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Abstract: Empirical Bayes modeling has a long and celebrated history in statistical

theory and applications. After a brief review of the literature, we propose a new

dynamic empirical Bayes modeling approach that provides flexible and computa-

tionally efficient methods for the analysis and prediction of longitudinal data from

many individuals. This approach pools the cross-sectional information over indi-

vidual time series to replace an inherently complicated hidden Markov model by a

considerably simpler generalized linear mixed model. We apply this approach to

modeling default probabilities of firms that are jointly exposed to some unobserv-

able dynamic risk factor, and to the well-known statistical problem of predicting

baseball batting averages studied by Efron and Morris and recently by Brown.
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1. Introduction

The empirical Bayes methodology, introduced by Robbins (1956) and Stein

(1956), considers n independent and structurally similar problems of statistical

inference on unknown parameters θi from observed data Yi (i = 1, . . . , n), where

Yi has probability density f(y|θi). Here and in the sequel, θi and Yi can represent

vectors. The θi are assumed to have a common prior distribution G that has

unspecified hyperparameters. Let dG(y) denote the Bayes decision rule (with

respect to some loss function and assuming known hyperparameters) when Yi = y

is observed. The basic principle underlying empirical Bayes is that dG can often

be consistently estimated from Y1, . . . , Yn, leading to the empirical Bayes rule d
Ĝ
.

Thus, the n structurally similar problems can be pooled to provide information

about unspecified hyperparameters in the prior distribution, thereby yielding

Ĝ and the decision rules d
Ĝ
(Yi) for the independent problems. In particular,

Robbins (1956) considered Poisson Yi with mean θi, as in the case of the number

of accidents by the ith driver in a sample of size n (in a given year) from a

population of drivers, with distribution G for the accident-proneness parameter
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θ. In this case the Bayes estimate (with respect to squared error loss) of θi when

Yi = y is observed is

dg(y) =
(y + 1)g(y + 1)

g(y)
, y = 0, 1, . . . , (1.1)

where g(y) =
∫∞
0 θye−θdG(θ)/(y!). Using ĝ(k) = n−1

∑n
i=1 I{Yi=k} to replace

g(k) in (1.1) yields the empirical Bayes (EB) estimate dĝ(y). The case Yi ∼
N(θi, σ

2) with known σ, considered by Stein (1956), yields the following Bayes

estimate for the prior distribution G ∼ N(µ, ν) of the θi:

dµ,ν(y) = µ+
{ ν

ν + σ2

}
(y − µ). (1.2)

Since µ = E(E(Yi|θi)) can be consistently estimated by Ȳ = n−1
∑n

i=1 Yi and

V ar(Yi) = ν + σ2 can be consistently estimated by s2 =
∑n

i=1(Yi − Ȳ )2/(n− 1),

replacing µ and ν + σ2 by these consistent estimates yields an EB estimate of

the form
dȲ ,s2(y) = Ȳ −

(
1− σ2

s2

)
+
(y − Ȳ ). (1.3)

This linear EB estimator and the subsequent variant by James and Stein (1961)

have spawned a large literature covering both theory and applications.

One class of applications is in insurance. Besides estimating the accident-

proneness of a driver (in a future period) for his/her automobile insurance pre-

mium, another important problem in determining insurance rates is prediction

of the claim size of a policy in a future period. This is called “credibility theory”

in actuarial science, to which linear EB methods have been applied to derive

the premiums for insurance policies that balance the policy holder’s individual

risk and the class risk. The linear EB estimate (1.3) can be written in the form

d̂(Yi) = AnYi + (1 − An)Ȳ . This is called a credibility formula in insurance

rate-making, and An is called a credibility factor. Here Yi corresponds to the “in-

dividual premium” and Ȳ the “collective premium”. Bühlmann (1967) made use

of the linear EB approach to determine the credibility factors. The monograph

by Bühlmann and Gisler (2005) describes a variety of extensions of (1.3) to more

general settings. A closely related class of applications is prediction of the per-

formance of an individual in a future period using the data on the performance

in the last period of a group that includes the individual and similar subjects.

A well-known example, which is considered in Section 4, is prediction of batting

averages of baseball players, first studied by Efron and Morris (1975, 1977) and

recently by Brown (2008).

For these applications, one actually has longitudinal data and it seems

that combining individual and collective histories may lead to better predic-

tions. For insurance policies, allowing the prior means to change over time has
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led to evolutionary credibility as an extension of traditional credibility theory

(Bühlmann and Gisler (2005)). For baseball batting averages, using a player’s

batting average in the past season besides his batting average to date in the cur-

rent season should provide considerably more information to predict his batting

average for the remainder of the season than his average from the first 45 at-bats

used by Efron and Morris (1975, 1977). On the other hand, there are obvious

difficulties in carrying this out, as some of these players may not have played or

may have only played sparingly in the past season. In addition, how can one pool

information from different players over different time periods to implement the

EB idea? In this paper we show how these difficulties can be resolved and develop

a dynamic EB methodology for longitudinal data. The methodology is described

in Section 2 in a general framework in which Yi,t belongs to an exponential family

of distributions for t ∈ Ti, the set of times when the ith subject is observed. The

mean of Yi,t is related to covariates, some of which may be time-varying, via a

generalized linear model with subject-specific regression parameters that have a

common prior distribution across subjects. Section 2 shows how the EB princi-

ple described in the first paragraph can be extended to incorporate dynamics in

the joint prior distribution over time. This results in a generalized linear mixed

model (GLMM) of the type introduced by Breslow and Clayton (1993) that can

be easily implemented by existing software, despite the inherent complexity of

individual and collective histories.

Section 3 illustrates the usefulness of the dynamic EB methodology developed

in Section 2 by considering a problem of timely relevance in the finance literature,

namely modeling joint default probabilities of multiple firms. In Section 4 we use

the dynamic EB approach to re-analyze Brown’s (2008) data on baseball batting

averages and compare the predictive performance of our approach with his EB

methods. In this connection we also introduce a more general methodology for

the evaluation of predictive performance than that used by Brown (2008). Section

5 gives some concluding remarks.

2. Dynamic Empirical Bayes Models of Longitudinal Data

2.1. Cross-sectional means and dynamic linear EB models

We begin by introducing dynamic linear EB models in the context of evo-

lutionary credibility. Bühlmann and Gisler (2005) generalized the linear EB

approach to the credibility theory described in Section 1 by developing evolu-

tionary credibility that assumes a first-order autoregressive model for the prior

means µt of θi,t, with E(Yi,t|θi,t) = θi,t = µt + bi and

µt = ρµt−1 + (1− ρ)µ+ ηt, (2.1)
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in which ηt are i.i.d. unobservable errors with mean 0 and variance V . They use

Kalman filtering to estimate µt. The Kalman filter involves unspecified param-

eters ρ, µ, and V that can be estimated by maximum likelihood or method of

moments. In particular, the method of moments proceeds similarly to (1.3) and

also yields for large n a consistent estimate Ȳt−1 of µt−1.

