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Abstract: Multi-label classification is increasingly common in modern applications

such as medical diagnosis and document categorization. One important issue in

multi-label classification is the existence of statistical difference of classifier scores

among different classes. When not accounted for properly, such differences can

lead to poor classification decisions on some classes. We address this issue by

developing a strategy based on a new concept, Local Precision Rate (LPR), under

the assumption that classifiers learned for each class are given and corresponding

classifier scores for a set of training objects and a set of objects to be classified

are available. Under certain conditions, we show that transforming the classifier

scores into LPRs and making classification decisions by comparing LPR values for

all objects against all classes can theoretically guarantee the maximum of precision

at any recall rate. We also show that LPR is mathematically equivalent to 1-

ℓFDR, where ℓFDR stands for local false discovery rate. This equivalence and

the Bayesian interpretation of ℓFDR provide an alternative justification for the

theoretical optimal property of LPR. We propose a new estimation method for 1-

ℓFDR (or LPR) based on the formulation of LPR, since the original formulation

of 1-ℓFDR has limitations for estimation when data are noisy. Numerical studies

are conducted based on both simulation and real data to demonstrate the superior

performance of LPR over existing methods.

Key words and phrases: False discovery rate, local false discovery rate, local preci-

sion rate, multilabel classification, optimization, smoothing.

1. Introduction

The traditional problem of single-label classification, which concerns assign-

ing each input object in a sample to exactly one class, has generated a broad

literature in both statistics and computer science (Hastie, Tibshirani, and Fried-

man (2008)). The related but more complicated problem of multi-label classifi-

cation assigns an object to one or multiple classes, among which dependencies

and hierarchies may exist. Multi-label classification is increasingly common in

modern applications. Typical examples include medical diagnosis (Karalic and

Pirnat (1991); Maimon and Rokach (2010)), gene/protein function prediction

(Alves, Delgado, and Freitas (2008); Cerri, da Silva, and de Carvalho (2009),
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Schietgat et al. (2010); Vens et al. (2008)) and document (or text) categorization

(Rousu et al. (2006), Geurts, Wehenkel, and d’AlchéBuc (2006)). More specifi-

cally, a patient may suffer from diabetes and prostate cancer at the same time;

some Drosophila pumilio genes are known to play multiple functional roles in

germline development, gonadogenesis, oogenesis and embryogenesis (Parisi and

Lin (1999)); a newspaper article talking about layoffs during the recent recession

can be classified as both financial news and social news. A tutorial on multi-label

classification can be found in de Carvalho and Freitas (2009).

In multi-label classification, many methods are binary relevance approaches,

in which the classifiers of each class are learned independently. These classifiers

often have different statistical properties due to varying quality and quantity of

training data for different classes. When not accounted for properly, such dif-

ferences can lead to poor classification decisions on some classes. To address

this issue, a second step is often followed. A simple, intuitive idea is to cogi-

tate different thresholds of classifier scores for each class, rather than using a

common threshold for all classes as in conventional score-based methods. Exist-

ing class-dependent thresholding approaches include rank-based and proportion-

based methods (Yang (2001)). Rank-based approaches (Joachims (1998)) rank

the objects by their classifier scores and assign a fixed number (say k) of top-

ranking objects to each class. Proportion-based approaches (Lewis (1992)) only

differ in that they assign kj top-ranking objects to each class, where j is the class

index and kj is proportional to the prior probability of a random object to be

in class j. Recent developments are largely focused on finding class-dependent

thresholds through a global optimal criterion. A greedy algorithm (“cyclic opti-

mization”) was proposed in Fan and Lin (2007) to find thresholds that can max-

imize a given measure. Its key idea was to iteratively select an optimal threshold

for one class while keeping the thresholds for the other classes unchanged un-

til the measure cannot be improved. Pillai, Fumera, and Roli (2013) proposed

a new strategy with a low computational cost to search for optimal thresholds

that theoretically guarantee a global maximum F-measure (Dembczyński et al.

(2011), also see (A.2)). There are also efforts to approach the problem from a

bayesian point of view. In Quevedo, Luaces, and Bahamonde (2012), a family of

thresholding strategies, called probabilistic thresholds, was introduced, and the

posterior probabilities for an object to be in each of the classes were inferred and

used for classification decisions.

In this paper, we introduce a strategy, based on the local precision rate

(LPR), to determine the thresholds of classifier scores for all classes. We show

that transforming the classifier scores into LPRs and making classification deci-

sions by comparing LPR values for all objects against all classes can theoretically

guarantee the maximum of precision at any recall rate. Here an optimal precision-

recall curve (with decisions on all objects against all classes pooled together) can
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be generated by applying LPR. LPR is derived by optimizing the pooled preci-

sion rate, see (2.1), at any recall but turns out to be mathematically equivalent

to (1 - ℓFDR), where ℓFDR stands for local false discovery rate (Efron et al.

(2001); Efron and Tibshirani (2002); Efron (2005, 2010)). This equivalence and

the Bayesian interpretation of ℓFDR provide an alternative justification for the

theoretical optimal property of LPR. We propose a new estimation method for

1-ℓFDR (or LPR) based on the formulation of LPR, since the original formula-

tion of 1-ℓFDR has limitations for estimation when the training data are noisy

and complex. The advantages of our estimation method (derived through LPR)

over the traditional estimation methods for 1-ℓFDR is further demonstrated by

numerical studies in Section 3. Our study is based on the assumption that clas-

sifiers learned for each class are given and corresponding classifier scores for a set

of training objects and a set of objects to be classified are available, like other

efforts discussed previously. That is, we aim to alleviate the differences among

classes without giving up existing classifiers, especially those carefully learned

ones. Our work is thus complementary to the existing work on constructing

high-performance classifiers.

The rest of this article is organized as follows. In Section 2, the new method

based on LPR is introduced, and its asymptotic properties are discussed. In Sec-

tion 3, two simulation studies are reported on that demonstrate the performance

of the LPR approach. Section 4 presents a comparison between our approach

and a few others, based on their applications to the NCBI Gene Expression Om-

nibus (GEO) disease diagnosis database. In Section 5, a comparison between the

method and the optimal thresholding method in Pillai, Fumera, and Roli (2013)

is conducted by applying both methods to three MLC benchmark datasets. Sec-

tion 6 discusses and summarizes the main results.

2. Method

2.1. Problem formulation and notations

Assume that K classifiers have been (independently) learned for K classes,

and the statistical distributions of the classifier scores are known. Denote the

classifier scores for M to-be-classified objects as sk,x’s with x = 1, . . . ,M and

k = 1, . . . ,K. Our goal is to find an “optimal” strategy to assign the M objects

to the K classes, based on the sk,x’s, with each object assigned to zero or more

classes. A formal definition of “optimal” strategy is given through a statistical

model.

