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Abstract: Let X be a d-dimensional vector of covariates and Y be the response
variable. Under the nonparametric model Y = m(X) + σ(X)ϵ we develop an
ANOVA-type test for the null hypothesis that a particular coordinate of X has
no influence on the regression function. The asymptotic distribution of the test
statistic, using residuals based on local polynomial regression, is established un-
der the null hypothesis and local alternatives. Simulations suggest that the test
outperforms existing procedures in heteroscedastic settings. Using p-values from
this test, a variable selection method based on False Discovery Rate corrections is
proposed, and proved to be consistent in estimating the set of indices correspond-
ing to the significant covariates. Simulations suggest that, under a sparse model,
dimension reduction techniques can help avoid the curse of dimensionality. We also
propose a backward elimination version of this procedure, called BEAMS (Back-
ward Elimination ANOVA-type Model Selection), which performs competitively
against well-established procedures in linear regression settings, and outperforms
them in nonparametric settings. A data set is analyzed.
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1. Introduction

For a response variable Y and a d-dimensional vector of the available covari-

ates X set m(X) = E(Y |X). The dual problems of testing for the predictive

significance of a particular covariate, and identification of the set of relevant, for

prediction purposes, covariates are common in applied research and in method-

ological investigations. Due to readily available software, these tasks are often

performed under the assumption of a linear model, m(X) = Xβ. Model checking

fits naturally in the methodological context of hypothesis testing, while variable

selection is typically addressed through minimization of a constrained or penal-

ized objective function, such as Tibshirani’s (1996) LASSO, Fan and Li’s (2001)

SCAD, Efron et al.’s (2004) least angle regression, Zou’s (2006) adaptive LASSO,

and Candes and Tao’s (2007) Dantzig selector.

At a conceptual level, however, the two problems are intimately connected:

dropping variable j from the model is equivalent to not rejecting the null hypoth-

esis Hj
0 : βj = 0. Abramovich et al. (2006) bridged the methodological divide by
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showing that application of the false discovery rate (FDR) controlling procedure

of Benjamini and Hochberg (1995) on p-values resulting from testing each Hj
0

can be translated into minimizing a model selection criterion of the form

n∑
i=1

(
Yi −

∑
j∈S

β̂S
j xij

)2
+ σ2|S|λ, (1.1)

where S is a subset of {1, 2, . . . , d} specifying the model, β̂S
i denotes the least

squares estimator from fitting model S, |S| is the cardinality of the subset S, and

the penalty parameter λ depends both on d and |S|. This is similar to penalty

parameters used in Tibshirani and Knight (1999), Birge and Massart (2001), and

Foster and Stine (2004), which also depend on both d and |S|, and more flexible

than the proposal in Donoho and Johnstone (1994) which uses λ depending only

on d, as well as AIC and Mallow’s Cp which use constant λ.

Working with orthogonal designs, Abramovich et al. (2006) showed that

the global minimum of the penalized least squares (1.1) with the FDR penalty

parameter is asymptotically minimax for ℓr loss, 0 < r ≤ 2, simultaneously

throughout a range of sparsity classes, provided the level q for the FDR is set

to q < 0.5. Generalizations of this methodology to non-orthogonal designs differ

mainly in the generation of the p-values for testing Hj
0 : βj = 0, and the FDR

method employed. Bunea, Wegkamp, and Auguste (2006) use p-values generated

from the standardized regression coefficients resulting from fitting the full model

and employ Benjamini and Yekutieli’s (2001) method for controlling FDR under

dependency, while Benjamini and Gavrilov (2009) use p-values from a forward

selection procedure where the ith stage p-to-enter is the ith stage constant in the

multiple-stage FDR procedure in Benjamini, Krieger, and Yekutieli (2006).

Testing for the significance of covariates and variable selection procedures

based on the assumption that the regression function is linear may fail to discern

the relevance of covariates whose effect onm(x) is nonlinear; this is demonstrated

by the simulations in Section 4. Because of this, procedures for both model

checking and variable selection have been developed under more general/flexible

models. See, for example Kong and Xia (2007), Li and Liang (2008), Wang and

Xia (2008), Huang, Horowitz, and Wei (2010), Storlie et al. (2011), and references

therein. However, the methodological approaches for variable selection under

these more flexible models have been distinct from those of model checking.

This paper aims at showing that a powerful model checking procedure, in

the context of a heteroscedastic nonparametric regression model, can be used to

construct a competitive nonparametric variable selection procedure by exploiting

the aforementioned conceptual connection between model checking and variable

selection. Thus, this paper has two objectives: to develop a procedure for testing
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the predictive significance of each one of the d covariates, given all the other

covariates are in the model, and to propose a consistent variable selection proce-

dure based on the Benjamini and Yekutieli (2001) FDR procedure applied on the

d p-values. Simulations suggest that a backward elimination version of the pro-

posed variable selection procedure often has better performance characteristics.

This version, which is recommended in practice, is called BEAMS for Backward

Elimination ANOVA-type Model Selection.

In Section 2, we formally describe the model, introduce the hypothesis and

the statistic for testing the predictive significance of a covariate, introduce a

test-based variable selection procedure and a version of it based on backward

elimination called BEAMS. Theoretical asymptotic properties of the test statistic

under the null and local alternatives are presented in Section 3, along with the

consistency of the variable selection method. In Section 4 we present a series of

simulation studies where the performances of both proposed model checking and

variable selection methods are compared to those of existing ones. Finally a data

set is analyzed with the new and existing variable selection procedures, and the

results of the different analyses are compared.