Note that replacing µt−1 by Ȳt−1 in (2.1) yields

µt = ρȲt−1 + ω + ηt, (2.2)

where ω = (1− ρ)µ. Whereas (2.1) describes the dynamics of the unobserved µt
when the observations are Yi,t, yielding a linear state-space model with unknown

parameters ρ, µ, V , we can obtain a simpler model without hidden states by using

(2.2) instead of (2.1) to model µt. The model thus obtained is a linear mixed

model (LMM)

Yi,t = ρȲt−1 + ω + bi + ϵi,t, (2.3)

in which ϵi,t = (Yi,t − θi,t) + ηt. The bi are i.i.d. random effects with E(bi) = 0.

Since (2.3) is in the form of a regression model, one can easily include additional

covariates and lags to increase the predictive power of the model in the LMM

Yi,t =

p∑
j=1

ρj Ȳt−j + ai + β′xi,t + b′
izi,t + ϵi,t, (2.4)

where ai and bi are subject-specific random effects, xi,t is a vector of subject-

specific covariates that is available prior to time t (for predicting Yi,t prior to

observing it at time t), and zi,t denotes a vector of additional covariates associated

with the random effects bi. Throughout the sequel, we use ai and bi to denote

random effects that have zero means.

2.2. Dynamic EB models in the generalized linear setting

A widely used model for longitudinal data Yi,t in biostatistics is the gen-

eralized linear model that assumes Yi,t to have a density function of the form

f(y; θi,t, ϕ) = exp
{yθi,t − g(θi,t)

ϕ
+ c(y, ϕ)

}
, (2.5)

in which for some smooth increasing function (the link function) h and d-dimensional

vector xi,t of covariates,

h(µi,t) = β′xi,t, where µi,t =
dg

dθ
(θi,t), (2.6)

i = 1, . . . , n. In particular, for the case h(µ) = θ or, equivalently, h = (dg/dθ)−1,

h is called the canonical link.
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In the case n = 1, Zeger and Qaqish (1988) have extended the autore-

gressive time series model to the generalized linear setting in which the con-

ditional density of Yt given Yt−1, . . . , Yt−p is specified by (2.5) and (2.6) with

h(µt) = β +
∑p

j=1 ρjh(Yt−j). For n > 1 time series Yi,t, to extend dynamic EB

models to the generalized linear setting, note that µs is the mean of µi,s and can

be consistently estimated by Ȳs = n−1
∑n

i=1 Yi,s, which is the basic idea under-

lying the linear EB approach. Therefore, an EB version of the preceding model

of Zeger and Qaqish (1988) for n ≥ 1 is h(µt) = β +
∑p

j=1 ρjh(Ȳt−j). As in the

linear case (2.4), we can increase the predictive power of the model by includ-

ing fixed and random effects and other time-varying covariates of each subject i,

thereby extending the LMM (2.4) to the GLMM

h(µi,t) =

p∑
j=1

ρjh(Ȳt−j) + ai + β′xi,t + b′
izi,t, (2.7)

in which ρ1, . . . , ρp and β are the fixed effects and ai and bi are subject-specific

random effects. Note that the LMM in (2.4) is a special case of (2.7) with

h(µ) = µ, as it can be written in the form µi,t =
∑p

j=1 ρj Ȳt−j+ai+β′xi,t+b′
izi,t,

where µi,t denotes the conditional mean of Yi,t given Ȳt−j ,xi,t, zi,t, and bi. Follow-

ing Breslow and Clayton (1993), we assume ai and bi to be independent normals

with zero means. For notational simplicity, we can augment bi to include ai so

that (2.7) can be written as h(µi,t) =
∑p

j=1 ρjh(Ȳt−j) + x′
i,tβ + (1, zi,t)bi, such

that bi has covariance matrix Σ(α). Lai and Shih (2003a,b) have shown by

asymptotic theory and simulations that the choice of a normal distribution, with

unspecified parameters, for the random effects bi in GLMM is innocuous; heuris-

tically, this is due to very low resolution in estimating the actual distribution of

the bi nonparametrically in mixture models. The Appendix gives details on the

implementation, such as computation of the likelihood function, and refinements

of the GLMM (2.7).

2.3. Prediction and variable selection

An important application of the dynamic EB model (2.5) and (2.7) is to esti-

mate some future function ψt+1 of the unobserved bi, e.g., predicting the response

of subject i at the next period entails estimating µi,t+1 = h−1(
∑p

j=1 ρjh(Ȳt+1−j)+

x′
i,t+1β + (1, zi,t+1)bi), in which xi,t+1 and zi,t+1 are assumed to be known at

time t. When the parameters ϕ,α, β, and ρ = (ρ1, . . . , ρp)
′ in (2.5) and (2.7)

are known, ψt+1(bi) can be estimated by the conditional expectation of ψt+1(bi)

given the data of the ith subject up to time t. Without assuming these pa-

rameters of the GLMM (2.7) to be known, we can estimate them by maximum
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likelihood using all the observations up to time t. Letting ϕ̂t, α̂t, β̂t, and θ̂t be

the corresponding MLEs, we can estimate the future value ψt+1(bi) by

ψ̂t+1,i = Eϕ̂t,α̂t,β̂t,θ̂t
[ψt+1(bi)|data of the ith subject up to time t ], (2.8)

which can be computed by the hybrid method described in the Appendix.

In the preceding section we took the observations (Yi,t,xi,t, zi,t) as available

at every 1 ≤ t ≤ T , for all 1 ≤ i ≤ n. In longitudinal data in biostatistics,

however, there is often between-subject variations in the observation times. Lai,

Sun, and Wong (2010) addressed this difficulty by using a prediction approach

that customizes the predictive model for an individual by choosing predictors

that are available at the individual’s observation times. By making use of similar

ideas, we can extend the dynamic EB approach of the preceding section to the

setting where there is between-subject variations in the observation times, and

also address the more basic problem concerning selection of variables for predic-

tion of the individual’s future response. Specifically, we propose to divide the

subjects into K structurally similar subgroups. In many applications, subjects

belonging to the same subgroup have similar observation times because of their

structural similarity. For example, patients who have more serious ailments are

monitored more frequently than others in a study cohort, causing the irregular-

ity of observation times over different subgroups. We assume the cross-sectional

dynamics (2.7) separately for each subgroup, with µt and Ȳt−j replaced by µ
(k)
t

and Ȳ
(k)
t−j for the kth subgroup, in which Ȳ

(k)
s is the sample average from all

subjects (from the subgroup) who are observed at time s. Moreover, for µi,t in

(2.7) with i belonging to the kth subgroup, we only choose predictors xi,t and

zi,t that are common to all subjects in the kth group, by using the BIC for the

GLMM associated with that subgroup. The Appendix gives the definition and

computational details of the BIC in GLMM.