We need some basic notations. Let Sk,x denote a random classifier score

(with cdf Fk) for object x against class k. Let λk,uk
be a cutoff score such that

any objects with higher classifier scores is assigned to class k; uk in λk,uk
indicates

the chance that the random object x is not assigned to class k or, equivalently,
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uk = P (Sk,x ≤ λk,uk
) = Fk(λk,uk

). Let Qk,x denote the true (unknown) binary

class label: Qk,x = 1 if object x truly belongs to class k and Qk,x = 0 otherwise.

For a single class k, it is natural to evaluate its classifier’s performance by

the precision function Gk(uk) = P (Qk,x = 1|Sk,x > λk,uk
), the conditional prob-

ability for a random object to be truly in class k given that its classifier score

is above the threshold. In multi-label classification, the classifier’s performance

for all individual classes need to be jointly considered. With the classification

decisions over all classes pooled together, a pooled precision rate (ppr) can be

defined correspondingly. With u1, . . . , uK , we define

ppr =

∑K
k=1(1− uk)Gk(uk)∑K

k=1(1− uk)
, (2.1)

where the denominator is the expected number of classes (out of the K classes)

that object x is assigned to, and among these assignments, the numerator is the

expected number of correct ones. The pooled recall rate (prr) can be similarly

defined as prr =
∑K

k=1(1− uk)Gk(uk)/
∑K

k=1Qk,x. Here
∑K

k=1Qk,x is constant

(though unknown). Thus, when
∑K

k=1(1−uk) is specified, maximizing
∑K

k=1(1−
uk)Gk(uk) maximizes both ppr and prr. This leads to our “optimal” decision

strategy with the objective function

max
u1,...,uK ,∑K

k=1(1−uk)=c

K∑
k=1

(1− uk)Gk(uk),

for any c ∈ [0,K]. This optimization is equivalent to

min
u1,...,uK ,∑K

k=1(1−uk)Gk(uk)=c′

K∑
k=1

(1− uk),

to maximize precision given any recall rate. We note that ppr can also be con-

sidered as the approximate population version of the micro-averaging precision

rate (Pillai, Fumera, and Roli (2013)) because the micro-averaging precision can

be expressed as ∑K
k=1 TPk∑K

k=1(TPk + FPk)
=

∑K
k=1 TPk/M∑K

k=1(TPk/M + FPk/M)
≈ ppr,

where M is the number of objects. The micro-averaging recall (Pillai, Fumera,

and Roli (2013)) can be approximated similarly.

2.2. Optimization based on local precision

We aim to solve the optimization of
∑K

k=1(1−uk)Gk(uk) given
∑K

k=1(1−uk)

fixed. We assume that the precision functions Gk(uk)’s are sufficiently smooth.
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We discuss this smoothness assumption in Appendix C. Roughly speaking, the

extreme value of (2.1) given
∑K

k=1(1−uk) = c can be obtained when d
duk

∑K
k=1(1−

uk)Gk(uk) = 0, for k = 1, . . . ,K−1. This leads to the concept of Local Precision

Rate (LPR). Intuitively, the absolute change rate |△(1−uk)Gk(uk)| indicates how
more likely a random object x is a correct assignment to class k as uk increases.

We define the LPR function for class k as

LPRk(uk) = − d

duk
{(1− uk)Gk(uk)}. (2.2)

Here are some useful properties of Gk(uk) and LPRk(uk). For a random object x,

(1−uk)Gk(uk) is a monotonically decreasing function, LPRk(uk) is non-negative

and, for well-learned classifiers, LPRk(uk) is monotonically increasing.

Theorem 1. Suppose K = 2, and that LPR1(u) and LPR2(u) are monotonically

increasing with u for 0 ≤ u ≤ 1. Take LPR1(1) ≥ LPR2(1). Then, given

u1 + u2 = c, the ppr at (2.1) is maximized at u1 = min{u;u ∈ [0, 1], c − u ∈
[0, 1], and LPR1(u) ≥ LPR2(c− u)}.

Thus for K = 2, LPR can be used to compare the classification scores across

classes to guarantee the optimum of precision and recall rates given a fixed num-

ber of class assignment decisions. This optimization also leads to an optimal

precision-recall curve. The proof is deferred to Appendix B. We can easily gener-

alize Theorem 1 to more than two classes. Basically, (K − 1) partial derivatives

similar to the one in (A.3) can be used to show that the optimal result happens

if the LPRs are used to order the candidates across all classes.

2.3. LPR, ℓFDR and the MAP rule

This section relates LPR to the ℓFDR statistic and the maximum a posteriori

probability (MAP) rule. For this purpose, we model the distribution of classifica-

tion scores as a mixture of two distributions. Let Fk = π0,kF0,k +π1,kF1,k, where

F1,k is the cdf of classification score when the object is in class k and F0,k is the

cdf of classification score when the object is not in class k. π1,k is the probability

that a randomly selected object is in class k, and π0,k = 1− π1,k. Then

Gk(u) =
π1,k{1− F1,k(F

−1
k (u))}

1− u
,

and

LPRk(u) = π1,k
f1,k(F

−1
k (u))

fk(F
−1
k (u))

, (2.3)

where fk, f0,k, and f1,k are the derivatives of Fk, F0,k, and F1,k, respectively.

We see that (2.3) is identical to (1− ℓFDR), also called local true discovery rate
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(ℓtdr) in Efron (2010). In Cai and Sun (2009), ℓFDR was used to achieve a

similar statistical optimization for the multiple testing of grouped hypotheses.

For a given class k, the classification problem can also be viewed as a simple

hypothesis testing problem with two possible values (0 and 1) for the parame-

ter. In a Bayesian framework, when the MAP rule is applied to estimate this

binary parameter, it leads to the same statistic as (2.3). Specifically, an object

is classified as positive to class k if (2.3)≥ 1/2, by the MAP rule.

2.4. Estimation of LPR

Two strategies can be applied to estimate LPRs. One is through (2.2), which

can be rewritten as

LPRk(u) = Gk(u)− (1− u)G′
k(u), (2.4)

with G′
k(u) the derivative of Gk(u). In (2.4), Gk(u) and G′

k(u) can be estimated

simultaneously by applying a local polynomial (quadratic) smoother to a set of

precisions and cdf’s (the ui) for any given u. In practice, the true precisions and

cdf’s are unknown, and thus are replaced by empirical estimates. For any given

u we have

b̂ = argmin
b

M∑
i=1

K(
u− ui

h
)
[
vk,i −

{
b0 + b1(u− ui) + b2(u− ui)

2
}]2

, (2.5)

where M is the sample size, K(·) is a kernel function, h is the smoothing param-

eter (the bandwidth, selected via leave-one-out cross-validation in our simulation

studies and real data analysis), and ui

(
=

∑M
j=1 I(sk,j ≤ sk,i)/M

)
is the empir-

ical cdf. The bandwidth h is a function of sample size M (see C2 in Appendix

for details). Finally, vk,i is the empirical precision using sk,i, the score of the ith

sample, as a cutoff. As a result, Ĝk(u) = b̂0 and Ĝ′
k(u) = b̂1 and LPRk(u) can

be estimated by plugging in the two pointwise estimates at (2.4). Asymptotic re-

sults on Ĝk(u) and Ĝ′
k(u) have been well studied (e.g. Bhattacharya and Müller

(1993); Fan and Gijbels (1996, 2000)). By combining their asymptotic proper-

ties and that Ĝ′
k(u) has the slower convergence rate Op(M

−2/7), the asymptotic

properties of L̂PRk(u) can be obtained.