2. The Proposed Procedures

2.1. Lack of fit testing

Let Y be the response variable and X = (X1, . . . , Xd) the vector of available

covariates. Set m(X) = E(Y |X) for the regression function and define

ζ = Y −m(X). (2.1)

From its definition it follows that E(ζ|X) = E(ζ) = E(ζ|Xj) = 0 for all j =

1, . . . , d. Setting σ2(X) = Var (ζ|X), we have the model

Y = m(X) + σ(X)ϵ, (2.2)

where ϵ is the standardized error ζ. Based on a sample (Yi,Xi), i = 1, . . . , n, of

iid observations from model (2.2), we consider testing the hypothesis that the

regression function does not depend on the jth covariate. We set X = (X1, X2),

whereX1 is of dimension (d−1) andX2 is univariate. Setting E(Y |X1) = m1(X1)

the hypothesis we consider can be written as

H0 : m(x1, x2) = m1(x1). (2.3)

Additional insight for this hypothesis can be gained from the ANOVA decompo-

sition

m(X1, X2) = µ+ m̃1(X1) + m̃2(X2) + m̃12(X1, X2), (2.4)
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where, if F1, F2 denote the marginal CDFs of X1, X2, respectively,

µ =
∫ ∫

m(x1, x2)dF1(x1) dF2(x2), m̃1(x1) =
∫
m(x1, x2)dFX2(x2)−µ, m̃2(x2) =∫

m(x1, x2)dFX1(x1) − µ, and m̃12(x1, x2) is defined from (2.4) by subtraction.

Thus, under (2.3),

m1(x1) = µ+ m̃1(x1), and m̃2(X2) = m̃12(X1, X2) = 0, (2.5)

while under the alternative,

m1(x1) = µ+ m̃1(x1) + E[m̃2(X2) + m̃12(X1, X2)|X1 = x1]. (2.6)

To motivate the test statistic, note that, under the H0 in (2.3), the null

hypothesis residuals,

ξi = Yi −m1(X1i), (2.7)

are the residuals defined in (2.1). Hence, under H0,

E (ξi|X2i) = 0. (2.8)

There are several procedures for testing that a covariate has no predictive value

for a response, that the conditional expectation of the response given the covariate

is constant. Because of (2.8), any such procedure can be applied to test (2.3),

treating the ξi as the response. Most procedures, however, are developed under

homoscedasticity and become quite liberal under heteroscedasticity. Thus, a

covariate with no predictive value stands a good chance of being selected as

a predictor if the variance function, or even other aspects of the conditional

distribution of the response, are not constant with respect to the covariate.

A procedure with good power properties against departures from the H0 in

(2.3), and which maintains its level under heteroscedasticity, considers (ξi, X2i),

i = 1, . . . , n, as data from a one-way ANOVA design with ξi being the observation

at “level”X2i. An ANOVA-type statistic from Akritas and Papadatos (2004), the

one for high-dimensional balanced one-way designs, can then be used; see Wang,

Akritas, and Keilegom (2008). These statistics, however, require two or more

observations per factor level, and in regression designs we typically have only

one response per covariate value. This issue is dealt with through smoothness

conditions that make it possible to augment each cell X2i by including the ξℓ’s

corresponding to covariate values that are nearest to X2i on either side. The

precise way of doing this is described below. An additional issue has to do with

the fact that the ξi’s have to be estimated. Let

ξ̂i = Yi − m̂1(X1i) (2.9)

denote the estimated null hypothesis residuals.
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We conjecture that the asymptotic theory for the proposed ANOVA-type

test, which is presented in the next section, remains the same (up to slightly

different conditions) for a wide class of nonparametric estimators of E(Y |x1),

including kernel, local polynomial, spline or other basis approximation estima-

tions, the backfitting estimator (under an additive model), or the estimators by

Lafferty and Wasserman (2008) and Bertin and Lecué (2008) that accommodate

a large number of covariates under local sparcity. Moreover, it is possible to use

̂̃m1(x1) =
1

n

n∑
i=1

m̂(x1, X2i),

which is a version of an estimator proposed by Newey (1994) and Linton and

Nielsen (1995), and further studied in Mammen, Linton, and Nielsen (1999) and

Horowitz and Mammen (2004). Under the null hypothesis this also estimates

E(Y |x1) (see (2.5)), but under the alternative it estimates

E(m(x1, X2)) = µ+ m̃1(x1).

Thus, a test using the residuals ξ̃ = Y − ̂̃m1(x1) may have improved power against

non-additive alternatives, since subtracting m̂1(X1i) inadvertently removes some

of the effect of X2; see (2.6).

The rest of the paper uses the residuals in (2.9) with m̂1(X1i) obtained by

local polynomial regression estimation of m1, using a bounded (d − 1)-variate

kernel function K of bounded variation and with bounded support, and a sym-

metric positive definite (d−1)×(d−1) bandwidth matrix Hn. Letting KHn(x) =

|Hn|−1K(H−1
n x), the local polynomial regression estimator of order q is

m̂1(Xi) = eT1
(
XT
Xi

WXiXXi

)−1XT
Xi

WXiY =

n∑
j=1

w̃(Xi,Xj)Yj , i = 1, . . . , n,(2.10)

where

Xx =

1 (X1 − x)T vechT
{
(X1 − x)(X1 − x)T

}
. . .

...
...

... . . .

1 (Xn − x)T vechT
{
(Xn − x)(Xn − x)T

}
. . .


is the n× ηd design matrix, with

ηd =

q∑
j=0

j∑
k1=0

. . .

j∑
kd=0

k1+...+kd=j

1,

“vech” is the half-vectorization operator, and Wx = diag{KHn(X1 − x), . . .,

KHn(Xn − x)}.