3. Dynamic EB Models of Joint Default Intensities of Multiple Firms

In the wake of the 2007-08 financial crisis, it was widely recognized that mod-

els used to price credit derivatives such as CDOs (collateralized debt obligations)

for a portfolio of firms had neglected the “frailty” traits of latent macroeconomic

variables and the “contagion” effects of a firm’s default on other firms in the

portfolio. To account for the frailty effects, Duffie et al. (2009) introduced a

dynamic frailty model for the default intensities λi(t) of firms in the portfolio at

time t, assuming an unobserved frailty process Ft in

λi(t) = exp(β0 + β′
1Xi,t + β′

2Ut + Ft) (3.1)
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to capture the cumulative effect of various unobserved fundamental common

shocks to the default intensities of the n firms. The latent frailty process Ft is

assumed to be an Ornstein-Uhlenbeck (OU) process

dFt = κ(µ− Ft)dt+ σdBt, F0 = 0, (3.2)

where Bt is a standard Brownian motion with volatility parameter fixed to be 1,

and κ ≥ 0 the mean-reversion rate of Ft. Because Ft is not observable, (3.1)−(3.2)

is a hidden Markov model (HMM). In Section 3.1 we apply the dynamic EB ap-

proach to come up with a considerably simpler alternative to a common latent

frailty process Ft, and show that its performance in predicting future default

probabilities is comparable to that of the HMM even when the defaults are ac-

tually generated by (3.1)−(3.2). Section 3.2 describes further background and

applications of the dynamic EB approach to joint default modeling of corporate

bonds and bank loans.

3.1. A logistic mixed model for dynamic frailty

Partitioning the time interval (0, T ∗] of default events in the study into dis-

joint intervals I0 = (0, t1], . . . , IK = (tK , tK+1] with tK+1 = T ∗, let πi,k denote

the conditional probability of default of firm i in the time interval Ik given that

it has not defaulted up to time tk. Let Yi,k be the binary variable taking the

value 0 or 1 for the event of the ith firm surviving or defaulting in the time

interval Ik. Note that the value 1 (default) for Yi,k is an absorbing state. Let Hk

denote the set of firms in the study that have not defaulted up to time k, and

let Ȳk =
∑

i∈Hk
Yi,k/|Hk|. The dynamic EB approach in Section 2.2 amounts to

the logistic mixed model Yi,k+1|Yi,k = 0 ∼ Bernoulli(πi,k), where

logit(πi,k) = β + bi + ρlogit(Ȳk) + β′
1Xi,tk + β′

2Utk , (3.3)

in which the bi are the random effects and logit(p) = log(p/(1−p)) is the canonical
link of the Bernoulli distribution. Note that we use the coarser binary data Yi,k
(instead of the default times up to T ∗) to fit the logistic mixed model (3.3)

(instead of the HMM (3.1)). The rationale behind this will be explained in

Section 3.2.

To see the relationship between (3.3) and (3.1), we first assume that defaults

only occur at integer times t ≥ 1 and consider the discrete-time analog of (3.1)

in which Ft is the discrete-time analog of the OU process (3.2), namely an AR(1)

process of the form Ft = γFt−1+ω+ ξt, in which ξt are i.i.d. unobservable errors

with mean 0 and variance V . Taking tk = k in Ik = (tk, tk+1] of the preceding

paragraph, there is no loss of information in using Yi,k for k = 1, . . . , T ∗ − 1,

because the actual default times up to T ∗ are integers. The default intensity
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λi,k in the discrete-time HMM (3.1) is the conditional probability P (Yi,k+1 =

1|Yi,k = 0) and is given by exp(β0+β′
1Xi,k +β′

2Uk +Fk+1), in which Fk+1 is the

unobserved common frailty of the firms at time k+1. Since Fk+1 = γFk+ω+ξk+1,

the HMM can be written in the form

log(λi,k) = β0 + ω + γFk + ξk+1 + β′
1Xi,k + β′

2Uk. (3.4)

Let β = β0+ω and compare (3.4) with (3.3), in which tk = k. Instead of using a

latent state Ft, (3.3) attempts to capture the effect of the common frailty of the

firms via the cross-sectional average default rate Ȳt. Since πi,k is typically small,

logit(πi,k) ≈ log(πi,k), hence (3.3) essentially replaces γFk in (3.4) by ρlogit(Ȳk),

and the normally distributed random disturbance ξk+1 in the AR(1) model for

Fk+1 by subject-specific random effect bi. Note that Ȳk lies between 0 and 1

but Fk is normally distributed, which shows the importance of the link function

logit(·) in using ρlogit(Ȳk) as a surrogate for γFk. We can alternatively use log(·)
as the link function h in (2.6) instead of the canonical link logit(·). Since Fk is

an unobserved state and β, β0, ρ, and γ are unknown parameters that have to

be estimated from the data, β̂+ ρ̂logit(Ȳk) and β̂0 + F̂k+1 may perform similarly

as estimates of β0 +E(Fk+1|Fk) when the defaults are actually generated by the

HMM. This is illustrated in a simulation study that compares the performance

of the 1-year ahead predictor, based on the logistic mixed model (3.3), of a firm’s

default probability with that based on the adaptive particle filter for the HMM

(3.4).

Example 1. Consider n = 500 firms over a 30-year period. For simplicity, we

choose univariate Xi,t and Ut, the distance to default (Crosbie and Bohn (2002),

Duffie et al. (2009)) for firm i and the three-month Treasury bill rate, respectively.

Duffie, Saita, and Wang (2007) has fitted AR(1) models to these covariates:

Xi,t = Xi,t−1 + 0.04(µi −Xi,t−1) + 0.3ηi,t, Ut = 0.9Ut−1 + 0.6 + 1.8ϵt, (3.5)

which our simulation study used to generate the covariates, with µi ∼ N(2, 0.52),

ηi,t ∼ N(0, 1), Xi,1 ∼ N(µi, 0.3
2), ϵt ∼ N(0, 1) and U1 ∼ N(6, 1.82). We gen-

erated the AR(1) model Ft+1 = γFt + ω + ξt+1 with γ = 0.5, ω = 0.5 and

ξt+1 ∼ N(0, 0.52). We chose the discrete-time default intensity λi,t given by (3.4)

with (β0, β1, β2) = (−2,−1,−0.3); these regression parameters were chosen to

match roughly the empirical results in Duffie, Saita, and Wang (2007). Since the

conditional probability of firm i defaulting at time t + 1 given that it has not

defaulted up to time t is πi,t = e−λi(t), Yi,t+1 ∼ Bernoulli(πi,t).

We fit the logistic mixed model (3.3) with tk = k to the simulated data for the

500 firms over a period of T ∗ = 30 years and compared the estimated π̂
(1)
i,t to the
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Table 1. Five-number summaries (minimum, 1st quartile Q1, median Q2,
3rd quartile Q3, and maximum) and mean of absolute prediction errors, all
multiplied by 100.

t Min Q1 Q2 Q3 Max Mean
DEB 16 0.0117 0.295 0.812 1.84 8.44 1.49
APF 16 0.0185 0.261 0.555 1.75 95.60 2.99
DEB 18 0.0531 0.309 0.635 1.38 14.20 1.50
APF 18 0.0342 0.337 0.666 1.46 98.10 3.61
DEB 20 0.0648 0.244 0.476 1.01 18.50 0.98
APF 20 0.0206 0.276 0.569 1.30 99.40 3.96
DEB 25 0.0392 0.221 0.453 1.32 13.20 1.18
APF 25 0.0232 0.303 0.819 2.41 98.80 12.30
DEB 30 0.0233 0.254 0.470 1.54 7.22 1.09
APF 30 0.0132 0.457 1.150 6.33 99.00 14.10

actual πi,t, for t = 16, . . . , 30, only for firms that still survive at time t. We also

compared π̂
(1)
i,t with the estimate π̂

(2)
i,t that uses the adaptive particle filter (Lai

and Bukkapatanam (2013)) for the HMM to estimate the posterior distribution

of Ft+1 and therefore also of λi,t. Both estimates used training data up to time t.