Corollary 1. Under C1−C5 in Appendix C, we have

√
Mh3

(
L̂PRk(u)− LPRk(u)

)
D−→ N(−(1− u)ξ, (1− u)2δ2),

where

ξ =
d

6

∫
K(t)t4dt

∥K∥22
G

(3)
k (u), and δ2 =

var(Vk|u)
f(u)

∫
K2(t)t2dt.
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The convergence rate of L̂PRk(u) is obtained by plugging the optimal band-

width into
√
Mh3 and the optimum balances the orders of bias square and vari-

ance. The convergence rate is Op(M
−2/7).

The other strategy is through (2.3), mathematically identical to ℓtdr, and

can be rewritten as a function of x(= F−1
k (u)):

ℓtdrk(x) = 1− π0,k
f0,k(x)

fk(x)
. (2.6)

Equation (2.6) can be estimated by any density estimator in R, Matlab or other

software. We do not estimate f1,k directly, since ℓtdrk(x) = π1,kf1,k(x)/fk(x),

but π1,k is usually small in practice (e.g., < .15 for 95% of the classes in the GEO

disease diagnosis dataset), and ℓtdrk(x) can be expressed as (2.6). We obtain a

better estimate of ℓtdrk(x) via the estimate of f0,k. To show the asymptotic

property of ℓ̂tdrk(x) under the conditions in Corollary 2, we first observe that

ℓ̂tdrk(x) = 1− 1

1 + {π̂1f̂∗
1,k(x)}/{π̂0f̂0,k(x)}

+Op

(
(Mh)−1/2 + h2

)
, (2.7)

where f̂0,k(x) and f̂∗
1,k(x) are the kernel density estimators with bandwidths h0

and h, respectively, with h0 and h of the same order. Here h0 is the optimal

bandwidth for f̂0,k(x) while h used in f̂∗
1,k(x) is the optimal bandwidth for f̂k(x)

due to the estimator of (2.6). Since (M0h0)
1/2f̂0,k(x) and (M1h)

1/2f̂∗
1,k(x) in (2.7)

are independent and asymptotically normally distributed, we get the following.

Corollary 2. Under C1, C2 (with (ν, κ) = (0, 2)) and C4 in Appendix C,

ℓ̂tdrk(x) = ℓtdrk(x) +Op

(
(Mh)−1/2 + h2

)
.

The asymptotic result in Corollary 2 is obtained under the bandwidth as-

sumption C2 with (ν, κ) = (0, 2), and thus the convergent rate of ℓ̂tdrk(x) is the

same as that of a one dimensional kernel density estimator, Op(M
−2/5).

The two corollaries show that the convergence rate of ℓ̂tdrk(·) is faster than
that of L̂PRk(·) and theoretically, ℓ̂tdrk(·) should perform better. However, its

performance is sensitive to data layout as well as to the data’s distribution com-

plexity. Specifically, if the samples are observed densely in one or two short

intervals and very sparsely elsewhere, the estimated ℓ̂tdrk(·) would show con-

siderable variability and be unreliable. In contrast, Gk(u) in (2.4) is usually

smooth and can be estimated more reliably since the u values are always densely

observed and evenly spaced. In addition, ℓ̂tdrk(·) involves estimating the ratio

between two probability densities, f0,k(x) and fk(x), and this might not lead to

satisfactory results. These arguments suggest that estimating LPR through (2.4)
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is likely a better choice in many problems. In the simulation section, we further

demonstrate these points.

2.5. Algorithm for LPR

The details of estimating LPR are summarized in Algorithm 1. With the

{L̂PRk(ui) : 1 ≤ i ≤ M, 1 ≤ k ≤ K} and a threshold, the corresponding precision

and recall rates (see (A.1)) can be obtained and thus the F-measure (see (A.2))

of a given β.

Algorithm 1 LPR for a given class k

Require: The training set of raw classifier scores {sk,j ; j = 1, . . . ,M};
Ensure: The estimated LPR {L̂PRk(ui) : i = 1, . . . ,M};

1: Calculate the empirical cdf ui’s and precision vk,i’s:

– ui =
∑M

j=1 I(sk,j ≤ sk,i)/M ;

– vk,i = TPk/(TPk + FPk), when sk,i is the threshold;

2: Calculate estimated LPRs:

– (Ĝk(ui), Ĝ
′
k(ui)) = (b̂0, b̂1) by (2.5);

– L̂PRk(ui) = Ĝk(ui) + (1− ui)Ĝ
′
k(ui).

3. Simulation Studies

Given classifier scores for a set of to-be-classified objects, we propose to

transform these scores into class-specific LPRs, and then to make classification

decisions by comparing the LPR values across all classes for all objects. To

evaluate our approach, we compared the two estimators L̂PRk(·) from (2.4) and

ℓ̂tdrk(·) from (2.6) to the commonly used methods based on raw classifier scores,

p-values, and FDRs, where p-values and FDRs are transformed from raw classifier

scores. We also compared the best F-measure (at β = 1) obtained by our LPR

approach with the one from the optimal thresholding approach in Pillai, Fumera,

and Roli (2013). We denote the method in Pillai, Fumera, and Roli (2013) as

OT.

To estimate ℓtdr, we used the “ksdensity” function in Matlab, with the

Epanechnikov kernel and the default bandwidth. We do not use the R package

for estimating ℓFDR (“fdrtool” Strimmer (2008a,b)) here, because this package

was built for hypothesis testing problems and does not utilize any training data.

Therefore, to have a fair comparison we decided not to include the results of

“fdrtool” in the following numerical studies (we found that its performance
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Table 1. Parameters of five independent classes.

Class 1 2 3 4 5

X0 B(0.5, 3) B(1, 1) B(0.5, 4) B(0.5, 5) B(0.5, 0.5)

X1 B(10, 10) B(4, 0.9) B(10, 10) B(4, 0.9) B(16, 0.1)

was much worse than all other methods in Table 2 and Table 4, which methods

used training data in their estimation.)