1842 ADRIANO ZANIN ZAMBOM AND MICHAEL G. AKRITAS

The requirement of more than one covariate valueX2i is dealt with by includ-

ing additional ξ̂j ’s corresponding to covariate values that are nearest to X2i on

either side. We consider the (ξ̂i, X2i), i = 1, . . . , n, arranged so that X2i1 < X2i2 ,

whenever i1 < i2, and define the augmented X2i-cell to consist of ξ̂i and the ξ̂j ’s

corresponding to the (p− 1)/2 X2j ’s on either side of X2i, for p odd. The set of

indices j, with the property that ξ̂j is in the augmented X2i-cell, is given by

Wi =

{
j : |F̂X2(X2j)− F̂X2(X2i)| ≤

p− 1

2n

}
, (2.11)

where F̂X2 is the empirical distribution function ofX2. We treat these augmented

cells as the “groups” in a high-dimensional one-way ANOVA design. The main

differences from the usual one-way ANOVA design are that the response variables

are the estimated residuals which are not independent, and that each response

can belong to several groups (this is because the set of indicesWi are not disjoint),

causing additional dependence between the groups. Nevertheless, the proposed

test statistic is based on the difference of the treatment and error mean sum of

squares, which is the typical test statistic in high-dimensional ANOVA:

MST −MSE =
p

n− 1

n∑
i=1

(ξ̂i. − ξ̂..)
2 − 1

np− n

n∑
i=1

p∑
j∈Wi

(ξ̂j − ξ̂i.)
2, (2.12)

where ξ̂i. = (1/p)
∑

j∈Wi
ξ̂j and ξ̂.. = (1/np)

∑n
i=1

∑
j∈Wi

ξ̂j .

Remark 1. Simulations suggest that the choice of the “group” size p of the

augmented high-dimensional ANOVA design does not much influence the perfor-

mance of the test procedure, as long as it is not too small or too large. Choosing

p < 5 tends to make the test procedure liberal, while a large value of p has the

opposite effect. In the simulations we used p = 7. A way to gain confidence

in the choice of p in any practical situation is to run the test after randomly

permuting the observed response variables among the covariate values, in order

to induce the validity of the null hypothesis.

According to Theorem 2, the asymptotic mean of the test statistic under

both additive and general local alternatives is positive. This suggests that null

hypothesis should be rejected for “large” values of the test statistic. In particular,

if

Z =
n1/2(MST −MSE)

τ̂
√

2p(2p− 1)/(3(p− 1))
(2.13)

denotes the standardized test statistic, where τ̂ is given in (3.1), its p-value is

computed from
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π = 1− Φ(Z). (2.14)

2.2 Test based variable selection

In this section we propose a test-based variable selection method that is

shown to be consistent in Section 3. A similar procedure was proposed by Bunea,

Wegkamp, and Auguste (2006) in the context of a homoscedastic linear model.

Let Id = {1, . . . , d} denote the set of indices of the d available predictors

and, for any subset I ⊆ Id, let XI denote the subset of the vector of covariates

with indices in I. Suppose that the true regression function, m, is a function of

d0 ≤ d covariates,

m(X) = m(XI0),

where I0 = {j1, . . . , jd0} is the (unknown) subset of indices corresponding to the

d0 significant covariates and, with an abuse of notation, the number of arguments

of the function m is determined from the dimension of the vector it is applied to.

Thus, the true underlying model can be written as

Y = m(XI0) + σ(X)ϵ. (2.15)

The objective of the proposed variable selection method is to identify the subset

I0. Thus, we are interested in identifying the set of covariates with predictive

significance in a model where heteroscedasticity, as well as other aspects of the

conditional distribution of the response, are allowed to depend on all available

covariates.

Let Ij0 = I0, if j /∈ I0, and Ij0 = I0 − {j}, if j ∈ I0, and set

Hj
0 : m(xI0) = m(x

Ij0
) (2.16)

for the null hypothesis that the regression function does not depend on the jth

covariate. Let Zj and πj = 1− Φ(Zj), j = 1, . . . , d, denote the test statistic and

p-value for testing Hj
0 ; see (2.13) and (2.14). Let H

(j)
0 denote the null hypothesis

corresponding to the p-value π(j), j = 1, . . . , d, where π(1) ≤ · · · ≤ π(d) denote

the ordered p-values. The FDR procedure of Benjamini and Hochberg (1995)

and Benjamini and Yekutieli (2001) computes

k = max
{
j : π(j) ≤

j

d

q∑d
l=1 l

−1

}
, (2.17)

for a choice of the level q, and rejects the hypotheses H
(j)
0 , j = 1, . . . , k. If no

such k exists, no hypotheses are rejected. The proposed variable selection method

selects the variables with indices corresponding to the k rejected null hypotheses.

Thus, I0 is estimated by the set Î of indices corresponding to the first k ordered

p-values.
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2.3. BEAMS

The test-based variable selection method described in Section 2.2 works well

when the sample size is large, in fact it is asymptotically consistent for selecting

the true predictors (see Section 3.2). However, when the sample size is small

or the dimension of the predictor space is large, this method is often outper-

formed by a backward elimination version of the procedure. (In fact, a backward

elimination version of the Bunea, Wegkamp, and Auguste (2006) procedure also

improved it. See also Li, Cook, and Nachtsheim (2005) who also used backward

elimination, though not based on multiple testing ideas.) Thus BEAMS, which

stands for Backward Elimination ANOVA-type Model Selection, is the procedure

we recommend in practice. Application of the BEAMS procedure consists of the

following steps:

1. Obtain p-values, π1, . . . , πd, from testing each of the hypotheses Hj
0 : m(x) =

m(x−j), j = 1, . . . , d, where x−j is obtained from x by omitting the jth

coordinate.