Figure 1 gives the result for a simulated firm that survives throughout the entire

30-year period. Figure 2 plots the estimates β̂ + ρ̂logit(Ȳk) and β̂0 + F̂k+1 based

on data up to time k, and compares them with β0+ω+γFk in a simulated set of

500 firms used in Figure 1. Note that although β̂+ ρ̂logit(Ȳk) differs substantially

from β0 +E(Fk+1|Fk), β̂0 + F̂k+1 is also not close to β0 +E(Fk+1|Fk) since it is

an adaptive filter that predicts Fk+1 from the observations Yi,s, s ≤ k, 1 ≤ i ≤ n,

rather than from the unobserved state Fk. Thus, π̂
(1)
i,t and π̂

(2)
i,t have similar

performance as estimates of the conditional probability πi,t.

We generated 100 simulated data sets in this way and computed πi,t, π̂
(1)
i,t

and π̂
(2)
i,t for each data set. Table 1 gives the mean and 5-number summaries of

the absolute prediction errors
∑

i∈Ht
|πi,t − π̂

(j)
i,t |/|Ht| for j = 1 (dynamic EB via

logistic mixed model, denoted DEB) and j = 2 (adaptive particle filter, denoted

APF), t = 16, 18, 20, 25, 30. It shows that the dynamic EB approach performs

favorably in comparison with the adaptive particle filter.

We now consider the case of continuous default times with default intensi-

ties (3.1) for the n firms. We use the life-table approach described in the first

paragraph of this section. Although using the default indicator Yi,k in the time

interval loses some information contained in the observed default times, the loss

is relatively minor, as illustrated in an example that shows the logistic mixed

model (3.3) to have comparable performance in predicting default probabilities

as the HMM (3.1) that actually generates the default events.
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Figure 1. Predicted default probabilities for year t based on data up to t−1.

Figure 2. Comparison of the solid curve β0+E(Ft|Ft−1) with the dash curve

β̂ + ρ̂ logit(Ȳt−1) and the dotted curve β̂0 + F̂t.

Example 2. Suppose the latent frailty Ft follows a continuous-time O-U pro-

cess (3.2) with κ = 0.125, µ = 1, and σ = 0.5, instead of the discrete-time

AR(1) model, and still assume n = 500 firms over a period of T = 30 years,

with ei = 0 for all i. We used (3.1) and (3.2) to generate the firms’ default

times by using the “thinning algorithm” for non-homogeneous Poisson processes
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Figure 3. Estimated default intensities for year t based on data up to t− 1.

(Ross (2013)). We used the adaptive particle filter to estimate the posterior

distribution of Ft and thereby compute the APF estimate λ̂
(2)
i,t of λi(t). Details

of the APF, which basically involves a set of N =1,000 atoms and their asso-

ciated weights to represent the posterior distribution of the parameter vector

θ = (κ, µ, σ, β0, β1, β2), K =1,000 MCMC iterations to choose the atoms se-

quentially, and M = 5, 000 trajectories (“particles”) of the latent process, are

given in Lai and Bukkapatanam (2013). We used the coarser binary data Yj,s
(s ≤ t, j = 1, . . . , n) to fit the considerably simpler logistic mixed model (3.3)

and thereby computed the dynamic EB estimate π̂
(1)
i,t of the default probability

πi,t = P (t < τi ≤ t + 1|τi ≥ t) = 1 − exp
(
−
∫ t+1
t λi(s)ds

)
. Figure 3 plots the

actual default intensities of a simulated firm that survives throughout the entire

30-year period and the estimated intensities λ̂
(2)
i,t and λ̂

(1)
i,t = − log(1 − π̂

(1)
i,t ) at

t = 15, . . . , 29.

We generated 100 simulated data sets in this way and computed πi,t, π̂
(1)
i,t

and π̂
(2)
i,t for each data set. The computation of πi,t and π̂

(2)
i,t each involves 1,000

additional Monte Carlo simulations to generate the conditional distribution of

{Fs, t < s ≤ t+ 1}. Table 2 gives the mean and 5-number summaries of the ab-

solute prediction errors (as defined in the paragraph following Figure 2) for DEB

and APF. The pattern is similar to that in Table 1, showing that DEB compares

favorably with APF, which tends to give somewhat smaller absolute errors below

the median but larger ones beyond the third quartile. One explanation is that
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Table 2. Five-number summaries (minimum, 1st quartile Q1, median Q2,
3rd quartile Q3, and maximum) and mean of absolute prediction errors, all
multiplied by 100.

t Min Q1 Q2 Q3 Max Mean
DEB 16 0.00803 0.355 0.880 1.62 23.50 1.90
APF 16 0.00408 0.446 0.903 2.50 43.40 2.43
DEB 18 0.0405 0.321 0.686 1.55 19.00 1.63
APF 18 0.0193 0.296 0.765 2.08 24.20 2.18
DEB 20 0.0321 0.265 0.622 1.49 8.91 1.30
APF 20 0.0349 0.304 0.699 1.91 17.10 1.65
DEB 25 0.0349 0.310 0.640 1.32 6.00 1.11
APF 25 0.0426 0.331 0.777 1.52 14.00 1.51
DEB 30 0.0222 0.264 0.538 1.67 11.60 1.39
APF 30 0.0168 0.257 0.663 1.83 24.30 19.70

even though the data are generated by the assumed HMM, the complexity of the

HMM seems to result in MCMC estimates of θ that are not accurate enough for

the particle filter for a certain fraction of the sample paths. We increased the

number K of MCMC iterations for these sample paths, but it only led to slight

improvements of the results for APF in Table 2.