3.1. Simulation I

Our first test case used simulated objects that could belong to five indepen-

dent classes. For simplicity, we assumed that the true LPRs were monotonically

increasing. The score of each sample object with respect to class k was randomly

generated from the mixed beta distribution,

Sk =
X0

1.25
I(clusterk = 0) +X1I(clusterk = 1),

where I(·) is an indicator function and X0 and X1 are beta distributions with

the parameters given in Table 1. We used beta distributions because they can

be right-skewed, left-skewed or centered depending on the chosen parameters.

The range of the generated scores is [0, 1]. To make classification easier,

we reduced the range of scores generated from the null distribution to [0, 0.8]

by dividing the null score by 1.25. In practice, the proportion of alternative

(e.g., disease) cases is often much smaller than that of null cases. Therefore, we

chose four small values for the sample ratios, π1,k = 0.05, 0.10, 0.15, and 0.20.

We used sample sizes 100, 200, and 500. The number of runs was 100 for each

simulation. For each run, we generated two independent samples of the stated

size: the training set was used to estimate necessary statistics (such as LPR,

F0,k, and FDR), while the test set was used to compare the performance of the

different approaches. The results are summarized in Tables 2 and 3.

For the five methods, we see that the areas under the precision-recall curves

depend strongly on π1,k, and results are better when π1,k is larger as expected.

We also see that the performance of the methods generally improves with sample

size, except for the raw-classifier-score method. From Table 2, we see that the

method using only raw classifier scores performs the worst, while LPR (2.4)

does the best. This is not surprising as the statistic p-value is a measure under

the null hypothesis and only controls for false positives, and the FDR measures

the false discovery rate but ignores the false + true discoveries rate. We note

that ℓtdr (2.6) performed worse than p-values in this study though, in theory, it
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Table 2. Areas under the overall Precision-Recall curves (Simulation I). The
values given here are the average of 100 runs with standard errors in the
brackets.

M π1,k Original LPR ℓtdr p-value FDR

100

0.05 0.573 (0.085) 0.771 (0.087) 0.651 (0.098) 0.688 (0.104) 0.659 (0.104)
0.1 0.667 (0.053) 0.875 (0.048) 0.793 (0.074) 0.812 (0.064) 0.785 (0.063)
0.15 0.724 (0.042) 0.909 (0.040) 0.845 (0.060) 0.857 (0.047) 0.837 (0.051)
0.2 0.766 (0.031) 0.930 (0.027) 0.882 (0.042) 0.894 (0.032) 0.882 (0.035)

200

0.05 0.592 (0.065) 0.817 (0.052) 0.718 (0.070) 0.767 (0.063) 0.734 (0.070)
0.1 0.666 (0.036) 0.889 (0.031) 0.826 (0.042) 0.849 (0.039) 0.827 (0.042)
0.15 0.722 (0.030) 0.919 (0.019) 0.877 (0.035) 0.890 (0.028) 0.871 (0.034)
0.2 0.769 (0.025) 0.938 (0.014) 0.902 (0.026) 0.915 (0.022) 0.902 (0.024)

500

0.05 0.584 (0.047) 0.835 (0.032) 0.769 (0.040) 0.800 (0.038) 0.769 (0.041)
0.1 0.660 (0.026) 0.900 (0.016) 0.864 (0.025) 0.872 (0.021) 0.849 (0.026)
0.15 0.721 (0.018) 0.926 (0.012) 0.900 (0.017) 0.905 (0.016) 0.889 (0.019)
0.2 0.767 (0.015) 0.942 (0.008) 0.922 (0.013) 0.924 (0.009) 0.911 (0.011)

should perform at least as well as LPR (2.4). The order of performance in this

simulation setting was

LPR ≻ p-value ≻ ℓtdr ≈ FDR ≻ Raw Scores .

When estimating ℓtdr (2.6), one can find both f̂0,k(λ) and f̂k(λ) zero. We

used some heuristic rules to choose the ℓtdr value for such cases. That worked

well for us.

There are efforts to determine class-specific thresholds of classifier scores

by optimizing a given global criterion, such as Fβ = (1 + β2)/{(1/precision) +
(β2/recall)}. We compared the best F-measure (with β = 1) obtained by LPR

with that from the OT method based on this simulation data. It was shown in

Pillai, Fumera, and Roli (2013) that the maximum F-measure with a given β

can be guaranteed by the OT method. The comparison results are presented in

Table 3. We see that the two methods perform similarly; the OT method looks

slightly better than LPR here but the difference is not significant. The main

advantage of LPR over OT is that LPR can achieve the optimum F-measure for

different β’s all at once, while OT achieves the optimum of a single F-measure

each time.

3.2. Simulation II

In practice, there can be sub-populations within classes. Vascular diseases

and heart diseases are both cardiovascular diseases, for example, while central

nervous system (CNS) infections, brain diseases, and movement disorder are all

in the class of CNS disorders. Accordingly, it is reasonable to model the alterna-

tives with mixed distributions. Consider three clusters (0, 1, and 2) that are all
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Table 3. F-measure (Simulation I). The values given here are the average of
100 runs with standard errors in the brackets.

M π1,k Raw Scores LPR OT

100

0.05 0.615 (0.097) 0.745 (0.079) 0.753 (0.073)
0.1 0.622 (0.063) 0.830 (0.040) 0.832 (0.042)
0.15 0.639 (0.042) 0.862 (0.029) 0.865 (0.026)
0.2 0.673 (0.028) 0.873 (0.024) 0.878 (0.025)

200

0.05 0.610 (0.076) 0.760 (0.047) 0.765 (0.047)
0.1 0.623 (0.044) 0.834 (0.029) 0.836 (0.030)
0.15 0.630 (0.030) 0.862 (0.023) 0.867 (0.022)
0.2 0.666 (0.022) 0.879 (0.019) 0.887 (0.019)

500

0.05 0.622 (0.041) 0.781 (0.032) 0.785 (0.031)
0.1 0.624 (0.029) 0.836 (0.022) 0.845 (0.021)
0.15 0.621 (0.021) 0.863 (0.014) 0.872 (0.013)
0.2 0.665 (0.014) 0.882 (0.012) 0.890 (0.011)

contained within one class k. Cluster 0 corresponds to null cases, and cluster 1

and 2 correspond to two sub-populations of alternative (e.g., disease) cases. For

the classifier score associated with class k, a model mimics this situation:

Sk =
X0

1.25
I(clusterk = 0) +X1I(clusterk = 1) +X2I(clusterk = 2),

where I(·) is an indicator function, X0 and X1 are beta distributions with pa-

rameters given in Table 1, and X2 = 0.5 if k = 1, 3, 5, and 1 otherwise.