2. Compute k as in (2.17). If k = d, stop and retain all variables. If k < d,

update x by eliminating the covariate corresponding to π(d), set d = d − 1,

and return to Step 1.

Using dimension reduction techniques

Simulations suggest that, under a sparse model, the variable selection pro-

cedure and its modification, BEAMS, with local linear regression for generating

the p-values, can be applied with a large number of covariates, provided the

dimensionality is suitably reduced. Following the seminal paper of Li (1991),

a number of dimension reduction (DR) methods have been proposed. Because

we are interested in identifying covariates with predictive significance, methods

such as Hristache et al. (2001), Xia et al. (2002), and Xia (2008) that target the

regression function, are particularly relevant. Essentially, these methods express

the conditional mean m(xI0) as a function of K ≤ d0 linear combinations of the

coordinates of x,

m(x) = g(Bx),

where B is a K × d matrix. Thus, if K < d the effective dimension of the

problem is K, not d. Finally, in order to reduce the computational time, all

simulations reported in Section 4.2 employed a variable screening method prior

to applying a DR method. The variable screening consists of performing the

marginal test of Wang, Akritas, and Keilegom (2008) for the significance of each

variable, and keeping those variables for which the p-value is less than 0.5. The

description of BEAMS, with screening and dimension reduction as it is applied

in the simulations of Section 4.2, is as follows.
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1. Apply the variable screening procedure described above. Update d to the

number of remaining covariates, and x to the vector of remaining covariates.

2. Use a DR method to estimate B. Let B̂ denote the estimator.

3. Obtain p-values, π1, . . . , πd, from testing each of the hypotheses Hj
0 : m(x) =

m(x−j), j = 1, . . . , d, using residuals formed by a local linear regression esti-

mator on the variables B̂−jx−j , where B̂−j is the K× (d−1) matrix obtained

by omitting the jth column of B̂.

4. Compute k as in (2.17). If k = d stop and retain all variables. If k < d,

set d = d − 1, update x by eliminating the covariate corresponding to π(d),

update B̂ by eliminating the column corresponding to the deleted variable,

and return to Step 3.

In the simulations of Section 4.2 data were generated so the covariates influ-

enced only the regression function, and not any other aspects of the conditional

distribution of the response given the covariates. In such settings, Li’s (1991)

SIR, which is available in the R package dr, may also be used (and we did).

Another option is to use the method of Hristache et al. (2001) which is available

in the R package EDR.

3 Asymptotic Results

3.1. Asymptotic distribution of the test statistic

Consider the following conditions

(a) E|Y |ρ < ∞ for some ρ > 2.

(b) The marginal densities fX1 , fX2 of X1, X2, respectively, are bounded away

from zero.

(c) fX1 is uniformly continuous and bounded.

(d) The q+1 derivatives of m1(x1) exist and are Lipschitz uniformly continuous

and bounded.

(e) σ2(., x2) := E(ξ2|X2 = x2) is Lipschitz continuous, supu σ
2(u) < ∞, and

E(ϵ4i ) < ∞.

We assume that the eigenvalues, λi, i = 1, . . . , d − 1, of the bandwidth matrix

H
1/2
n defined in (2.10), converge to zero at the same rate and satisfy

(1) nλ
4(q+1)
i → 0 i = 1, . . . , d− 1,

(2)
nλ

2(d−1)
i

(log n)2
→ ∞, i = 1, . . . , d− 1,

(3)
n1−2/ρλd−1

i

lnn[lnn(ln lnn)1+δ]2/ρ
→ ∞, i = 1, . . . , d− 1.
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The proofs of the asymptotic normality results stated in Theorems 1 and 2

are given in the supplementary material available online.

Theorem 1. If (a)−(e) and (1)−(3) hold, then, under H0 in (2.3), the asymp-

totic distribution of the test statistic in (2.12) is

n1/2(MST −MSE)
d→ N

(
0,

2p(2p− 1)

3(p− 1)
τ2
)
,

where τ =
∫ [

σ2(., x2)
]2

fX2(x2)dx2.

An estimate of τ2 can be obtained by modifying Rice’s (1984) estimator as

τ̂2 =
1

4(n− 3)

n−2∑
j=2

(ξ̂j − ξ̂j−1)
2(ξ̂j+2 − ξ̂j+1)

2. (3.1)

Asymptotics under local alternatives

The local additive alternatives and the general local alternatives are of the

form

HA
1 : m(x1, x2) =m1(x1) + δnm̃2(x2), (3.2)

HG
1 : m(x1, x2) =m1(x1) + δn(m̃2(x2) + m̃12(x1, x2)), (3.3)

where the functions m̃2, m̃12 satisfy E (m̃2(X2)) = 0 = E (m̃12(x1, X2)).

Theorem 2. Suppose that m̃2(x) is Lipschitz continuous, m̃12(x1, x2) is Lips-

chitz continuous on x2 uniformly on x1, the assumptions of Theorem 1 hold, and

δn = n−1/4.

1. Under HA
1 in (3.2), as n → ∞,

n1/2(MST −MSE)
d→ N

(
pVar (m̃2(X2)),

2p(2p− 1)

3(p− 1)
τ2
)
.

2. Under HG
1 in (3.3), as n → ∞,

n1/2(MST −MSE)
d→ N

(
pV ar(m̃2(X2)+m̃12(X1, X2)),

2p(2p− 1)

3(p− 1)
τ2
)
.

