.052
Flow(×102) 2.183 1.542 1.760 0.706 0.876 2.226 1.599 1.762 0.718 0.908
Occupancy 0.219 0.127 0.155 0.580 0.819 0.224 0.132 0.155 0.589 0.852

(3 clusters)
Speed 0.670 0.386 0.362 0.576 1.066 0.603 0.397 0.365 0.658 1.088
Flow(×102) 1.864 1.380 1.501 0.740 0.919 1.889 1.392 1.506 0.737 0.925
Occupancy 0.205 0.113 0.131 0.551 0.863 0.198 0.117 0.131 0.591 0.893

(4 clusters)
Speed 0.450 0.361 0.355 0.802 1.017 0.435 0.369 0.355 0.848 1.039
Flow(×102) 1.123 1.198 1.427 1.067 0.840 1.130 1.220 1.431 1.080 0.853
Occupancy 0.133 0.109 0.124 0.820 0.879 0.135 0.103 0.125 0.763 0.824

case the cASEs based on mFPCn coupled with WLS decrease by about 26%,

28%, and 34% for speed, flow and occupancy as compared to mFPCu, and the

reductions are 18%, 24%, and 16% when using the CE method. The cASE results

based on 2–4 clusters are similar.

For the comparison of mFPCn with uFPC, the cASE ratios of mFPCn to

uFPC indicate that mFPCn greatly reduces cASEs for flow and occupancy, while

cASEs for speed based on mFPCn are slightly larger. For the single cluster case

the selected number of components is 5 (with FVE 91.4%) in mFPCn, 2 (with

FVE 93.2%) in mFPCu and 3, 2, and 2 (with FVE 90.9%, 93.3% and 94.5%) for

the variables, speed, flow, and occupancy, in uFPC. In general, mFPCn coupled

with WLS performs slightly better than CE for the traffic data analysis.

We conclude that clustering of multivariate functional data based on the

mFPCn approach not only renders consistent cluster memberships across the

variables but also leads to better performance in terms of prediction errors.

4.3. Simulation

We examined the finite sample performance of the mFPCn, mFPCu, and

uFPC methods. We took p = 3, and generated curves according to the trun-

cated version of (3.1) up to L = 60 components. We considered equally spaced
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Table 2. Relative performance in terms of cASE ratios ofmFPCn tomFPCu

(R1) and cASE ratios of mFPCn to uFPC (R2) based on 200 simulation
replicates for Settings I and II.

Setting I Setting II
WLS CE WLS CE

n Variable R1 R2 R1 R2 R1 R2 R1 R2

100 X1 0.887 0.959 0.878 0.958 0.918 0.959 0.921 0.960
X2 0.909 0.987 0.909 0.986 0.808 1.022 0.810 1.021
X3 0.855 0.950 0.856 0.951 0.987 0.967 0.989 0.967
Avg. 0.880 0.965 0.881 0.965 0.904 0.983 0.907 0.983

500 X1 0.875 0.934 0.876 0.934 0.930 1.008 0.932 1.008
X2 0.902 1.006 0.902 1.006 0.813 1.048 0.814 1.047
X3 0.860 0.968 0.862 0.969 0.992 0.958 0.993 0.959
Avg. 0.879 0.969 0.880 0.970 0.912 1.005 0.913 1.005

recording time points on [0, 5] with mi = 51 for all i. We constructed n = 100

and n = 500 random trajectories with 200 simulated replicates. We set µ(t) = 0,

and v(t) = (t + 0.5, sin(t) + cos(t) + 10, 0.5t2 − t + 1)⊤ for Setting I and v(t) =

(t + 0.5, 0.04, (t − 1)2 + 1)⊤ for Setting II. The multivariate FPC scores {ξri}
were generated from N(0, λr) and the measurement errors {ϵki} from N(0, σ2k)

for k = 1, . . . , p, where λr and σ
2
k were taken from the estimates of the traffic flow

analysis. We set the measurement error variance σ2 = (1, 2.25, 0.64)⊤ for Setting

I and σ2 = (2.25, 0.04, 5)⊤ for Setting II. The settings of {ϕr} and {λr} were

more complicated; more detail regarding these settings is provided in Supplement

S1, and an additional simulation study that mimics our traffic flow analysis is

compiled in Supplement S2.