This model allows us to evaluate the robustness of our approach, as the

distributions of cluster 2 are discrete. This property may result in LPRs not

monotonically increasing. In this simulation data, the LPR of the fifth class

(k = 5) is not monotonically increasing because the scores of the first and the

third clusters are both centered at 0.5. Since the total proportion of disease cases

π1,k + π2,k should be small, we chose values of π1,k and π2,k such that π1,k + π2,k
was 0.05, 0.10, 0.15, and 0.20 and π2,k/(π1,k + π2,k) was 0.1, 0.3, and 0.5 for

k = 1, . . . , 5. As with Simulation I, we repeated this simulation for sample sizes

100, 200, and 500 and produced 100 runs for each simulation. Two independent

samples of the specified size were generated for each run: the training set and

the test set. The results are summarized in Tables 4 and 5.

Similar to the results of Simulation I, the method that uses raw classifier

scores performed worst in all cases. The LPR (2.4) had the best overall per-

formance, and was least affected by adding the cluster 2 (X2) to the alternative

samples. ℓtdr performed similarly to p-values in general, but performed signifi-

cantly better than FDRs. Also interestingly, p-values and FDRs performed worse

when π2,k/(π1,k + π2,k) increased. This does not happen to the LPR and ℓtdr,
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suggesting that our approach is more robust against distribution noise. The order

of performance in this simulation setting was

LPR ≻ ℓtdr ≈ p-value ≻ FDR ≻ Raw Scores .

We evaluated the performance of LPR in terms of F-measure. In Table

5, we see that LPR slightly outperforms OT. More specifically, when the

sample size is larger and when the data distribution is more complex, LPR

tends to perform better than OT. This is consistent with the discussions in

Pillai, Fumera, and Roli (2013) on OT’s potential over-fitting problem.

3.3. LPR v.s. ℓtdr

We find it better to estimate local precision rates through LPR (2.4) than

through ℓtdr (2.6). One possible explanation to LPR’s good performance is that

the precision function Gk(u) in (2.4) is usually smooth and can be estimated reli-

ably as the u values are always densely observed and evenly spaced. This is true

no matter how different and complicated the null and alternative distributions

are. In contrast, the performance of ℓ̂tdrk(·) is very sensitive to data layout as

well as the data’s distribution complexity. Specifically, if the training samples

are observed densely in one or two short intervals and very sparsely elsewhere,

the estimated ℓ̂tdrk(·) can be unreliable. When f̂0 and f̂ are estimated using

different bandwidths, they have different levels of bias and variance, and the es-

timated ℓtdr may not be always between 0 and 1. Thus, even though Ĝ′(u) has

a slower convergence rate in some situations LPR (2.4) can still lead to better

and more reliable results.

In brief, when the two pdf’s (f and f0) can be well estimated from the data,

the performance of ℓtdr should be at least comparable to LPR, while the LPR

likely performs better when the density functions are skewed or multimodal.

4. Application to Disease Diagnosis

We use the NCBI GEO datasets in Huang, Liu, and Zhou (2010) to validate

our approach. The details of data preprocessing strategies and methods can be

found there. Briefly, 100 GEO datasets, consisting of about 9,000 microarrays

related to a total of 110 human disease concepts, were collected. Each of the

disease concepts is associated with ≥ 3 and ≤ 30 GEO datasets.

We compared the LPR (2.4) to the p-value and the FDR methods, as well

as to the “first stage” and “two stage” approaches described in Huang, Liu,

and Zhou (2010) (the methods in Huang, Liu, and Zhou (2010) are based on

a common cutoff on classifier scores for all classes; see Supplementary Material

for more details). Leave-one-out cross-validation was applied to evaluate the

performance of the approaches. The results are shown in Figure 1 and Table 6.
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Table 4. Area under the overall Precision-Recall curves (Simulation II). The
values given here are the average of 100 runs with standard errors in the
brackets.

M π1,k π2,k Raw Scores LPR ℓtdr p-value FDR

100

0.045 0.005 0.572(0.101) 0.747(0.107) 0.632(0.120) 0.675(0.122) 0.631(0.124)
0.035 0.015 0.555(0.078) 0.769(0.108) 0.657(0.115) 0.679(0.110) 0.650(0.110)
0.025 0.025 0.536(0.091) 0.762(0.119) 0.655(0.130) 0.627(0.111) 0.609(0.115)
0.090 0.010 0.648(0.056) 0.860(0.047) 0.779(0.073) 0.795(0.062) 0.765(0.071)
0.070 0.030 0.638(0.062) 0.871(0.044) 0.773(0.065) 0.781(0.069) 0.766(0.072)
0.050 0.050 0.619(0.060) 0.885(0.047) 0.776(0.068) 0.757(0.073) 0.746(0.071)
0.135 0.015 0.711(0.040) 0.900(0.033) 0.832(0.045) 0.838(0.044) 0.823(0.049)
0.105 0.045 0.699(0.040) 0.915(0.029) 0.826(0.055) 0.829(0.047) 0.816(0.050)
0.075 0.075 0.681(0.043) 0.921(0.030) 0.829(0.050) 0.812(0.049) 0.801(0.050)
0.180 0.020 0.758(0.030) 0.928(0.027) 0.876(0.040) 0.886(0.034) 0.872(0.038)
0.140 0.060 0.752(0.033) 0.933(0.023) 0.861(0.042) 0.856(0.040) 0.846(0.044)
0.100 0.100 0.732(0.035) 0.938(0.023) 0.863(0.043) 0.839(0.043) 0.832(0.045)

200

0.045 0.005 0.575(0.068) 0.814(0.058) 0.720(0.072) 0.753(0.066) 0.723(0.071)
0.035 0.015 0.559(0.061) 0.825(0.058) 0.717(0.074) 0.712(0.076) 0.684(0.077)
0.025 0.025 0.558(0.063) 0.851(0.053) 0.733(0.076) 0.708(0.076) 0.689(0.077)
0.090 0.010 0.643(0.041) 0.889(0.033) 0.825(0.045) 0.833(0.044) 0.814(0.046)
0.070 0.030 0.635(0.042) 0.895(0.032) 0.811(0.045) 0.804(0.043) 0.786(0.048)
0.050 0.050 0.629(0.040) 0.914(0.029) 0.816(0.047) 0.795(0.045) 0.785(0.049)
0.135 0.015 0.717(0.036) 0.923(0.021) 0.868(0.034) 0.877(0.033) 0.858(0.037)
0.105 0.045 0.705(0.030) 0.934(0.018) 0.863(0.034) 0.857(0.033) 0.845(0.036)
0.075 0.075 0.683(0.028) 0.935(0.024) 0.862(0.033) 0.833(0.033) 0.824(0.037)
0.180 0.020 0.766(0.024) 0.942(0.016) 0.898(0.027) 0.904(0.023) 0.893(0.025)
0.140 0.060 0.748(0.026) 0.945(0.015) 0.888(0.022) 0.884(0.025) 0.873(0.027)
0.100 0.100 0.733(0.025) 0.948(0.016) 0.892(0.027) 0.866(0.027) 0.861(0.029)