3.2. Extension to competing risks and loan portfolios

Unlike the discrete-time default indicator variables Yi,t in Section 3.1, Duffie

et al. (2009) actually use censored survival data to fit the continuous-time HMM

(3.1)−(3.2). The Xi,t in (3.1) is a firm-specific covariate vector containing the

firm’s distance to default and its trailing 1-year stock return, and Ut is a macroe-

conomic vector containing the 3-month Treasury bill rate and the trailing 1-year

return on the S&P 500 index. Duffie et al. (2009) fit the HMM (3.1)−(3.2) to a

set of 402,434 firm-months of data between January 1979 and March 2004. The

data at time t can be represented by the vector Yt = ((Ti∧(t−ei)+, δi,t,Xi,t,Ut),

i = 1, . . . , n), where Ti = τi ∧ ci, τi is the default time of the ith firm (measured

from the firm’s entry time ei into the empirical study), ci is the censoring variable

caused by the firm’s exit from the study because of merger, acquisition, or other

failure, and δi,t is the default indicator (taking the value 0 or 1) so that δi,t = 1 if

Ti ∧ (t− ei) = τi. Assuming τi and ci to be independent, the likelihood function

can be written as

gθ(Yt|Ft) =

n∏
i=1

(λi(Ti,θ))
δi,te−Λi(Ti,θ), (3.6)

in which θ = (β0,β
′
1,β

′
2, κ, µ, σ) denotes the parameter vector and Λi(t;θ) =∫ t

0 λi(s;θ)ds is the cumulative hazard function. Duffie et al. (2009) use a stochas-



DYNAMIC EMPIRICAL BAYES MODELS 1517

tic EM algorithm to estimate θ and MCMC methods involving both Gibbs sam-

pling and Metropolis-Hastings steps to estimate the latent frailty process. Lai

and Bukkapatanam (2013) propose a faster adaptive particle filter that enabled

us to carry out simulation studies in Examples 1 and 2.

The assumption of independent intensity processes for the default and exit

times τi and ci is called “doubly stochastic”. Duffie, Saita, and Wang (2007,

p.637) acknowledged that “the doubly-stochastic assumption is overly restrictive”

and that previous work has shown this assumption “does not fit the data well”.

A better way is to use the competing risks approach that classifies failures into

types (e.g., failure from the disease process and from non-disease related causes).

This approach considers the cause-specific hazard rate λji (t) = limh→0 h
−1P (t ≤

Ti ≤ t+h, Ji = j|Ti ≥ t), in which Ji is the cause of failure of subject i (Andersen

et al. (1993, pp.298-304)). It can be easily combined with dynamic EB modeling

via the life-table method, leading to the multinomial logistic (or multilogit) mixed

models that we describe below.

Partitioning time into disjoint intervals I0 = [0, t1), . . . , Ik = [tk, tk+1), · · · ,
let πi,k;1 denote the conditional probability of default of firm i in the time interval

Ik given that it has neither defaulted nor exited up to time tk. Similarly, let πi,k;2
denote the conditional probability of firm i exiting in the time interval Ik, and

note that default, exit, and surviving are mutually exclusive events. Let Yi,k
be the trinomial variable taking the value 0, 1, or 2 for the event of surviving,

default, or exit in the time interval Ik. Let

ηi,k;j = log

(
P{Yi,k = j|Yi,k−1 = 0}
P{Yi,k = 0|Yi,k−1 = 0}

)
, j = 1, 2. (3.7)

The multilogit mixed model, which is a generalization of the logistic mixed model

(3.3), can be applied to the trinomial outcomes Yi,k:

ηi,k;j = β0j + bi,j + ρj log

(
Ȳ

(j)
k

Ȳ
(0)
k

)
+ β′

1jXi,tk + β′
2jUtk , j = 1, 2, (3.8)

where Ȳ
(j)
k = (

∑
i∈Hk

I{Yi,k=j})/|Hk| and Hk is the set of firms that have neither

defaulted nor exited up to time k.

Although using the event indicator Yi,k in the time interval Ik loses some

information contained in observed event times Ti, the loss is relatively minor, as

shown in Example 2. Moreover, the quantity of interest in credit risk management

is the probability of default in the next month (or year), rather than forecasting

the actual time to default of firm i. Besides being considerably simpler, an ad-

vantage of (3.8) is that it dispenses with the assumption of independence between

the default and exit times. In fact, similar multilogit models and multilogit mixed

models have been widely used in studying large portfolios of mortgage loans, with
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default and prepayment as competing risks for mortgage terminations; see Cal-

houn and Deng (2002), Clapp, Deng, and An (2006), and Chapter 7 of Lai and

Xing (2014) where the issue of evaluation of the performance of these probability

forecasts is also addressed. The dynamic EB approach that includes the term

ρj log
(
Ȳ

(j)
k /Ȳ

(0)
k

)
in (3.8) can be included to enhance these models.

4. Applications to Prediction of Baseball Batting Averages

Batting average is an important performance measure for baseball players.

For non-pitchers, a seasonal batting average is considered to be excellent if it is

above 0.3, and is regarded unsatisfactory if it is below 0.2. It is defined as the

ratio of “hits” (number of successful attempts) to “at bats” (number of qualifying

attempts). The problem of predicting the batting performance of baseball players

was first studied by Efron and Morris (1975, 1977), who used the batting averages

from the first m = 45 at-bats of a small sample of n = 18 batters in 1970 to

predict their batting averages for the remainder of the season. Specifically, let

Xi and pi denote the observed batting average after 45 at bats and the actual

seasonal batting average, respectively, of player i (1 ≤ i ≤ 18). Assuming Xi to

be independently distributed with mXi ∼ Bin(m, pi), Efron and Morris (1975,

1977) applied the variance-stabilizing transformation

Yi = m1/2 arcsin(2Xi − 1) (4.1)

so that Yi is approximately N(µi, 1), where µi = n1/2 arcsin(2pi − 1). They used

the James and Stein (1961) estimator of µi to demonstrate the benefit of shrinkage

and linear EB. Applying a different variance-stabilizing transformation, Brown

(2008) used the batting records of Major League players from an earlier part of the

2005 regular season to estimate each player’s hitting probability pi by methods

“motivated from empirical Bayes and hierarchical Bayes interpretations” and to

compare how well they predict the batting performance of the players for the

remainder of the season.

In this section we apply the dynamic EB approach in Section 2 to the pre-

diction of batting performance. We consider data from the five regular Ma-

jor League seasons 2006-2010. Each regular season runs from late March to

early October, so six “monthly” (Mar/Apr, May, Jun, Jul, Aug, Sep/Oct) data

sets were collected for each of the 5 years. The batting averages, as well as

other useful baseball statistics, are available for download from the website

http://www.fangraphs.com/leaders.aspx. In order to reduce variability and

to compare with Brown’s results, the monthly data were aggregated into semi-

seasonal (3-month) data, resulting in 10 semi-seasonal periods, labeled by t =

1, . . . , 10. To apply EB and dynamic EB methods, we want the n individual play-

ers to be structurally similar. Since baseball players are categorized into batters,

http://www.fangraphs.com/leaders.aspx
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pitchers, and fielders, and since batting average is one of the key performance

measures for batters but not for pitchers and fielders, we only considered batters

and recorded the number Hi,t of “hits” and the number Ni,t of “at bats” for

batter i in period t.