Table 2 summarizes the simulation results via relative performance of cASE

(Nc = 1) ratios of mFPCn to mFPCu, R1, and to uFPC, R2. Setting I was

designed to have similar scales of the variance functions with higher correlations

between the pairwise random functions, while Setting II was designed to have

uneven magnitudes of the variance functions with lower between-variable corre-

lations. For Setting I, the averaged R1 ratios for the cases of WLS, CE, n = 100

and n = 500 are about 0.88, showing that using mFPCn has substantial gains

over mFPCu. The averaged R2 ratios are about 0.97, indicating that that the

prediction errors of mFPCn can be smaller than uFPC by reducing 3% of cASE.

For Setting II, the averaged R1 ratios are around 0.91, and particularly the ratios

for X2 are as low as 0.81. In general, the performances of WLS and CE are quite

close.

Figure 6 displays the boxplots for the number of components and fraction

of total variance explained (FVE) based on 200 replicates of Setting II. Under

the selection criterion of achieving 90% of total variance, mFPCn selects three
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Figure 6. Boxplots for the number of components and fraction of total
variance explained (FVE) based on 200 simulation replicates for themFPCu,
mFPCn and uFPC methods in Setting II.

components mostly with FVE interquartile ranges from 90.5% to 91.9% for n =
100 and with FVE interquartile ranges from 90.6% to 91.8% for n = 500, while
mFPCu selects two components with FVE interquartile ranges from 90.8% to
92.8% for n = 100 and from 91.2% to 92.1% for n = 500. For uFPC, the median
number of components for X1 and X2 is 2, while the selected number is 1 for X3,
and FVEs are generally higher for X2.

5. Asymptotic Properties

We investigate the asymptotic properties of ourmFPCn approach, borrowing
the theoretical results for the uFPC method in Li and Hsing (2010) and Yao,
Müller, and Wang (2005), where the convergence rates in mean and covariance
estimations are established. The asymptotic results consider the normalization
effects on estimation for the representation in (2.3)and (2.1) under the mFPC
framework.

For a vector u = (u1, . . . , up)
⊤ and a matrix A = {Akl}1≤k,l≤p, we take

∥u∥2 =
(∑p

k=1 u
2
k

)1/2
and ∥A∥2 =

(∑p
k,l=1A

2
kl

)1/2
. Further, let

γnk =
(
n−1

∑n
i=1m

−k
i

)−1
, where mi ≥ 2 and k ∈ N. We need the following

conditions.

(C1) The density function, fT , of Tij is bounded and differentiable with a bounded
derivative.

(C2) The kernel K(·) is a symmetric probability density function with support
[-1,1] and is differentiable with a bounded derivative.

(C3) The mean function µk(·) is twice continuously differentiable with the second
derivative bounded on T for all k.

(C4) The covariance function Gkk(t, t) is bounded above by Mvk and bounded
below by mvk for some Mvk ≥ mvk > 0. The second order derivative of
Gkl(s, t) exists and is bounded on T 2 for all k and l.
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(C5) E
(
supt∈T |Xk(t)|λh1

)
<∞ and E

(
|ϵkij |λh1

)
<∞ for each λh1 > 2; h1 → 0

and
(
h21 + h1/γn1

)−1
(log n/n)1−2/λh1 → 0 as n→ ∞.

(C6) E
(
supt∈T |Xk(t)|2λh2

)
< ∞ and E

(
|ϵkij |2λh2

)
< ∞ for each λh2 > 2;

h2 → 0 and
(
h42 + h32/γn1 + h22/γn2

)−1
(log n/n)1−2/λh2 → 0 as n→ ∞.

(C1)−(C4) hold as general assumptions for functional data analysis. The condi-

tion in (C4) that Gkk is bounded away from zero is required for the normalization

approach and, with Ckl(s, t) = {vk(s)vl(t)}−1/2Gkl(s, t) and vk(t) = Gkk(t, t),

(C4) also holds for Ckl. The h1 in (C5) corresponds to the bandwidth for a

one-dimensional local linear smoother, such as bµk
in (3.2), hWk

in (3.7) and hVk

used to estimate Vk, while h2 in (C6) corresponds to the bandwidth used in a

two-dimensional local linear smoother, such as bGk
in (3.3) and the hk and hl

used in (3.5). The moment conditions (C5) and (C6) are required in establishing

the results with the uniform rates of convergence. When the scores ξri and the

measurement errors εij are jointly Gaussian, (C5) and (C6) hold. These con-

ditions were used in Hall, Müller, and Wang (2006). Here (C5) and (C6) are

required for each λh1 > 2 and for each λh2 > 2, unlike the conditions in Li and

Hsing (2010).