500

0.045 0.005 0.573(0.041) 0.847(0.031) 0.768(0.043) 0.789(0.035) 0.754(0.036)
0.035 0.015 0.559(0.045) 0.873(0.028) 0.774(0.042) 0.767(0.044) 0.743(0.048)
0.025 0.025 0.546(0.042) 0.883(0.026) 0.794(0.038) 0.740(0.045) 0.723(0.044)
0.090 0.010 0.654(0.031) 0.908(0.018) 0.854(0.028) 0.862(0.024) 0.842(0.025)
0.070 0.030 0.639(0.023) 0.920(0.013) 0.853(0.022) 0.841(0.021) 0.824(0.022)
0.050 0.050 0.622(0.027) 0.929(0.015) 0.869(0.025) 0.814(0.027) 0.805(0.031)
0.135 0.015 0.718(0.020) 0.933(0.011) 0.891(0.017) 0.897(0.017) 0.882(0.018)
0.105 0.045 0.702(0.020) 0.942(0.010) 0.890(0.018) 0.878(0.016) 0.866(0.018)
0.075 0.075 0.688(0.020) 0.944(0.011) 0.904(0.015) 0.856(0.017) 0.851(0.019)
0.180 0.020 0.764(0.016) 0.949(0.009) 0.917(0.013) 0.919(0.012) 0.907(0.013)
0.140 0.060 0.748(0.012) 0.952(0.008) 0.911(0.013) 0.898(0.012) 0.890(0.013)
0.100 0.100 0.737(0.016) 0.955(0.008) 0.926(0.012) 0.882(0.014) 0.877(0.015)

Figure 1 indicates that LPR significantly outperforms the “first stage” and

“two stage” methods from Huang, Liu, and Zhou (2010). LPR also outperforms

p-value at almost all recall rates, and significantly outperforms FDR at recall

rates < 0.42. While at recall rates between 0.42 and 0.61, FDR performs slightly
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Table 5. F-measures (Simulation II). The values given here are the average
of 100 runs with standard errors in the brackets.

M π1,k π2,k Raw Scores LPR OT

100

0.045 0.005 0.616(0.100) 0.747 (0.073) 0.752 (0.073)
0.035 0.015 0.610(0.089) 0.757 (0.070) 0.765 (0.072)
0.025 0.025 0.586(0.083) 0.777 (0.082) 0.767 (0.080)
0.090 0.010 0.614(0.062) 0.822 (0.044) 0.826 (0.045)
0.070 0.030 0.614(0.062) 0.845 (0.042) 0.831 (0.042)
0.050 0.050 0.600(0.055) 0.863 (0.043) 0.830 (0.042)
0.135 0.015 0.630(0.036) 0.855 (0.033) 0.856 (0.033)
0.105 0.045 0.638(0.041) 0.873 (0.032) 0.850 (0.035)
0.075 0.075 0.643(0.032) 0.884 (0.037) 0.848 (0.034)
0.180 0.020 0.678(0.023) 0.876 (0.026) 0.872 (0.027)
0.140 0.060 0.683(0.031) 0.891 (0.024) 0.866 (0.026)
0.100 0.100 0.702(0.026) 0.900 (0.029) 0.865 (0.030)

200

0.045 0.005 0.611(0.068) 0.780 (0.049) 0.779 (0.050)
0.035 0.015 0.598(0.058) 0.786 (0.049) 0.773 (0.050)
0.025 0.025 0.596(0.069) 0.825 (0.053) 0.798 (0.047)
0.090 0.010 0.613(0.041) 0.833 (0.028) 0.831 (0.030)
0.070 0.030 0.606(0.048) 0.862 (0.028) 0.835 (0.031)
0.050 0.050 0.600(0.047) 0.875 (0.027) 0.839 (0.029)
0.135 0.015 0.627(0.031) 0.868 (0.022) 0.865 (0.022)
0.105 0.045 0.629(0.028) 0.885 (0.023) 0.858 (0.022)
0.075 0.075 0.636(0.023) 0.895 (0.024) 0.851 (0.025)
0.180 0.020 0.672(0.022) 0.887 (0.018) 0.883 (0.018)
0.140 0.060 0.685(0.021) 0.898 (0.018) 0.873 (0.021)
0.100 0.100 0.700(0.023) 0.904 (0.020) 0.866 (0.021)

500

0.045 0.005 0.612(0.044) 0.790 (0.030) 0.791 (0.029)
0.035 0.015 0.606(0.046) 0.827 (0.027) 0.803 (0.028)
0.025 0.025 0.603(0.041) 0.849 (0.029) 0.804 (0.028)
0.090 0.010 0.617(0.032) 0.845 (0.017) 0.840 (0.017)
0.070 0.030 0.608(0.030) 0.864 (0.018) 0.836 (0.017)
0.050 0.050 0.595(0.027) 0.885 (0.019) 0.840 (0.018)
0.135 0.015 0.618(0.019) 0.877 (0.016) 0.869 (0.015)
0.105 0.045 0.623(0.016) 0.892 (0.012) 0.865 (0.013)
0.075 0.075 0.634(0.016) 0.901 (0.014) 0.858 (0.016)
0.180 0.020 0.669(0.014) 0.894 (0.012) 0.887 (0.012)
0.140 0.060 0.681(0.013) 0.901 (0.011) 0.877 (0.012)
0.100 0.100 0.702(0.013) 0.908 (0.013) 0.870 (0.012)

better than LPR. However, there is one critical issue with the p-value and FDR

methods: they fail to obtain results with high precision. We also applied ℓtdr to

the same data. It performed only slightly better than the ”two stage” approach,

and generated much worse results than the ones from the LPR, p-value, and FDR

approaches. The precision rates at various recall rates for all five approaches can
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Table 6. Precision rates of different approaches at given recall rates for the
NCBI GEO datasets.

first stage two stage LPR p-value FDR
0.2 0.25 0.82 0.91 N.A. N.A.
0.3 0.13 0.58 0.89 0.65 0.74
0.4 0.11 0.27 0.87 0.54 0.68
0.5 0.09 0.20 0.32 0.33 0.57
0.6 0.08 0.18 0.19 0.21 0.21

Table 7. Precision, recall and F-measure of the NCBI GEO datasets.

Method F-measure Precision Recall
LPR 0.531 0.727 0.418
OT 0.545 0.702 0.445

Figure 1. The precision-recall curves of the data.

be found in Table 6.