Remark 2. If δn goes to 0 any faster than n−1/4, then the asymptotic mean of

the test statistic under local alternatives shrinks to 0. On the other hand, if δn
goes to 0 any slower than n−1/4, then the asymptotic mean tends to infinity.

3.2. Consistency of the test based variable selection

Let R denote the total number of rejected hypotheses: R = k if k in (2.17)

exists, and R = 0 otherwise. Let V be the number of falsely rejected hypotheses,

and set
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Q =

{
V
R if R > 0,

0 otherwise,

for the proportion of falsely rejected hypotheses. By definition, the false discovery
rate is E(Q), and Benjamini and Yekutieli (2001) showed that E(Q) ≤ q(d −
d0)/d ≤ q.

The variable selection procedure, and Î, are called consistent if P (Î = I0) →
1. The consistency result presented here allows the significance of the predictors
to be diminishing with n, where we quantify the significance of a predictor Xj

by

Cj =
Var (m(XI0)−m(X

Ij0
))

τj
√

2p(2p− 1)/(3(p− 1))
, (3.4)

where τj is defined for the predictor Xj as the τ of Theorem 1. Note that Cj = 0
for all j /∈ I0. This quantification of significance is justified by Theorem 2. In
what follows, we allow each Cj to tend to zero with n, but its dependence on n
is suppressed for convenience.

Lemma 1. Let Zj and πj = 1−Φ(Zj) be the test statistic and p-value for testing
Hj

0 , as in (2.13) and (2.14).

(a) For j /∈ I0 and any γ > 0, we have P (πj ≤ γ) = γ + o(1).

(b) For j ∈ I0, let γn > 0, n ≥ 1. Then if

n1/2Cj → ∞, and γn >
exp(−nC2

j /4)

n1/2Cj

we have P (πj > γn) = o(1).

Proof. (a) The result follows from Theorem 1 by noting that, for j /∈ I0, the
null hypothesis Hj

0 is true.

(b) From the proof of Theorem 2 we have that the standardized test statistic for
testing the significance of Xj has a representation of the form

Zj = Z
Hj

0
j + n1/2Cj + op(1),

where Z
Hj

0
j

d→ N(0, 1). Thus, for any sequence an → ∞, an = o(n1/2Cj),

P (πj > γn) = P (1− Φ(Z
Hj

0
j + n1/2Cj + op(1)) > γn)

≤ P (1− Φ(Z
Hj

0
j + n1/2Cj + op(1)) > γn, Z

Hj
0

j + op(1) ≥ −an)

+P (Z
Hj

0
j + op(1) < −an)

≤ P (1− Φ(n1/2Cj − an) > γn) + o(1) = o(1),
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by the choice of γn since, using also an < n1/2Cj/4, it can be shown that 1 −
Φ(n1/2Cj − an) ≤ exp(−nC2

jn/4)/n
1/2Cjn.

Lemma 2. Let En be the event where the smallest d0 p-values are the p-values

corresponding to the d0 significant covariates, with I0 = {j1, . . . , jd0},

En =
[
{π(1), . . . , π(d0)} = {πj1 , . . . , πjd0}

]
.

Then limn→∞ P (En) = 1.

Proof. Let γ be any number between 0 and 1, and write

P (Ec
n) ≤

∑
j∈I0

∑
i/∈I0

P (πi < πj)

=
∑
j∈I0

∑
i/∈I0

[
P ([πi < πj ] ∩ [πi ≤ γ]) + P ([πi < πj ] ∩ [πi > γ])

]
≤
∑
j∈I0

∑
i/∈I0

[P (πi ≤ γ) + P (πj > γ)]

≤
∑
j∈I0

∑
i/∈I0

[γ + o(1)] (by Lemma 1)

= d0(d− d0)γ + o(1).

Since γ is arbitrary, this shows that limn→∞ P (Ec
n) = 0, completing the proof.

Theorem 3. With Cj at (3.4), and q the chosen bound of FDR (see (2.17)),

assume that n1/4Cj → ∞ and q → 0, as n → ∞, in such a way that

q >
d

d0

(
d∑

l=1

l−1

)
exp(−nC2

j /4)

n1/2Cj
.

Then, limn→∞ P (Î = I0) = 1.

Proof. If the estimator Î is equal to the set I0, we have exactly d0 rejections

(R = d0) with none of them being erroneous (V = 0). Therefore, consistency of

Î is verified by proving

P (Î = I0) = P (R = d0, V = 0) → 1, as n → ∞. (3.5)

This follows by showing that both P (R ̸= d0) and P (V ≥ 1) are asymptotically

negligible. By Lemma 2.1 in Bunea, Wegkamp, and Auguste (2006), we have

that

P (V ≥ 1) ≤ P (R ̸= d0) +
d0(d− d0)

d
q.
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Thus, in order to show consistency of Î we need only show that P (R ̸= d0) → 0.

Following Bunea, Wegkamp, and Auguste (2006), let qd = q/
∑d

l=1 l
−1 and write

P ({R ̸= d0}) ≤ P

(
π(d0) > qd

d0
d

)
+

d∑
j=d0+1

P

(
π(j) ≤ qd

j

d

)
, (3.6)

where the first term on the right hand side bounds the probability of {R < d0},
and the second term bounds the probability of {R > d0}. With the En of Lemma

2, the first term in the right hand side of (3.6) is

P

(
π(d0) > qd

d0
d

∩ En
)
+ P

(
π(d0) > qd

d0
d

∩ Ec
n

)
≤ d0max

j∈I0
P

(
πj ≥ qd

d0
d

)
+ P (Ec

n) = o(1),

by Lemmas 1 and 2. For the second term we have
d∑

j=d0+1

P

(
π(j) ≤ qd

j

d
∩ En

)
+

d∑
j=d0+1

P

(
π(j) ≤ qd

j

d
∩ Ec

n

)
≤
∑
j /∈I0

P (πj ≤ qd) + (d− d0)P (Ec
n) ≤ (d− d0)qd + (d− d0)P (Ec

n) = o(1),

by Lemmas 1 and 2.