For any bandwidth h1 and h2, let

τn1(h1) = h21 +

[{
1 + (h1γn1)

−1
}(

log n

n

)]1/2
,

τn2(h2) = h22 +

[{
1 + (h2γn1)

−1 +
(
h22γn2

)−1
}(

log n

n

)]1/2
.

The bandwidths h1 and h2 satisfy (C5) and (C6), respectively. Take τµ =

max1≤k≤p{τn1(bµk
)}, τG = max1≤k≤p{τn2(bGk

)}, and τkl = maxk ̸=l{τn2(hkl)},
where hkl = max{hk, hl}, τW = max1≤k≤p{τn1(hWk

)}.

Remarks. (C5) implies τn1(h1) → 0 as n→ ∞. To see this, observe that mi ≥ 2

for i = 1, . . . , n, and thus γn1 ≥ 1,

(h1γn1)
−1

( log n
n

)
≤ h−1

1

( logn
n

)
≤

{
(h21 + h1)

2

}−1 ( log n
n

)
≤ 2

(
h21 +

h1
γn1

)−1( logn

n

)1−2/λh1

converges to zero by (C5), where h1 > (h21 + h1)/2 for n≫ 0. When max1≤i≤n{mi}
< M for some fixed M < ∞, it follows that γn1 ≤ M and 1 + (h1γn1)

−1 =

O(1/h1), and thus τn1(h1) = O
(
h21 + {log n/(nh1)}1/2

)
. On the other hand, if
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min1≤i≤n{mi}≥Mn such thatMn=O(1/h1), then τn1(h1)=O
(
h21 + {log n/n}1/2

)
.

Similarly, it can be shown that (C6) implies τn2(h) → 0 as n→ ∞.

Lemma 1. Let µ̂(t) = (µ̂1(t), . . . , µ̂p(t))
⊤, where µ̂k(t) is obtained by (3.2), and

v̂(t) = (v̂1(t), . . . , v̂p(t))
⊤, where v̂k(t) is obtained by (3.3), for k = 1, . . . , p.

Under (C1)−(C6), and if bµk
≍ h1 and bGk

≍ h2, then

(a) ∥µ̂− µ∥H = O (τµ) a.s..

(b) ∥v̂ − v∥H = O (τµ + τG) a.s..

Let σ̂2 = (σ̂21, . . . , σ̂
2
p)

⊤, where σ̂2k is obtained by (3.8). If hWk
≍ h1, then

(c) ∥σ̂2 − σ2∥2 = O (τW + τµ + τG) a.s..

To prove (a) and (b) of Lemma 1. we follow the proofs of Theorems 3.1 and

3.3 of Li and Hsing (2010) although the estimates in (b) are slightly different.

Details are in Section 6. Lemma 1 still holds if the the moment conditions in

(C5) and (C6) are relaxed to hold for some λhq ∈ (2,∞), rather than for each

λhq > 0 where q = 1, 2.

Lemma 2. Under (C1)−(C6), if bµk
≍ h1 and bGk

≍ h2, then for all k =

1, . . . , p, and i = 1, . . . , n,

sup
1≤j≤mi

|Ũkij −Ukij | = O (τn2(bGk
) + τn1(bµk

)) a.s..

The same rate holds for convergence in probability if the moment conditions

in (C5) and (C6) are satisfied for some λhq ∈ (2,∞), where q = 1, 2.

Theorem 1. Let Ĉ(s, t) =
{
Ĉkl(s, t); 1 ≤ k, l ≤ p

}
, where Ĉkl(s, t) is obtained

by (3.5). Under (C1)−(C6), if bµk
≍ h1 and bGk

≍ hkl ≍ h2, then it holds that

(a) sups,t∈T ∥Ĉ(s, t)−C(s, t)∥2 = O (τkl + τG + τµ) a.s..

If in addition hWk
≍ h1, then for i = 1, . . . , n,

(b) sup
1≤j≤mi

|ς̂2ij − ς2ij | = O (τW + τµ + τG) a.s..