As in the simulation study, we further compared LPR with the OT method

(Pillai, Fumera, and Roli, 2013) in terms of F-measure. The results are summa-

rized in Table 7. We see that the performance of the OT method is comparable

or slightly better in terms of F-measure (with β = 1) than the LPR approach,

though the results from LPR have a better precision.
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5. Benchmark Datasets

To evaluate the performance of LPR in terms of F-measure, we applied it

to three benchmark datasets: Reuters RCV1v2 (text categorization, Lewis et al.

(2004)), Scene (image annotation, Boutell et al. (2004)) and Yeast (gene annota-

tion, Elisseeff and Weston (2002)). These datasets were obtained from the LIB-

SVM Chang and Lin (2011) website (http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/.) Scene and Yeast datasets were originally subdivided

into a training and testing set, while RCV1v2 consists of five pairs of training

and testing sets. For Scene and Yeast, we pooled the training and testing sets

and randomly divided the data into 10 groups. A ten-fold cross-validation was

then applied to evaluate the performance of LPR and OT in terms of F-measure.

For RCV1v2, we evaluated the performance of LPR and OT based on the given

paired training and testing datasets, then switched the role of training and testing

and repeated the analysis. Three β’s (1/2,1,2) were considered and the numerical

results are summarized in Table 8.

Overall, LPR and OT preformed quite similarly on these datasets. For the

results related to RCV1v2, LPR looked to have significantly better precision

than OT, and LPR had a better F-measure at a smaller β (i.e., at β = 1/2).

6. Discussion and Conclusions

In this paper, we introduced LPR and demonstrated that transforming clas-

sifier scores into LPR values and then making classification decisions accordingly

can achieve a globally optimal precision rate at any given recall. Large-margin

classifiers such as support vector machines (Cristianini and Shawe-Taylor (2000))

and distance-weighted discrimination (Marron, Todd, and Ahn (2007)) often pro-

duce sparse solutions, and their decision functions may not provide estimated

class-assignment probabilities (continuous classifier scores) of a query sample.

Some techniques (Platt (1999); Bartlett and Tewari (2007); Wang, Shen, and

Liu (2008)) exist to reproduce the class-assignment probabilities and then LPR

can be applied.

The main advantage of LPR over OT is that LPR can achieve the optimum

of F-measure for different β’s all at once, while OT only achieves the optimum

of a single F-measure each time.

The LPR and ℓtdr are not without flaws. The LPR uses the entire sample

and works well if the precision functions Gk’s are smooth and densely observed,

while ℓtdr uses only a portion of the sample to estimate f0,k. Here the variation

is larger and the performance depends strongly on the distribution of observed

objects. Since smoothing techniques are applied in both estimators, a boundary

effect exists, but we see significant improvements after applying LPR in both

simulation studies and data analysis.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 8. Precisions, recalls and F-measures of the three benchmark datasets.

Dataset β OT LPR
Precision 0.678(0.046) 0.646(0.051)

1/2 Recall 0.440(0.056) 0.514(0.038)
F-measure 0.610(0.042) 0.613(0.038)
Precision 0.569(0.020) 0.547(0.037)

Yeast 1 Recall 0.683(0.014) 0.716(0.064)
F-measure 0.620(0.014) 0.617(0.013)
Precision 0.497(0.027) 0.398(0.035)

2 Recall 0.829(0.015) 0.937(0.026)
F-measure 0.731(0.017) 0.736(0.016)
Precision 0.799(0.041) 0.806(0.078)

1/2 Recall 0.522(0.063) 0.541(0.087)
F-measure 0.720(0.032) 0.728(0.043)
Precision 0.654(0.044) 0.661(0.049)

Scene 1 Recall 0.761(0.063) 0.766(0.049)
F-measure 0.701(0.035) 0.708(0.030)
Precision 0.545(0.024) 0.543(0.064)

2 Recall 0.878(0.018) 0.878(0.052)
F-measure 0.782(0.016) 0.777(0.017)
Precision 0.818(0.028) 0.904(0.008)

1/2 Recall 0.707(0.016) 0.619(0.021)
F-measure 0.793(0.022) 0.828(0.006)
Precision 0.752(0.046) 0.836(0.020)

RCV1v2 1 Recall 0.765(0.009) 0.695(0.016)
F-measure 0.757(0.023) 0.759(0.011)
Precision 0.669(0.051) 0.787(0.037)

2 Recall 0.802(0.008) 0.719(0.011)
F-measure 0.771(0.011) 0.731(0.007)

It might be too strong to assume that the Gk’s are smooth, but it is reason-

able to assume that they are piecewise smooth, with at most a few discontinuous

points. Some nonparametric procedures to address this change-point issue are in

McDonald and Owen (1986), Hall and Titterington (1992), and Lee (2002). In

practice, one can examine Gk by scatter plots and justify whether assumptions

regarding its shape (smooth or piecewise smooth) are satisfied. For simplicity,

we estimated Gk by applying a one-dimensional smoother, since the smoothness

assumption does not seem to be violated in our data.

We have not considered the complicated hierarchy of classes. Ensuring con-

sistency in a hierarchy is an equally important but separate issue in multi-label

classification problems, one beyond the scope of this paper. In future work, we

will develop an approach to estimating LPR that incorporates useful information

from the LPRs generated by neighboring classifiers in the hierarchy.
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Appendix

A. Precision, Recall and F-measure

The precision and recall rates are two sensible summary measures of a confu-
sion matrix that reports the number of true negatives (TN), false positives (FP),
false negatives (FN), and true positives (TP). They have been commonly used
to evaluate the performance of a classification approach due to the imbalanced
structure of the data. The (micro-averaging) precision and recall rates are

Precision =

∑
k TPk∑

k(TPk + FPk)
, and Recall =

∑
k TPk∑

k(TPk + FNk)
, (A.1)

where the subscript k indicates the k-th class. The generalized F-measure is
a weighted harmonic mean of precision and recall, and the weight β defines a
trade-off between precision and recall. Specifically,

Fβ =
1 + β2

1/Precision+ β2/Recall
. (A.2)

Optimizing this measure is a challenging problem, since no closed-form maximizer
exists (Dembczyński et al. (2011)). Approaches from different directions have

been proposed, such as Pillai, Fumera, and Roli (2013).

B. Proof of Theorem 1

Proof. Given u1 + u2 = c, the ppr in (2.1) can be re-expressed as

ppr =
(1− u1)G1(u1) + {1− (c− u1)}G2(c− u1)

2− c
.

To determine the condition for ppr to be maximized, we check its first derivative
with respect to u1 (we have assumed that the precision functions are sufficiently

smooth) and get
dppr

du1
=

−LPR1(u1) + LPR2(c− u1)

2− c
. (A.3)
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• Case I: Suppose u∗ = min{u;u ∈ [0, 1], c − u ∈ [0, 1], and LPR1(u) =

LPR2(c−u)}. This implies u∗ = min{u;u ∈ [0, 1], c−u ∈ [0, 1], and LPR1(u)

≥ LPR2(c− u)} since LPR1(1) ≥ LPR2(1), and both LPR1(·) and LPR2(·)
are monotonically increasing. Now we show that ppr can be maximized at

u1 = u∗. We note that dppr/du1 in (A.3) is monotonically decreasing with

u1. Therefore, dppr/du1 = 0 when u1 = u∗, dppr/du1 ≥ 0 when u1 < u∗, and

dppr/du1 ≤ 0 when u1 > u∗. Therefore, ppr can be maximized at u1 = u∗.