4. Simulation Studies

4.1. Model checking procedures

Literature review

Let X = (X1,X2) be the vector of d available predictors, with X1 being d1-

dimensional. The problem of assessing the usefulness of X2 has been approached

from different angles by many authors. The literature is extensive, so only a brief

summary is given. For additional references see Hart (1997) and Racine, Hart,

and Li (2006).

One class of procedures is based on the idea that the null hypothesis residuals,

ξ = Y −m1(X1), satisfy E(ξ|X) = 0 under H0 and E(ξ|X) = m(X) −m1(X1)

under the alternative. Thus, E(ξE(ξ|X)|X) = (m(X) − m1(X1))
2 under the

alternative and zero under the null. Using this idea, Fan and Li (1996) propose

a test statistic based on estimating E[ξf1(X1)E(ξf1(X1)|X)f(X)], which equals

E[(m(X)−m1(X1))
2f1(X)2f(X)] under the alternative and zero under the null.

Their test statistic is

1

n

∑
i

[ξ̃if̃1(X1i)]
[ 1

(n− 1)hdn

∑
j ̸=i

[ξ̃j f̃1(X1j)]K
(Xi −Xj

hn

)]
,
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where f̃1 is the estimated density of X1, ξ̃i is the estimated residuals under the

null hypothesis, and K is a kernel function. Fan and Li (1996) show that their

test statistic is asymptotically normal under H0. Lavergne and Vuong (2000)

propose a test statistic based on different estimator of the same quantity as Fan

and Li (1996), as

(n− 4)!

n!

∑
a

(Yi − Yk)(Yj − Yl)Ln

(
X1i−X1k

gn

)
Ln

(
X1j−X1l

gn

)
Kn

(
Xi−Xj

hn

)
,

where
∑

a is the sum over all permutations of four distinct elements chosen from

n, Ln = g−d1
n L for a kernel L on Rd1 , and Kn = h−d

n K for a kernel K on Rd.

Lavergne and Vuong (2000) show that their test statistic is also asymptotically

normal under H0.

A related class of procedures is based on direct estimation of E[(m(X) −
m1(X1))

2W (X)], for some weight function W . See, for example, Aı̈t-Sahalia,

Bickel, and Stoker (2001). The use of such a test statistics is complicated by the

need to correct for bias. See also the bootstrap-based procedure of Delgado and

Manteiga (2001). Because of the computer intensive nature of bootstrap-based

procedures, these are not included in our comparisons.

An additional class of test procedures uses alternatives based on Stone’s

(1985) additive model. We consider the procedure proposed by Fan and Jiang

(2005). This is based on Fan, Zhang, and Zhang’s (2001) Generalized Likelihood

Ratio Test (GLR), using a local polynomial approximation and the backfitting

algorithm for estimating the additive components.

Numerical comparison

In this section we compare the proposed ANOVA-type statistic to the statis-

tics proposed by Lavergne and Vuong (2000) (LV), Fan and Li (1996) (FL), Fan

and Jiang (2005), (GLR), and the classical F-test for linear regression.

The data was generated according to (also used in Lavergne and Vuong

(2000))

Model j : Y = −X1 +X3
1 + fj(X2) + ϵ, j = 0, 1, 2, 3, 4, 5, 6, (4.1)

where X1, X2 are iid N(0, 1) and ϵ ∼ N(0, 4). Here, f0(x) = 0, which corresponds

to the null hypothesisH0 : m(x1, x2) = m(x1); f1(X2) = 0.5X2, f2(X2) = X2 and

f3(X2) = 2X2 give three linear alternatives, and f4(X2) = sin(2πX2), f5(X2) =

sin(πX2), and f6(X2) = sin(2/3πX2) give three non-linear alternatives. We used

p = 7 throughout, since after a random permutation of the response in all cases,

the test showed accurate levels for p between 5 and 11. For the estimation of

m1 in the proposed procedure, the Nadaraya-Watson kernel regression estimator

was used, with a uniform kernel on (−0.5, 0.5), and the bandwidth was selected
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Table 1. Rejection rates under H0, linear and non-linear alternatives

linear sine
n test H0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

100 LV 0.041 0.098 0.482 0.991 0.182 0.266 0.319
FL 0.021 0.051 0.271 0.970 0.126 0.168 0.187

GLRT 0.044 0.365 0.951 1 0.123 0.497 0.645
F-test 0.051 0.695 0.997 1 0.046 0.055 0.222

ANOVA 0.056 0.244 0.780 0.999 0.432 0.527 0.551
200 LV 0.054 0.208 0.875 1 0.386 0.540 0.678

FL 0.025 0.083 0.695 1 0.289 0.395 0.471
GLRT 0.036 0.656 1 1 0.188 0.877 0.936
F-test 0.052 0.931 1 1 0.051 0.053 0.340

ANOVA 0.055 0.374 0.95 0.999 0.73 0.778 0.788

through leave-one-out cross validation. The rejection rates shown in Table 1 for

LV, FL, and F-tests are taken from the simulation results reported in the LV

paper (based on 2,000 runs). In each simulation setting, the LV paper reports

several rejection rates for the LV and FL tests, each corresponding to different

values of smoothing parameters. The rejection rates reported in Table 1 are

the most accurate alpha level achieved over all constants, and the best power

achieved overall constants for each alternative. For comparison purposes, the

rejection rates for the ANOVA-type tests and the GLR test are also based on

2,000 simulation runs.