Theorem 2. Let λ̂r and ϕ̂r(t) =
(
ϕ̂1r(t), . . . , ϕ̂pr(t)

)⊤
be the estimates of λr

and ϕr(t) corresponding to the solutions of the eigenequations (3.6). Under

(C1)−(C6) with bµk
≍ h1 and bGk

≍ hkl ≍ h2, if λr is simple, then

(a) |λ̂r − λr| = O (τkl + τG + τµ) a.s..

(b) ∥ϕ̂r − ϕr∥H = O (τkl + τG + τµ) a.s..
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(c) supt∈T ∥ϕ̂r(t)− ϕr(t)∥2 = O (τkl + τG + τµ) a.s..

Theorem 1 establishes the uniform consistency result for the multivariate

covariance and cross-covariance functions. The rates of convergence in Theorem 2

are those of Theorem 1 (a). This is consistent with the finding in Yao, Müller, and

Wang (2005). The truncated number of components L = L(n, δ0) depends on the

threshold δ0 and the sample size n, and for a fixed 0 < δ0 < 1, a corresponding

L0 can be determined as L0 = L0(δ0) = argminM{
∑M

r=1 λr/
∑∞

r=1 λr > δ0}.
Moreover, by the consistency property in Theorem 2 along with Slusky’s theorem,

it can be shown that for each 0 < δ0 < 1, limn→∞ L(n, δ0) = L0(δ0) (cf., Sec. 3.4

in Dauxois, Pousse, and Romain (1982)). Further, limδ0→1 limn→∞ L(n, δ0) = ∞.

Theorem 3. Given a fixed 0 < δ0 < 1, set L = L0(δ0). Assume (C1)−(C6) hold

with bµk
≍ hWk

≍ h1 and bGk
≍ hkl ≍ h2, and assume mi → ∞ as n → ∞.

Then

(i) there exist 0 < δ1 < ∞ and 0 < η < ∞ such that E
(
|ε2kij |1+δ1

)
< η for all

1 ≤ k ≤ p and 1 ≤ j ≤ mi;

(ii) there exist 0 < δ2 < ∞ such that (pmi)
−1Ψi is nonsingular for mi suffi-

ciently large with det
{
(pmi)

−1Ψi

}
> δ2 > 0.

Under (i) and (ii), ξ̂WLS
i,L

a.s.→ ξi,L as n→ ∞, and

Ψ̂
−1/2
i

(
ξ̂WLS
i,L − ξi,L

)
d→ N(0, IL), as n→ ∞.

The theorem indicates that the asymptotic normality property of (ξ̂WLS
i,L

−ξi,L) holds for densely collected functional data. With ωϑ
i,L(s, t) = ϕ

⊤
L,sΩ

ϑ
i,LϕL,t

for s, t ∈ T , where ϑ denotes WLS or CE,
{
ωϑ
i,L(s, t)

}
is a sequence of continuous

positive definite matrices of the functions in s and t.

(C7) There exists a continuous positive definite matrix of function ωϑ
i (s, t) such

that ωϑ
i,L(s, t) → ωϑ

i (s, t) element wise as L→ ∞ for all s, t ∈ T .

Further, let ω̂ϑ
i,L(s, t) = ϕ̂

⊤
L,sΩ̂

ϑ
i,Lϕ̂L,t. By the consistency of the estimates λr,

ϕr(s) and µk(t), it holds under (C7) that limL→∞ limn→∞ ω̂
ϑ
i,L(s, t) = ωϑ

i (s, t)

a.s..

Corollary 1. Assume the conditions of Theorem 3 hold.

(a) If (C7) holds, then for any t ∈ T ,

lim
L→∞

lim
n→∞

(
ω̂WLS
i,L (t, t)

)−1/2
(
ẐL,WLS
i (t)− Zi(t)

)
= D ∼ N(0, Ip).
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(b) For a fixed L,

lim
n→∞

P

sup
t∈T

∣∣∣a⊤ {
ẐL,WLS
i (t)− ZL

i (t)
}∣∣∣{

a⊤ω̂WLS
i,L (t, t)a

}1/2
≤

√
X 2
L,1−α

 ≥ 1− α,

where ZL
i (t) =

∑L
r=1 ξriϕr(t), a = (a1, . . . , ap)

⊤ ∈ Rp is a p-vector and

X 2
L,1−α is the (1−α)th percentile of the chi-square distribution with L degrees

of freedom.

