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Abstract: In the high-dimensional Stochastic Blockmodel for a random network, the

number of clusters (or blocks) K grows with the number of nodes N . Two previous

studies have examined the statistical estimation performance of spectral clustering

and the maximum likelihood estimator under the high-dimensional model; neither

of these results allow K to grow faster than N1/2. We study a model where, ig-

noring log terms, K can grow proportionally to N . Since the number of clusters

must be smaller than the number of nodes, no reasonable model allows K to grow

faster; thus, our asymptotic results are the “highest” dimensional. To push the

asymptotic setting to this extreme, we make additional assumptions that are moti-

vated by empirical observations in physical anthropology (Dunbar (1992)), and in

an in-depth study of massive empirical networks (Leskovec et al. (2008)). We de-

velop a regularized maximum likelihood estimator that leverages these insights and

prove that, under certain conditions, the proportion of nodes that the regularized

estimator misclusters converges to zero. We thus introduce and demonstrate the

advantages of statistical regularization in a parametric form for network analysis.

Key words and phrases: Consistency, high dimensional, stochastic block model,

regularization, clustering.

1. Introduction

Recent advances in information technology have produced a deluge of data

on complex systems with myriad interacting elements that can be represented by

networks. Communities or clusters of highly connected actors are an essential fea-

ture in a multitude of empirical networks, and identifying them helps answer vital

questions in various fields. Interacting elements could be metabolites, people, or

computers, their interactions represented in chemical reactions, friendships, or

some type of communication. For example, a terrorist cell is a cluster in the

communication network of terrorists; web pages that provide hyperlinks to each

other form a community that may host discussions of a similar topic; a cluster

in the network of biochemical reactions might contain metabolites with similar

functions and activities. Networks (or graphs) appropriately describe these re-

lationships. Therefore, substantive questions in these various disciplines regard

structure of networks. To make statistical inference from an observed network, it
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is essential to evaluate the ability of clustering algorithms to estimate the “true

clusters” in a network model.

The Stochastic Blockmodel is a model for a random network, the “blocks”

in the model correspond to the concept of “true communities”. In the Stochastic

Blockmodel, N actors (or nodes) each belong to one of K blocks and the proba-

bility of a connection between two nodes depends only on the memberships of the

two nodes (Holland and Leinhardt (1983)). We study the maximum likelihood

estimator (MLE) under the Stochastic Blockmodel.

There has been significant interest in how various clustering algorithms per-

form under the Stochastic Blockmodel (for example, Bickel and Chen (2009);

Rohe, Chatterjee, and Yu (2011); Choi, Wolfe, and Airoldi (2012); Bickel, Chen,

and Levina (2011); Zhao, Levina, and Zhu (2011); Celisse, Daudin, and Pierre

(2011); Channarond, Daudin, and Robin (2011); Flynn and Perry (2013); Bickel

et al. (2012); Sussman et al. (2012)). In a parallel line of research, several au-

thors have studied clustering algorithms on the Planted Partition Model, a nearly

identical model. For example, McSherry (2001) studies a spectral algorithm to

recover the planted partition and analyzes the estimation performance of this

algorithm. Chaudhuri, Chung, and Tsiatas (2012) improve upon this algorithm

by introducing a type of regularization and proving consistency results under the

planted partition model.

Two papers have studied the high-dimensional Stochastic Blockmodel, where

the number of blocks K grows with the number of nodes N (Rohe, Chatterjee,

and Yu (2011); Choi, Wolfe, and Airoldi (2012)). Impetus for a high-dimensional

model comes from two empirical observations. Leskovec et al. (2008) found that

in a large corpus of empirical networks, the tightest clusters (as judged by several

popular clustering criteria) were no larger than 100 nodes, even though some of

the networks had several million nodes. This result echoes similar findings in

Physical Anthropology. Dunbar (1992) took various measurements of brain size

in 38 different primates and found that the size of the neocortex divided by the

size of the rest of the brain had a log-linear relationship with the size of the

primate’s natural communities. In humans, the neocortex is roughly four times

larger than the rest of the brain. Extrapolating the log-linear relationship es-

timated from the 38 other primates, Dunbar (1992) suggested that humans do

not have the social intellect to maintain stable communities larger than roughly

150 people (colloquially referred to as Dunbar’s number). Leskovec et al. (2008)

found a similar result in several other networks that were not composed of hu-

mans. These researches suggest that the block sizes in the Stochastic Blockmodel

should not grow asymptotically. Rather, block sizes should remain fixed (or grow

very slowly).

In this paper, we introduce the highest dimensional asymptotic setting that

allows K = N log−5N . We call it the “highest” dimensional because, ignoring
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the log term, K cannot grow any faster. To create a sparse graph, the out-of-

block probabilities decay roughly as logγ N/N in the highest dimensional setting,

where γ > 0 is some constant. To ensure that a block’s induced subgraph re-

mains connected, the in-block probabilities are only allowed to decay slowly, like

log−1N . We show that under this asymptotic setting, a regularized maximum

likelihood estimator (RMLE) can estimate the block partition for most nodes.

This paper departs from the previous high-dimensional estimators of Rohe,

Chatterjee, and Yu (2011) and Choi, Wolfe, and Airoldi (2012) by introducing

a restricted parameter space for the Stochastic Blockmodel. In several high-

dimensional settings, regularization restricts the full parameter space providing

a path to consistent estimators (Negahban et al. (2010)). If the true parameter

setting is close to the restricted parameter space, then regularization trades a

small amount of bias for a potentially large reduction in variance. In the high-

dimensional regression literature, sparse regression techniques such as the LASSO

restrict the parameter space to produce sparse regression estimators (Tibshirani

(1996)). Several authors have suggested parameter space restrictions for high-

dimensional covariance estimation, e.g., Fan, Fan, and Lv (2008), Friedman,

Hastie, and Tibshirani (2008), Ravikumar et al. (2011). Parameter space re-

strictions have also been applied in linear discriminant analysis (Tibshirani et al.