• Case II: Suppose that no u1 ∈ [0, 1] and c − u1 ∈ [0, 1] satisfy LPR1(u1) =

LPR2(c − u1) or dppr/du1 = 0. Since dppr/du1 is monotonically increasing,

we have dppr/du1 ≤ 0 always or dppr/du1 ≥ 0 always. With LPR1(1) ≥
LPR2(1), dppr/du1 is always ≤ 0. Then ppr is monotonically decreasing with

u1, and should be maximized at u1 = min{u;u ∈ [0, 1] and c − u ∈ [0, 1]}.
Also, since dppr/du1 ≤ 0 always, we have LPR1(u) ≥ LPR2(c − u) for u ∈
[0, 1] and c− u ∈ [0, 1]. Therefore,

u1 =min{u;u ∈ [0, 1] and c− u ∈ [0, 1]}
is equivalent to

u1 =min{u;u ∈ [0, 1], c− u ∈ [0, 1], and LPR1(u) ≥ LPR2(c− u)}.

The above arguments and results tell us that the ppr can be maximized for

any given call rate by selecting the candidates with the top LPRs from both

classes.

C. Local Polynomial Regression

We suppress the subscript k for convenience here.

C.1. Assumption

Let K be a kernel function satisfying the following.

C1

C1.1 K is compactly supported, ∥K∥22 =
∫
K2(t)dt < ∞.

C1.2 K is of order (ν, κ),∫
uℓK(u) =


0, 0 ≤ ℓ < κ, ℓ ̸= ν,

(−1)νν!, ℓ = ν,

̸= 0, ℓ = κ.

Let h = h(M) be a sequence of bandwidths satisfying the following.

C2 h → 0, Mhν+1 → ∞ and Mh2κ+1 → d2 < ∞.

Suppose that (u1, v1), . . . , (uM , vM ) are i.i.d. observations of (U, V ) with

v = G(u) + ε, where ε is an independent random error. Assume that the joint
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density, g(u, v), of (U, V ) exists. Let f(u) be the marginal density of U . Let

N(u) be a neighborhood of u satisfying the following.

C3 The first three derivatives of G(x) exist and are continuous for x ∈ N(u).

C4 The first two derivatives of f(x) exist and are continuous, and f(x) > 0 for

x ∈ N(u).

C5

C5.1 The joint density g(x, v) is continuous on N(u)× R.

C5.2 The derivatives of g(x, v) exist and are continuous on N(u)× R.
The smoothness assumptions are on the probability density functions (pdf’s)

and the precision functions, which are functions of cumulative density functions

(cdf’s). The smoothness assumptions on pdf’s and cdf’s are common in the lit-

erature of nonparametric statistics. In practice, the empirical precision functions

are step functions of cutoff values and the step size depends on the sample size

and randomness. It does not appear to be unrealistic to assume that the latent

true precision functions are smooth.

C.2. Proof of Corollary 1

We have LPR = G(u)− (1− u)G′(u), where G(u) and G′(u) are estimated

via applying a local quadratic regression. The asymptotic distributions of Ĝ(u)

and Ĝ′(u) can be obtained by applying Theorem 1 in Fan and Gijbels (2000).

Kernel functions with different orders can be applied to estimate G(u) and G′(u)

to obtain smaller biases, but the asymptotic properties of L̂PR are dominated

by those of Ĝ′(u) since its convergence rate is Op(M
−2/7) while the convergence

rate of Ĝ(u) is Op(M
−2/5). Therefore, we can focus on the asymptotic properties

of Ĝ′(u). Under Assumptions C1–C5, let (ν, κ) = (1, 3) in C2. By Theorem 1 in

Fan and Gijbels (2000), we get
√
Mh3

(
Ĝ′(u)−G′(u)

)
D−→ N(ξ, δ2),

where

ξ =
d

6

∫
K(t)t4dt

∥K∥22
G(3)(u),

δ2 =
var(V |u)
f(u)

∫
K2(t)t2dt.

Thus, the proof is complete.

C.3. Proof of Corollary 2

Suppose the first M0 observations are from null class while the rest are from

the alternative class. The two kernel density estimators are
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f̂0(x) =
1

M0h0

M0∑
i=1

K(
x−Xi

h0
),

f̂(x) =
1

Mh

M∑
i=1

K(
x−Xi

h
).

Both estimators are asymptotically normally distributed under C1, C2 (with
(ν, κ) = (0, 2)), and C4. Specifically,√

M0h0

(
f̂0(x)− f0(x)

)
D−→ N

(
(π0ρ

5)1/2β0, σ
2
0

)
,

√
Mh

(
f̂(x)− f(x)

)
D−→ N

(
β, σ2

)
,

where β0 = (d/2)σ2
Kf ′′

0 (x), β = (d/2)σ2
Kf ′′(x), σ2

0 = ∥K∥22f0(x), σ2 = ∥K∥22f(x),
σ2
K =

∫
K(t)t2dt, (h0/h) → ρ, and (Mh5)1/2 → d.

We observe that

f̂(x) =
1

Mh

M∑
i=1

K(
x−Xi

h
)

=
M0

M

1

M0h

M0∑
i=1

K(
x−Xi

h
) +

M1

M

1

M1h

M∑
i=M0+1

K(
x−Xi

h
)

≡ π̂0f̂
∗
0 (x) + π̂1f̂

∗
1 (x),

and therefore

ℓ̂pr(x) = 1− 1

{π̂0f̂∗
0 (x) + π̂1f̂∗

1 (x)}/{π̂0f̂0(x)}

= 1− 1

1 + {π̂1f̂∗
1 (x)}/{π̂0f̂0(x)}

+Op(
1√
Mh

+ h2),

because
f̂∗
0 (x)

f̂0(x)
= 1 +Op(

1√
Mh

+ h2).

Since (M0h0)
1/2f̂0(x) and (M1h)

1/2f̂∗
1 (x) are independent and asymptoti-

cally normally distributed, we have

ℓ̂pr(x)=1− 1

1+{π1f∗
1 (x)+Op((M1h)−1/2+h2)}/{π0f0(x)+Op((M0h0)−1/2+h20)}

+Op

(
(Mh)−1/2 + h2

)
=ℓpr(x) +Op

(
(Mh)−1/2 + h2

)
.

Thus, the proof is complete.
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