Corollary 1 (a) gives the asymptotic behavior of {ẐL,WLS
i (t) − Zi(t)} when

δ0 tends to one, where only the pointwise distribution can be attained. For the

case of 0 < δ0 < 1, the distribution uniformly in T can be further attained as in

(b). Parallel to the WLS estimates ξWLS
i,L (3.10), the asymptotic results similar

to Theorem 3 and Corollary 1 can be obtained for the conditional expectation

estimate ξCE
i,L (3.11) under the additional assumption that the scores ξri and the

measurement errors εij are jointly Gaussian.

6. Proofs

We provide proofs of the asymptotic properties discussed in Section 5. The

proofs of Lemmas 1 and 2, and Corollary 1 are compiled in the Supplementary

Material.

To prove Theorem 1, we consider the following conditions.

(C5.1) E(supt∈T |Zk(t)|λh1 ) <∞ and E(|εkij |λh1 ) <∞ for each λh1 > 2; h1 → 0,

and
(
h21 + h1/γn1

)−1
(log n/n)1−2/λh1 → 0 as n→ ∞.

(C6.1) E(supt∈T |Zk(t)|2λh2 ) < ∞ and E(|εkij |2λh2 ) < ∞ for each λh2 > 2;

h2 → 0, and
(
h42 + h32/γn1 + h22/γn2

)−1
(log n/n)1−2/λh2 → 0 as n→ ∞.

Lemma 3.

(a) (C5) implies (C5.1).

(b) (C6) implies (C6.1).

The proof of Lemma 3 is in Supplement S3.

6.1. Proof of Theorem 1

(a) For the case of k = l, it follows by Lemma 1 (b) that

sup
s,t∈T

∣∣∣Ĉkk(s, t)− Ckk(s, t)
∣∣∣ ≤ 1

mvk(mvk − δ0)

{
Mvk sup

s,t∈T

∣∣∣Ĝkk(s, t)−Gkk(s, t)
∣∣∣
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+(Mvk + δ0) sup
s,t∈T

∣∣∣Ĝkk(s, t)−Gkk(s, t)
∣∣∣} a.s..

= O(τn2(bGk
) + τn1(bµk

)) a.s..

For the case of k ̸= l, since (C6.1) is satisfied, Lemma 3 (b), the proof is similar

to that of Lemma 1 (b), with the following notation. Let

Qpq =
1

n

n∑
i=1

1

Mi

∑
j ̸=j′

ŨkijŨlij′

(
Tij−s
hk

)p(Tij′−t
kl

)q

K

(
Tij−s
hk

)
K

(
Tij′−t
hl

)
,

Q∗
pq = Qpq − Ckl(s, t)Lpq − hk

∂

∂s
Ckl(s, t)Lp+1,q − hl

∂

∂t
Ckl(s, t)Lp,q+1,

where

Lpq =
1

n

n∑
i=1

1

Mi

∑
j ̸=j′

(
Tij − s

bGk

)p(Tij′ − t

bGk

)q

K

(
Tij − s

hl

)
K

(
Tij′ − t

hk

)
.

Then, it can be shown that(
Ĉkl − Ckl

)
(s, t) = (A1Q

∗
00 −A2Q

∗
10 −A3Q

∗
01)B−1

0 ,

where Ar, r = 1, 2, 3, and B0 are defined as in the proof of Lemma 1 (b) and

have the same asymptotic orders. Hence, it remains to investigate Q∗
00 since the

other terms are of lower order. Let η∗klijj′ = ŨkijŨlij′ −Ckl(Tij , Tij′). By Taylor’s

expansion,

Q∗
00 =

1

n

n∑
i=1

1

Mi

∑
i ̸=j

η∗klijj′K

(
Tij − s

hk

)
K

(
Tij′ − t

hl

)
+O(h2kl).