Following Efron and Morris (1975, 1977) and Brown (2008), we took Hi,t ∼
Bin(Ni,t, pi,t) when Ni,t > 0, where pi,t is the hitting probability of the ith batter

in the tth period. Unlike these references that consider a single season and

assume pi,t to be constant over the season, we allowed pi,t to vary over the semi-

seasons. To be comparable to their results, we considered predicting the hitting

probabilities at t = 6, 8, 10 (i.e., for the second half of the 2006, 2008, 2010

season) based on (Ni,s,Hi,s) for s ≤ t− 1 and i belonging to the group of batters

included in the study. Brown (2008) used the transformation

Yi,t = arcsin

(√
Hi,t + 1/4

Ni,t + 1/2

)
, µi,t = arcsin

(√
pi,t
)
, (4.2)

so that Yit is approximately N(µi,t, 1/(4Ni,t)). This is a refinement of (4.1) so

that the normal approximation, with variance not depending on pi,t, can still hold

for smaller values of Ni,t than those required by (4.1). Although the accuracy of

the normal approximation depends on Ni,tpi,t, most of the batters have batting

averages between 0.2 and 0.3 and therefore it suffices to focus on Ni,t instead.

Brown (2008) includes in his study players “having more than 10 at-bats.” Here

Ni,t ≥ 11. Since the study includes a training period corresponding to the first

half of the season and a test set corresponding to the second half of the season,

we require
Ni,t ≥ 11 and Ni,t−1 ≥ 11 (4.3)

for t = 6, 8, 10 in our setting. Batters satisfying (4.3) are called “eligible” in

period t. In Section 4.1, we use this criterion for including batters into our study

that applies linear EB and dynamic EB methods to Yi,t. In Section 4.2, we relax

the inclusion criterion and apply the dynamic EB approach via GLMM directly

to (Ni,t,Hi,t) and show how the methodology recently developed by Lai, Gross,

and Shen (2011) can be applied to evaluate the prediction of pi,t based on data

up to t− 1.

4.1. Linear and dynamic linear EB predictors of Yit

Here we apply the dynamic linear EB approach to the prediction of Yi,t for

eligible batters in periods t = 6, 8, 10. The number of eligible players is 495 at

t = 10, 497 at t = 8 and 500 at t = 6. The dynamic linear EB model we consider

is of the form (2.4) with p = 2, xi,t = 1 and without the term b′
izi,t. We chose

p = 2 because Xi,t−2 is the batting average at the end of the past season and
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Xi,t−1 is that at the half-season for t = 6, 8, 10. Model selection using BIC further

reduces the LMM to

Yi,t =

{
ρȲt−1 + β + ai for t = 8, 10,

ρȲt−2 + β + ai for t = 6,
(4.4)

in which ai ∼ N(0, σ2). We use those batters in the training sample who satisfy

min(Ni,s, Ni,s−1, Ni,s−2) ≥ 11 for some s ≤ t− 1 to fit the “full model” in which

xi,s above is augmented to xi,s = (1, Yi,s−1, Yi,s−2)
′, allowing autoregression of the

batter’s successive batting averages. Including this full model for model selection

using BIC in the case t = 10 still chooses the model in the preceding paragraph

that does not have the Yi,s−1 and Yi,s−2 terms.

Assuming µi,t = µi,t−1, Brown (2008) considered three linear EB estimators

of µi,t−1 (and therefore also of µi,t) based on Yj,t−1 for all batters withNj,t−1 ≥ 11;

this includes batter i in view of (4.3). The linear EB estimators are EB(MM)

which uses the method of moments (MM) to estimate the hyperparameters in

the Bayes estimator, EB(ML) that estimates the hyperparameters by maximum

likelihood, and the James-Stein estimator denoted by JS. Besides these linear EB

estimators, he also considered the mean estimator Ȳt−1 and the “naive” estimator

Yi,t−1 of µi,t−1. These estimates can be used to predict µi,t and are denoted by

Ŷi,t. Because the actual µi,t is unknown and may not equal µi,t−1 as assumed, an

obvious way to evaluate prediction performance is to consider the discrepancy

between Yi,t and its predictor Ŷi,t. Since Yi,t is approximately N(µi,t, 1/(4Ni,t)),

Brown (2008) proposed to use the estimated total squared error

T̂SE =
∑

i: batter i iseligibleat t

{
(Yi,t − Ŷi,t)

2 − 1

4Ni,t

}
(4.5)

as a measure of prediction performance. This is an unbiased estimate of the

squared-error loss
∑

i: batter i iseligibleat t(µi,t − Ŷi,t)
2, and is the same as the ad-

justed Brier score proposed by Lai, Gross, and Shen (2011, Sec. 6.1) since the

variance of the arcsin-transformed sum Yi,t is 1/(4Ni,t). Brown (2008) also con-

sidered the normalized estimated squared error N̂SE = T̂SE/T̂SE0, where T̂SE0

is the estimated total squared error for the naive predictor Ŷi,t = Yi,t−1. Table

3 gives the T̂SE and N̂SE of these predictors of Yi,t for t = 6, 8, 10 and those of

the LMM (4.4). Also given each predictor are the 5-number summaries of the

absolute errors |Yi,t − Ŷi,t| for t = 6, 8, 10. The results show the advantages of

dynamic EB via LMM over the linear EB methods considered by Brown.

4.2. Dynamic EB prediction of pi,t via GLMM

Brown (2008, p.32) treated (4.2) as N(µi,t, 1/(4Ni,t)) random variables “as

long as Ni,t ≥ 12.” Although he relaxes this to Ni,t > 10 for the inclusion
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Table 3. Estimated total squared error, normalized squared error, and five-
number summaries of absolute prediction errors (multiplied by 103) for dif-
ferent predictors.

Naive (Yi,t−1) Mean (Ȳt−1) EB(MM)
t = 6 t = 8 t = 10 t = 6 t = 8 t = 10 t = 6 t = 8 t = 10

T̂SE 1.93 2.36 1.57 1.78 1.45 1.96 1.10 1.07 1.68

N̂SE 1 1 1 0.918 0.613 1.25 0.567 0.453 1.07
Min 0 0.459 0 0.0144 0.0506 0.293 0.116 0.267 0.0502
Q1 20.2 18.2 18.9 26.1 22.4 19.7 17.3 17.1 18.9
Med 43.2 46.3 41.6 48.8 44.7 41.0 38.0 37.9 36.5
Q3 80.0 89.0 78.8 81.0 76.8 71.7 69.9 71.5 67.6
Max 449 445 391 413 368 416 396 362 401

EB(ML) JS LMM
t = 6 t = 8 t = 10 t = 6 t = 8 t = 10 t = 6 t = 8 t = 10

T̂SE 0.975 0.820 1.21 0.962 1.01 1.48 0.440 0.393 0.344

N̂SE 0.504 0.347 0.770 0.497 0.426 0.941 0.228 0.166 0.219
Min 0.256 0.116 0.124 0.167 0.240 0.185 0.381 0.180 0.0466
Q1 18.2 18.5 18.5 16.7 16.0 17.8 18.4 15.6 16.5
Med 41.0 37.6 38.0 36.5 35.4 35.2 37.3 33.4 36.0
Q3 71.2 68.2 65.6 67.4 67.0 62.7 66.8 61.1 58.7
Max 383 379 383 390 373 404 318 399 356

of players in his empirical study, Section 7 of his paper imposes the stronger

constraint to develop tests of independence between the players’ batting averages

in the two halves of a season. Note that the GLMM approach developed in

Section 2.2 can be applied directly to Hi,t ∼ Bin(Ni,t, pi,t) without relying on the

normal approximation via the transformation (4.2). Specifically, Bin(Ni,t, pi,t)

belongs to the exponential family (2.5) with θi,t = log(pi,t/(1−pi,t)) and g(θi,t) =
−Ni,t log(1 − pi,t). Therefore, instead of transforming Hi,t to Yi,t via (4.2) and

applying LMM (4.4) to Yi,t, we can model Hi,t directly by the GLMM

logit(pi,t) = α+ β1logit(p̄t−1) + β2logit(p̄t−2) + bi, (4.6)

where bi ∼ N(0, σ2) is the subject-specific random effect and p̄s is the average of

Hi,s/Ni,s over i in the training sample.