As expected, the F test achieved the best results for the three linear alterna-

tives and the worse results for the three non-linear alternatives. The GLR test

had higher power than the ANOVA-type tests against linear alternatives (which

is partly explained by the fact it is based on normal likelihood), but was much

less powerful against the first of the non-linear alternatives. As the non-linearity

decreases (Model 5 and Model 6) the power of the GLR test improved.

The GLR test is designed for additive models, the simulation setting of

Table 1. Under non-additive alternatives it can perform poorly, as indicated

by the simulations reported in Table 2. These simulations used sample size

n = 200 with data generated from the model Y = XX2
1 (1+θX3)+X

(1+θX3)
2 /X2+

ϵ, where ϵ ∼ N(0, 0.1), and X1, X2, X3 are i.i.d. U(0.5, 2.5). The hypothesis

tested was m(X1, X2, X3) = m1(X1, X2). The residuals for the ANOVA-type

test in Table 2 were based on a Nadaraya-Watson fit with kernel the uniform on

(−0.5, 0.5)× (−0.5, 0.5) and the common bandwidth selected through leave-one-

out cross validation.

The GLR test does not maintain its level under heteroscedasticity. In simulations,

reported in Table 3, under the additive but heteroscedastic model Y = X2
1 +

θ cos(πX2) +X2ϵ, X1, X2 i.i.d. N(0, 1), ϵ ∼ N(0, 0.5), using sample size n = 200,
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Table 2. Rejection rates for non-additive models

θ
test 0 0.02 0.04 0.06 0.08

ANOVA 0.052 0.176 0.609 0.940 0.994
GLRT 0.048 0.082 0.110 0.189 0.304

Table 3. Rejection rates for heteroscedastic models

θ
test 0 0.025 0.05 0.1 0.2

ANOVA 0.053 0.067 0.124 0.485 0.998
GLRT 0.465 0.511 0.624 0.908 1

the GLR test was very liberal while the ANOVA-type test maintained an accurate

level.

4.2. Variable selection procedures

In this section we compare the proposed variable selection procedure (ANOVA

based V.S.) and BEAMS with LASSO, SCAD, adaptive LASSO, Lin and Zhang

(2006)’s COSSO, Chen, Zou, and Cook (2010)’s CISE, the FDR-based variable

selection method proposed by Bunea, Wegkamp, and Auguste (2006) (BWA), and

a version of the BWA procedure which uses backward elimination (BWA+BE).

The simulations used sample sizes of n = 40 and n = 110. The parameter q for

BEAMS, BWA and BWA+BE was set to 0.07, so FDR is below 0.056 in Table

4, and below 0.045 in Table 5. The comparison criterion is the mean number of

correctly and incorrectly excluded variables. All comparisons are based on 2,000

simulated data sets.

For LASSO we found that the R code in http://cran.r-project.org/web/

packages/glmnet/index.html, with the lambda.lse option for selecting lambda,

gave the best results; for adaptive LASSO we used the R code from http:

//www4.stat.ncsu.edu/~boos/var.select/lasso.adaptive.html; for SCAD

we used the function scadglm of the package SIS in R; for COSSO we used

the R package “cosso” (http://cran.r-project.org/web/packages/cosso/

index.html); and for CISE we used the matlab function available in http:

//users.stat.umn.edu/~chen0982/.

In Table 4, data sets of size n = 110 were generated from the linear model

Y = βTX+ ϵ, where ϵ ∼ N(0, 32), the dimension of X is d = 25, and

βT = (3, 1.5, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0).

The covariates were generated from a multivariate normal with marginal means

zero and covariances as shown in the table. It is seen the ANOVA based variable

http://cran.r-project.org/web/packages/glmnet/index.html
http://cran.r-project.org/web/packages/glmnet/index.html
http://www4.stat.ncsu.edu/~boos/var.select/lasso.adaptive.html
http://www4.stat.ncsu.edu/~boos/var.select/lasso.adaptive.html
http://cran.r-project.org/web/packages/cosso/index.html
http://cran.r-project.org/web/packages/cosso/index.html
http://users.stat.umn.edu/~chen0982/
http://users.stat.umn.edu/~chen0982/
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Table 4. Comparisons using a linear model: d = 25, n = 110

Σ = I Σ = (0.5|i−j|)
test correct incorrect correct incorrect

SCAD 19.48 0.026 19.37 0.023
LASSO 18.29 0.005 18.28 0.004
Adaptive LASSO 19.28 0.005 19.26 0.025
BWA 19.99 1.02 19.97 1.41
BWA+BE 19.55 0.001 19.49 0.041
COSSO 18.28 3.85 18.53 3.91
CISE 19.93 0.144 19.95 0.202
ANOVA based V.S. 19.66 0.948 19.78 2.52
BEAMS 19.46 0.630 19.30 0.440

Table 5. Comparisons using nonlinear models: d = 8, n = 40

g1 g2
test correct incorrect correct incorrect

SCAD 6.74 0.96 5.71 1.79
LASSO 6.59 0.92 5.72 1.80
Adaptive LASSO 6.65 0.95 5.62 1.73
BWA 6.99 1 5.99 1.99
BWA+BE 6.65 0.94 5.70 1.75
COSSO 5.36 0.48 4.70 0.95
CISE 5.82 0.81 4.97 1.46
ANOVA based V.S. 6.87 0.001 5.82 0.23
BEAMS 6.39 0.001 5.71 0.08

selection had poor performance for the linear model with dependent covariates,

but achieved results slightly worse than BEAMS for the independent case. The

proposed nonparametric variable selection procedure BEAMS correctly excluded,

on average, about 19.5 out of the 20 nonsignificant predictors. This is about as

good as the procedures designed for linear models. Moreover, BEAMS incorrectly

excluded, on average, about 0.5 of the 5 significant predictors, which is more than

the linear procedures (with the exception of BWA), and also more than CISE.