Here E(UkijUlij′ |Tij , Tij′) = Ckl(Tij , Tij′) and, by Lemma 2, |Ũkij − Ukij | =

O (τn2(bGk
) + τn1(bµk

)) a.s. for each 1 ≤ j ≤ mi. Thus, we have E(Q∗
00) =

O (τn2(bGk
) + τn1(bµk

)) and Q∗
00 = O(τn2(hkl) + τn2(bGk

) + τn1(bµk
) + τn2(bGl

)

+τn1(bµl
)) a.s.. Therefore,

∣∣∣Ĉkl(s, t)− Ckl(s, t)
∣∣∣ = O(τn2(hkl) + τn2(bGk

) +

τn1(bµk
) +τn2(bGl

) + τn1(bµl
)) a.s. uniformly in T 2. Then sups,t∈T ∥Ĉ(s, t) −

C(s, t)∥2 = O (τkl + τG + τµ) a.s..

(b) By the consistency properties of vk(t) and σk obtained in Lemma 1 (b) and

(c), together with the Slutsky’s theorem, the result follows.

6.2. Proof of Theorem 2

We take ∥ · ∥B as an induced norm for any linear operator in H, such that,

for B ∈ B = B(H), a set of all linear operators whose domain and range are both

in H, ∥B∥B = sup∥u∥H≤1 ∥Bu∥H = ∥Bu∗∥H for some u∗ with ∥u∗∥H = 1.
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We define Â similarly to A (2.5) by replacing C(s, t) with Ĉ(s, t). Recall

from (2.6) that the eigen-pair (ϕr, λr) of A satisfies the eigen-equation Aϕr =

λrϕr and the set {ϕr} forms an orthonormal basis in H. The estimated eigen-pair

(ϕ̂r, λ̂r) of Â is analogously defined in (3.6). Then

∥Â − A∥2B ≤
p∑

k=1

∫
∥Ĉk(s, ·)−Ck(s, ·)∥2H ds

≤
∑

1≥k,l≤p

|T |2 sup
s,t∈T

|Ĉkl(s, t)− Ckl(s, t)|2

= O
{
(τkl + τG + τµ)

2
}
a.s.. (6.1)

For any u in H, we define a projector Pr (resp. P̂r) corresponding to λr
(resp. λ̂r), for a fixed r, as

Pr(u) = uEr ∈ Er,

where Er is the eigen-space of λr, Er = {span (ϕr′) : λr′ = λr} and u = uEr+u
⊥
Er
,

where u⊥Er
is the complement of uEr . Thus, Pr(u) =

∑
{r′:λr′=λr}⟨ϕr′ ,u⟩ϕr′ . The

projector P̂r is defined analogously.

In particular, Pr(u) = ⟨ϕr,u⟩ϕr if λr is simple. Hence, given that λr is

simple,

∥P̂r −Pr∥2B = sup
∥u∥≤1

∥(P̂r − Pr)(u)∥2H ≥ ∥(P̂r − Pr)(ϕ̂r)∥2H

= ⟨ϕ̂r − ⟨ϕr, ϕ̂r⟩H ϕr, ϕ̂r − ⟨ϕr, ϕ̂r⟩H ϕr⟩H
= 1− ⟨ϕr, ϕ̂r⟩2H
≥ 1

2
∥ϕ̂r − ϕr∥2H. (6.2)

That is, ∥ϕ̂r − ϕr∥H ≤
√
2∥P̂r − Pr∥B.

To investigate the order of ∥P̂r−Pr∥B, we introduce the resolvent of A (resp.

Â), R : C\{λr’s} → B, where C denotes the set of all complex numbers, defined

as R(z) = (A− zI)−1 (resp. R̂(z) = (Â − zI)−1) .

By decomposition of the spectrum (c.f., Kato (1984, III-6)), Pr = −(1/2πi)∫
Λρ,r

R(z)dz, where Λρ,r = {z ∈ C : |z − λr| = ρ} and ρ is taken so that

2ρ ≤ minr ̸=r′ |λr − λr′ |. A similar argument applies to P̂r. By direct calculation,

one has

R(z)− R̂(z) = R̂(z)(A− Â)R(z). (6.3)

Since λr is simple and Â → A in the B-norm sense as n → ∞, by Lemma 2.1

of Gil’ (1999), there exists a ρ∗ such that among all eigeinvalues of A and Â,
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only λr and λ̂r lie in Λρ∗,r when n is large enough. Note that R(z) is a con-

tinuous linear operator and, thus, is bounded. Let M1 = supz∈Λρ∗,r
{∥R(z)∥B}.