We applied the GLMM (4.6) to predict pi,t for the subgroup of relatively

infrequent batters in period t, defined by

2 ≤ Ni,t ≤ 32 and 0 < N̄i,t− ≤ 32, (4.7)

where N̄i,t− denotes the average number-at-bats of batter i over the periods

s ≤ t − 1 when Ni,s ≥ 2, so N̄i,t− > 0 means that there is at least one such

period. The choice of the threshold 32 will be explained later. If the batter
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does not play in period t, there is no information on his batting ability in that

period. Batting only once also does not yield a meaningful average as it is either

0 or 1, and therefore we impose the lower bound 2 for Ni,t in defining relatively

infrequent batters. Moreover, since a major difference between EB and a purely

Bayesian approach is that it combines the individual’s data with the data from

other structurally similar subjects to come up with an estimate of the individual’s

latent parameter, a batter in the test sample must also belong to the training

sample to obtain his EB estimate. This explains why we also require N̄i,t− ≤ 32

in (4.7) to reflect that the batter also bets infrequently, on average whenever he

bats at least twice, from period 1 to t− 1.

Batters who satisfy (4.7) may be relatively new (including rookies) or old

(including those near retirement) or used as substitutes for regular batters when

they need some rest. They form a structurally similar subgroup that differs from

the subgroup of regular batters. Since Ni,t can be as small as 2, Hi,t may not

have much information about pi,t and therefore it appears difficult to evaluate

predictors of pi,t in this case. Lai, Gross, and Shen (2011) resolved this difficulty

and developed a comprehensive methodology for such evaluation. In particular,

letting St denote the subgroup of infrequent batters in period t, we can estimate

consistently the squared-error loss

Lt =
∑

i∈St

Ni,t(pi,t − p̂i,t)
2

Nt
(4.8)

by the adjusted Brier score

L̂t =

[∑
i∈St

Ni,t{hi,t(1− p̂i,t)
2 + (1− hi,t)p̂

2
i,t} −

∑
i∈St

Ni,tvi,t

]
+

Nt
, (4.9)

where Nt =
∑

i∈St
Ni,t, hi,t = Hi,t/Ni,t, vi,t = Ni,thi,t(1−hi,t)/(Ni,t− 1), and p̂i,t

is a predictor of pi,t that depends on the observations up to t− 1. Note that vi,t
is well defined since Ni,t ≥ 2 by (4.7). Moreover, Lai, Gross, and Shen (2011)

have shown that the Brier loss difference Lt− L̃t between two predictors p̂i,t and

p̃i,t of pi,t can be consistently estimated by

∆t =
∑

i∈St

Ni,t[hi,t{(1− p̂i,t)
2 − (1− p̃i,t)

2}+ (1− hi,t)(p̂
2
i,t − p̃2i,t)]

Nt
. (4.10)

A widely used alternative to Brier loss is the Kullback-Leibler loss LKL
t that

replaces (pi,t − p̂i,t)
2 in (4.9) by the Kullback-Leibler divergence

pi,t log
(pi,t
p̂i,t

)
+ (1− pi,t) log

[1− pi,t
1− p̂i,t

]
. (4.11)
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The difference LKL
t − L̃KL

t can also be consistently estimated by

∆KL
t =

∑
i∈St

Ni,t[hi,t log(p̃i,t/p̂i,t) + (1− hi,t) log{(1− p̃i,t)/(1− p̂i,t)}]
Nt

.

Let S1
t be the subset of St satisfying the additional condition

Ni,t−1 ≥ 11. (4.12)

The linear EB methods in Section 4.1 can be applied to predict µi,t using the

transformed variables Yj,t−1 for j ∈ S1
t . The predictor µ̂i,t can be transformed

back to yield the predictor p̂i,t = (sin µ̂i,t)
2 of pi,t. Table 4 gives the adjusted

Brier scores L̂t of these predictors and of the predictor “Bin” which applies the

GLMM (4.6) directly to Hj,s without transforming it to Yj,s for j ∈ S1
t and

s ≤ t− 1. It also gives the differences ∆t and ∆KL
t between each of these linear

EB predictors and Bin, which corresponds to p̃i,t in (4.10).

The LMM (4.4) only requires

Ni,s ≥ 11 for some s ≤ t− 1, (4.13)

which is weaker than (4.12). Let S2
t denote the subset of St satisfying (4.13).

Table 4 also gives the adjusted Brier scores and ∆t, ∆
KL
t values of the LMM

and Bin predictors when they are based on S2
t instead of S1

t . Since Bin can be

applied to the larger set St, Table 4 also gives the adjusted Brier score of Bin

when it is based on St. The cardinalities #(·) of S1
t , S

2
t , and St are also shown in

the table, as are the numbers of batters in the associated training sample T 1
t−1,

T 2
t−1, and Tt−1. We chose the threshold 32 in (4.7) because it corresponds to

the 20th percentile, at t = 10, of Ni,t−1 for batters with Ni,t−1 ≥ 11. Table 4

shows that ∆t and ∆KL
t of the linear EB and LMM predictors based on S1

t are

all positive, demonstrating the advantage of the Bin predictor. Note that St is a

substantially larger set than S2
t , and only Bin is applicable to St−S2

t . Moreover,

only LMM and Bin are applicable to S2
t − S1

t , and Table 4 shows that there is

negligible difference between their predictive performances based on S2
t .