In Table 5, data sets of size n = 40 were generated from the models Y =

gℓ(X) + ϵ, ℓ = 1, 2, where ϵ ∼ N(0, 0.32), the dimension of X is d = 8, and

g1(x) = sin(πx1), g2(x) = sin(
3

4
πx1)− 3Φ(−|x5|3).

The covariates were generated as normal with marginal means zero and co-

variance matrix Σ = (0.5|i−j|). It is seen that the linear model-based proce-

dures failed to select the significant predictor(s) almost always. On the other

hand, BEAMS always selected the one relevant predictor under model g1, and
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Table 6. Results for Body Fat example

Predictor LASSO Adpt. LASSO SCAD BWA CISE
Age 0.06499 0 0.001061 0 0
Weight 0 -0.09511 -0.11688 -0.1356 0.015
Height -0.1591 0 -0.05818 0 0
Neck -0.2579 0 0 0 0
Chest 0 0 0 0 0
Abdomen 0.7079 0.9113 0.9052 0.9958 -0.127
Hip 0 0 0 0 0
Thigh 0 0 0 0 0
Knee 0 0 0 0 0
Ankle 0 0 0 0 0
Biceps 0 0 0 0 0
Forearm 0.21756 0 0 0.4729 0
Wrist -1.5353 -0.9871 0 -1.5056 0

excluded incorrectly 0.08 out of the two important predictors under model g2.

The ANOVA based variable selection outperformed all the existing procedures

and had performance slightly better than that of BEAMS for g1, however, for

g2 it incorrectly excluded 3 times more than BEAMS. The other nonparametric

methods, COSSO and CISE, failed to set to 0 on average 1.5 of the 7 irrelevant

predictors for g1 and 1.2 out of the 6 in g2 and, moreover, had a poor performance

in selecting the significant predictors compared to the proposed procedures.

5 Data Example: Body Fat

The Body Fat data was supplied by Dr. A. Garth Fisher for non-commercial

purposes, and it can be found at ”http://lib.stat.cmu.edu/datasets/bodyfat”.

The data set contains measurements of percent body fat (using Siri’s (1956)

method), Age (years), Weight (lbs), Height (inches), circunferences of Neck (cm),

Chest (cm), Abdomen (cm), Hip (cm), Thigh (cm), Knee (cm), Ankle (cm),

Biceps (cm), Forearm (cm), andWrist (cm), from 252 men. The response variable

was the percentage of body fat.

We compared the results of SCAD, LASSO, Adaptive LASSO, BWA with

backward elimination, CISE, and BEAMS. Table 6 shows the estimated coeffi-

cients for LASSO, SCAD, Adaptive LASSO, BWA, and CISE. COSSO is not

included in the comparison as the function cosso in the R package threw an error

of computationally singular system.

Abdomen and Weight seem to be the most important predictors: Abdomen

is selected by all, and Weight is selected by all except LASSO. The results of

Adaptive LASSO and BWA differ only in the selection of Forearm by BWA, and

both results differ considerably from those of SCAD. CISE selects only the two

most important predictors.
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Figure 1. Best subset regression with OLS (left panel) and WLS (right panel)

BEAMS was applied using SIR, with the number of slices ranging from 2

to 100, and cell size 9 for the ANOVA-type test. Abdomen, Weight, Biceps,

and Knee were selected on 99, 87, 88, and 23, respectively, of the 99 runs of

the procedure (one run for each number of slices used). All other variables were

selected less than 15 times. On the basis of these results we recommend a model

based on Abdomen, Weight, and Biceps.

To explain the fact that Biceps was not selected by any of the other meth-

ods, we investigated possible violations of the assumptions of the multiple linear

regression model, which four of the five methods in Table 6 use. The data are

heteroscedastic, and, more importantly, the predictors affect the response in a

nonlinear fashion and there is interaction among them. Ignoring any of them

affects the results of variable selection. For example, using only the seven vari-

ables identified by more than one of the methods in Table 6, the BIC criterion

gave different best models for ordinary and weighted least squares; see Figure 1.

Under WLS, Biceps was included in the second best model, whose BIC value is

a virtual tie with that of the best model. Additional insight is gained by running

backward elimination, with p-to-remove 0.15, using WLS in models that include

progressively more structure, based on the same seven variables included in Fig-

ure 1. Using a multiple linear regression model, Biceps is the first variable to be

removed (p-value 0.188). Using a model that includes polynomials of degree 5 for

each of the seven variables, and using p-values for the significance of the entire

polynomial for each variable, the final model includes Wrist, Biceps, Abdomen,

and Age. The p-value for Biceps in the final model is 0.0098. Finally, adding first

order interaction terms, in addition to the polynomial terms, and using p-values

for the entire polynomial as well as all interaction terms for each variable, the
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final model includes Wrist, Biceps, Abdomen and Weight. The p-value for Biceps

in the final model is 0.043. In conclusion, Biceps becomes a significant predictor

when the complexity of the model is accounted for. The proposed method does

that automatically.
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