By (6.1) and the definition of R̂, we have R̂ a.s.→ R in the ∥ · ∥B sense. Thus,

supz∈Λρ∗,r

{
∥R̂(z)∥B

}
≤M1 + δ1 for some fixed δ1 > 0 when n≫ 0. By (6.3),

∥P̂r −Pr∥B≤
1

2π

∫
Λρ∗,r

∥R̂(z)∥B∥A − Â∥B∥R(z)∥Bdz≤ρ∗M1 (M1 + δ1) ∥A− Â∥B.

(6.4)

By the inequality (6.2) together with the result of (6.1), we have ∥ϕ̂r − ϕr∥H =

O (τkl + τG + τµ) a.s..

For the convergence rate of (λ̂r − λr) in (a), we note that ⟨ϕr,A(ϕ)⟩H = λr,

and ⟨ϕ̂r, Â(ϕ̂)⟩H = λ̂r,

|λr − λ̂r| ≤
∣∣∣⟨ϕr, (A− Â)(ϕr)⟩H

∣∣∣+ ∣∣∣⟨ϕr − ϕ̂r, Â(ϕr)⟩H
∣∣∣+ ∣∣∣⟨ϕ̂r, Â(ϕr − ϕ̂r)⟩H

∣∣∣
≤ ∥A− Â∥B + 2∥Â∥B ∥ϕr − ϕ̂r∥H = O (τkl + τG + τµ) a.s..

To obtain (c), use

∥λ̂rϕ̂r(s)− λrϕr(s)∥2 ≤
∫
T
∥Ĉ(s, t)−C(s, t)∥2 ∥ϕ̂r(t)∥2dt

+

∫
T
∥C(s, t)∥2 ∥ϕ̂r(t)− ϕr(t)∥2dt.

By Hölder’s inequality and Theorem 1,

∥λ̂rϕ̂r(s)− λrϕr(s)∥2 ≤
{∫

T
∥Ĉ(s, t)−C(s, t)∥22dt

}1/2{∫
T
∥ϕ̂r(t)∥22dt

}1/2

+

{∫
T
∥C(s, t)∥22dt

}1/2{∫
T
∥ϕ̂r(t)− ϕr(t)∥22dt

}1/2

≤ |T |1/2 sup
s,t∈T

∥Ĉ(s, t)−C(s, t)∥2 +M∥ϕ̂r − ϕr∥H

= O (τkl + τG + τµ) a.s.,

whereM is a fixed constant as the bound of
{∫

T ∥C(s, t)∥22dt
}1/2

whose existence

is assured by (C4). Assuming at this point that one of λr or λ̂r is not 0, say,

λr > 0, then ∥(λ̂r/λr)ϕ̂r(s)−ϕr(s)∥2 = O (τkl + τG + τµ) a.s. uniformly in s ∈ T .

Since |λ̂r −λr| = O (τkl + τG + τµ) a.s., it follows that supt∈T ∥ϕ̂r(t)−ϕr(t)∥2 =
O (τkl + τG + τµ) a.s.. For the remaining case λr = λ̂r = 0, we have ϕr(s) =

ϕ̂r(s) = 0 since we assume λr is simple and (c) is satisfied.

Remarks. The technique of applying a resolvent was used in the proofs

of Proposition 3 by Dauxois, Pousse, and Romain (1982) and Theorem 2 by
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Yao, Müller, and Wang (2005) for univariate FPCA. Major differences are sum-

marized as follows.

We adopt the induced norm (∥ · ∥B) in the proof, rather than the Hilbert-

Schmidt norm (∥ · ∥HS) used in Yao, Müller, and Wang (2005). This was due to

the concern that the norm of the resolvent R(z) = (A− zI)−1 needs to be finite.

Boundedness of R(z) based on the induced norm is assured by definition and is

used in (6.4) to obtain the consistency of ϕ̂r. In contrast, since the Hilbert space

L2(T ) ≡ H is of infinite dimension, the Hilbert-Schmidt norm for the identity

is not finite. In addition, we introduce Lemma 2.1 of Gil’ (1999) to restrict

the integration of R(z) and R̂(z) to the same domain, which is crucial when

estimating ∥P̂r − Pr∥B.