5. Discussion

While linear EB estimators such as (2.6) have provided basic credibility for-

mulas in insurance rate-making, in practice an insurance policy is held over time

and we propose herein a new dynamic EB approach to the prediction of future

claims of an individual (or risk class) by pooling cross-sectional information over

individual time series in a LMM or GLMM. There are many possibilities to model

these time series data, allowing subject-specific random effects and using dynam-

ics (through lagged variables) for the individual and cross-sectional time series.
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Table 4. Adjusted Brier scores L̂t and differential Brier and Kullback-Leibler
scores, ∆t and ∆KL

t , for various predictors of pit (all multiplied by 103).

t = 10 t = 8 t = 6

L̂t ∆t ∆KL
t L̂t ∆t ∆KL

t L̂t ∆t ∆KL
t

(a) S1
t -based predictors

|S1
10|=60, |T 1

9 |=104 |S1
8 |=52, |T 1

7 |=104 |S1
6 |=57, |T 1

5 |=103
EB(MM) 2.52 0.783 3.25 3.02 0.776 3.02 34.8 35.9 148
EB(ML) 2.71 0.974 3.96 3.09 0.843 3.29 0 0.429 1.74
JS 2.57 0.831 3.41 3.15 0.906 3.50 0 0.575 2.39
LMM 1.88 0.146 0.147 2.67 0.423 1.74 0 0.288 1.38
Bin 1.73 0 0 2.25 0 0 0 0 0

(b) S2
t -based predictors for LMM and Bin

|S2
10|=80, |T 2

9 |=286 |S2
8 |=77, |T 2

7 |=242 |S2
6 |=70, |T 2

5 |=190
LMM 1.21 -0.159 -0.845 3.18 -0.136 -0.643 0 0.100 0.506
Bin 1.37 0 0 3.32 0 0 0 0 0

(c) St-based predictor using Bin
|S10|=112, |T9|=649 |S8|=124, |T7|=563 |S6|=110, |T5|=437

Bin 1.76 0 0 2.29 0 0 0 0 0

Model selection is important to avoid deterioration of prediction performance

because of over-fitting. A subtle point noted in Section 2.3 is that for longitudi-

nal data, subjects may be observed at different time-points, and an individual’s

predictor has to be developed by pooling information from subjects that have

observations at these time-points. An important innovation of our dynamic EB

approach is to replace µs by Ȳs (s < t) in the state-space model of Bühlmann

and Gisler (2005), thereby providing flexible and computationally efficient mod-

els for evolutionary credibility. This is akin to using GARCH models instead of

stochastic volatility models in financial econometrics; see Lai and Xing (2008).

The dynamic EB approach pools cross-sectional information over individual time

series to come up with flexible and computationally efficient methods for mod-

eling longitudinal data and predicting future outcomes of the individuals. We

have shown in Section 3 how this approach can be used to approximate an inher-

ently complicated hidden Markov model of joint default intensities of multiple

firms subject to the impact of observed and latent dynamic macroeconomic vari-

ables by a much simpler GLMM, the advantages of which are illustrated by the

simulation studies in Examples 1 and 2.

By using the dynamic EB methods developed in Section 2, we are able to

predict the batting performance of relatively infrequent batters to whom previous

methods cannot be applied. One may ask why such prediction is of interest since

their performance presumably has little effect on that of their team. In our

analysis of these data, we also examined which batters produced the largest
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absolute prediction errors in Table 3. For t = 8, the batter is David Freese of

the St. Louis Cardinals. Freese batted infrequently in the periods t = 7 and

t = 8; his Ni,7 = 19 and Ni,8 = 12 are both ≤ 32. His batting average in period

7 was 0.158, while his batting average in period 8 was an astonishing 0.583 (he

got 7 hits out of 12 at-bats), producing the large prediction error. Freese later

became a starting third baseman of his team, with Ni,9 = 240, but did not play

in the period t = 10 because of season-ending injuries in June, 2010. He resumed

playing in the 2011 season that is not included in the present study, and helped

the Cardinals win the National League Championship Series, for which he was

named the Most Valuable Player (MVP), and then the World Series, in which he

was also named the MVP. He became the sixth player to win both MVP awards

and also won the Babe Ruth Award as the 2011 postseason MVP.
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Appendix: A Hybrid Method for Likelihood Computation and Appli-

cations

Lai, Shih, and Wong (2006a,b) refined the computation of the MLEs in R

and SAS software packages for GLMM by using a hybrid method that combines

Laplace’s approximation with Monte Carlo integration. The likelihood function

of the GLMM defined by (2.7) can be written as
∏n

i=1 Li(ϕ,α,β), where

Li(ϕ,α,β) =

∫ { T∏
t=1

f(yi,t; θi,t, ϕ)
}
Φα(b)db, (A.1)

in which Φα denotes the normal density function with mean 0 and covariance

matrix depending on an unknown parameter α. Let li(b|ϕ,α,β) denote the log-
likelihood of Li(ϕ,α,β) and l̈i the Hessian matrix consisting of second partial

derivatives of li with respect to the components of b. Laplaces’s asymptotic

formula for integral yields the approximation∫
eli(b|ϕ,α,β)db ≈ (2π)q/2

{
det[−l̈i(b̂i|ϕ,α,β)]

}−1/2
exp

{
li(b̂i|ϕ,α,β)

}
, (A.2)

where q is the dimension of bi, b̂i = b̂i(ϕ,α,β) is the maximizer of li(b|ϕ,α,β).
Let Vi = −l̈i(b̂i|ϕ,α,β). Since Laplace’s asymptotic formula (A.2) may be a
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poor approximation to (A.1) when λmin(Vi) is not sufficiently large, Monte Carlo

integration, whose error is independent of q, can be used as an alternative method

to evaluate (A.1). Lai, Shih, and Wong (2006a,b) use Monte Carlo integration

instead of Laplace’s asymptotic formula for those i with λmin(Vi) < c, where c

is a positive threshold. Specifically, instead of sampling b(h) directly from Φα

as in an earlier version of the hybrid method proposed by Lai and Shih (2003a),

sample it from a mixture of the prior normal distribution with density Φα and

the posterior normal distribution N(b̂i, [−l̈i(b̂i|ϕ,α,β) + εI]−1), where ε is a

small positive number to ensure that the covariance matrix is invertible. This

has the advantage of further incorporating the essence of Laplace’s method in

the Monte Carlo step such that the method is less dependent (than direct Monte

Carlo) on the choice of the threshold c. Lai, Shih, and Wong (2006a) suggest

using c = 10 and a mixture distribution that assigns a weight of 0.2 to Φα. We

use this hybrid method for computing the information criterion that is also used

in the following enhancement of (2.7).

To allow for more flexible modeling of the fixed effects β′xi,t in (2.7), we relax

the linear assumption and use instead univariate regression splines of degree r

and their tensor products as basis functions, thereby extending (2.7) to

h(µi,t) =

p∑
j=1

θjh(Ȳt−j) + β0 +
M∑

m=1

βmBm(xi,t) + b′
izi,t, (A.3)

in which Bm(xi,t) is a product of terms of the form xli,t,k or (xi,t,k−ξm,k)
r
+ for some

1 ≤ l ≤ r, 1 ≤ k ≤ d, and some suitably chosen knots ξm,k, where t+ = max(0, t).

Lai, Shih, and Wong (2006b) propose to place the knots ξm,k at certain quantiles

of the kth components of the d-dimensional covariate variables xi,t, and to use

the following stepwise procedure to choose the spline basis for (A.3). A forward

addition step chooses the basis function, among those not already included in

the model, with the largest absolute value of the Rao statistic. Forward stepwise

addition continues until an information criterion such as

BIC = −2

n∑
i=1

logLi(θ̂1, . . . , θ̂p, ϕ̂, α̂, β̂) + (log n)(number of parameters) (A.4)

does not decrease further or when there is no more candidate basis function to

be included. Then stepwise backward elimination proceed until the information

criterion does not improve; each elimination step removes the basis function in

the model with the smallest value of the Wald statistic.
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