6.3. Proof of Theorem 3

We note that ∥ξ̂WLS
i,L − ξi,L∥2 ≤ ∥ξ̂WLS

i,L − ξWLS
i,L ∥2 + ∥ξWLS

i,L − ξi,L∥2. By

Theorems 1 and 2, the consistency results of ς̂2ij and ϕ̂r imply ξ̂WLS
i,L

a.s.→ ξWLS
i,L and

Ω̂WLS
i,L

a.s.→ ΩWLS
i,L . It remains to show that ξWLS

i,L
a.s.→ ξi,L andΨ

−1/2
i

(
ξWLS
i,L −ξi,L

)
d→ N(0, IL), as n→ ∞.

Let Ũ∗
i = Γ

−1/2
i Ũi, ϱ̃

⊤
i,L = Γ

−1/2
i φ̃⊤

i,L and κ̃κκi = Γ
−1/2
i ε̃i, where κ̃κκi =

(κ̃κκ⊤
1i, . . . , κ̃κκ

⊤
pi)

⊤ with κ̃κκki = (κki1, . . . ,κkimi
)⊤. It follows that {κkij} are mu-

tually independent with E(κ2
kij) = 1. By considering the transformed linear

regression model Ũ∗
i = ϱ̃⊤i,Lξi,L + κ̃κκi and noting that ϱ̃i,Lϱ̃

⊤
i,L = Ψi, the results

follow under (i) and (ii), using Lemmas 1 and 2 of White (1980).

7. Concluding Remarks

The new mFPCn model in (2.1) provides a general stochastic representation

for a vector of multivariate random functions, which takes the varying extent

of variations into account and takes advantage of dependency through pairwise

correlations among the random functions. It serves as a basic and useful tool for

multivariate FDA. In a data application, we treated the daily traffic trajectories

as independent observations, even though the data may not fit the independence

assumption. Further investigation of the dependency structures between daily

traffic trajectories, and its effect on traffic flow prediction is warranted.

Supplementary Material

The supplement provides more detail on generating multivariate functional

data and the simulation settings (Supplement S1), an additional simulation study

(Supplement S2), and the proofs of Lemmas 1−2 and Corollary 1 (Supple-

ment S3).
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Deville, J. C. (1974). Méthodes statistiques et numériques de l’analyse harmonique. Annale de

l’INSEE 15, 3-101.

Dubin, J. and Müller, H. G. (2005). Dynamical correlation for multivariate longitudinal data.

J. Amer. Statist. Assoc. 100, 872-881.

Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and its Applications. Chapman and

Hall, London.

Gil’, M. I. (1999). Perturbations of simple eigenvectors of linear operators. Manuscripta Math.

100, 213-219.

Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components anal-

ysis. J. Roy. Statist. Soc. B 68, 109-126.

Hall, P., Müller, H. G. and Wang, J. L. (2006). Properties of principal component methods for

functional and longitudinal data analysis. Ann. Statist. 34, 1493-1517.

Hutson, V. and Pym, J. S. (1980). Applications of Functional Analysis and Operator Theory.

Academic Press, London.

James, G., Hastie, T. G. and Sugar, C. A. (2001). Principal component models for sparse

functional data. Biometrika 87, 587-602.

Kato, T. (1984). Perturbation Theory for Linear Operators. Springer-Verlag, New York.

Kayano, M. and Konishi, S. (2009). Functional principal component analysis via regularized

Gaussian basis expansions and its application to unbalanced data. J. Statist. Plann. In-

ference 139, 2388-2398.

Kelly, E. and Root, W. (1960). A representation of vector-valued random processes. J. Math.

Phys. 39, 211-216.



1596 JENG-MIN CHIOU, YU-TING CHEN AND YA-FANG YANG

Li, Y. and Hsing, T. (2010). Uniform convergence rates for nonparametric regression and prin-

cipal component analysis in functional/longitudinal data. Ann. Statist. 38, 3321-3351.

Ramsay, J. and Silverman, B. (2005). Functional Data Analysis. 2nd edition. Springer, New

York.

Rice, J. and Silverman, B. (1991). Estimating the mean and covariance structure nonparamet-

rically when the data are curves. J. Roy. Statist. Soc. B 53, 233-243.

Silverman, B. W. (1996). Smoothed functional principal component analysis by choice of norm.

Ann. Statist. 24, 1-24.

Suyundykov, R., Puechmorel, S. and Ferre, L. (2010). Multivariate functional data clusterization

by PCA in Sobolev space using wavelets. 42èmes Journées de Statistique.
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