(2002)). In graph inference, previous authors have explored ways of incorporat-

ing statistical regularization into eigenvector computations (Chaudhuri, Chung,

and Tsiatas (2012); Amini et al. (2012); Mahoney and Orecchia (2010); Perry

and Mahoney (2011); Mahoney (2012)).

We propose restricting the parameter space for the Stochastic Blockmodel,

which results in a statistically regularized estimator. We show that the RMLE

is suitable in the highest dimensional asymptotic setting.

2. Preliminaries

2.1. Highest dimensional asymptotic setting

In the Stochastic Blockmodel (SBM), each node belongs to one of K blocks.

Each edge corresponds to an independent Bernoulli random variable where the

probability of an edge between any two nodes depends only on the two nodes’

block memberships (Holland and Leinhardt (1983)).

For a node set {1, . . . , N}, let Pij denote the probability of including an edge

linking node i and j. Let z̃ : {1, . . . , N} → {1, . . . ,K} partition the N nodes

into K blocks, withz̃i the block membership for node i. Let θ be a K×K matrix

where θab ∈ [0, 1] for all a, b, and Pij = θz̃iz̃j for any i, j = 1, . . . , n. Under the

SBM, the probability of observing an adjacency matrix A is

P (A) =
∏
i<j

θz̃iz̃j
Aij (1− θz̃iz̃j )

(1−Aij).
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As we only consider undirected graphs without self-loops, the product here is

over i < j.

The highest dimensional asymptotic setting is an SBM with the following

asymptotic restrictions.

(R1) For s equal to the population of the smallest block. s = ω(logβ N), β > 4,

where xn = ω(yn) ⇔ yn/xn = o(1).

(R2) Let (c, d) be the interval between c and d and let Q contain a subset of the

indices for θ. For constants C and f(N) = o(s/ logN),

θab = θba ∈


(log−1N, 1− log−1N) a = b,( 1

N2
,
Cf(N)

N

)
a < b, {a, b} /∈ Q,

(log−1N, 1− log−1N) a < b, {a, b} ∈ Q.

Assumption (R1) requires that the population of the smallest block s =

ω(logβ N), β > 4. This includes the scenario where each block size is very small

(e.g., o(log5N)). In this case, the expected degree for each node is o(log5N).

Assumption (R2) ensures that the numbers of out-of-block edges and in-block

edges do not grow too fast. This setting allows a set Q to prevent this restriction

from becoming too stringent; if (a, b) ∈ Q, then θab is not required to shrink as

the network grows, allowing blocks a and b to have a tight connection.

2.2. Regularized maximum likelihood estimator

Under the highest dimensional asymptotic setting, the number of parameters

in θ is quadratic inK and the sample size available for estimating each parameter

in θ is as small as s2. For tractable estimation in the “large K small s” setting,

we propose an RMLE.

Let z denote an arbitrary partition. The log-likelihood for an observed ad-

jacency matrix A under the SBM w.r.t. z is

L(A; z,θ) = logP (A; z,θ) =
∑
i<j

{Aij log θzizj + (1−Aij) log(1− θzizj )}.

Let Na denote the number of nodes assigned to class a, and let nab denote the

maximum number of possible edges between class a and b, nab = NaNb if a ̸= b

and naa =
(
Na

2

)
. For an arbitrary partition z, the MLE of θ is

θ̂(z) = arg max
θ∈[0,1]K×K

L(A; z,θ).
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And it is straightforward to show that

θ̂
(z)
ab =

1

nab

∑
i<j

Aij1{zi = a, zj = b}, ∀a, b = 1, . . . ,K.

By substituting θ̂(z) into L(A; z,θ), we get the profiled log-likelihood (Bickel and

Chen (2009)) L(A; z) = L(A; z, θ̂(z)). Define ẑ=argmaxz L(A; z) as the MLE of

z̃. To get RMLE, let the restricted parameter space be

ΘR =
{
θ ∈ [0, 1]K×K : θab = c, ∀ a ̸= b and for c∈ [0, 1]

}
.

We call the new estimator “regularized” because ΘR has only K +1 free param-

eters.

The RMLE θR,(z) is given by

θR,(z) = arg max
θ∈ΘR

L(A; z,θ).

This optimization problem can be treated as an unconstrained optimization prob-

lem since we force the off-diagonal elements of θ to be equal to some number r.

It has the closed form solution

θ̂
R,(z)
ab =

 θ̂
(z)
aa = 1

naa

∑
i<j Aij1{zi = a, zj = b} a = b,

r̂(z) = 1
nout

∑
i<j Aij1{zi ̸= zj} a ̸= b.

Here nout =
∑

a<b nab is the maximum number of possible edges between all dif-

ferent blocks. The Regularized MLE for θaa is the same as the ordinary MLE,

while the Regularized MLE for θab, a ̸= b is set to the total off-diagonal av-

erage. By substituting θ̂R,(z) into L(A; z,θ), we define the regularized profile

log-likelihood as

LR(A; z) = L(A; z, θ̂R,(z)) = sup
θ∈ΘR

L(A; z,θ),

and denote the RMLE of the true partition z̃ as ẑR = argmaxz L
R(A; z).

3. Performance of the RMLE in the Highest Dimensional Asymptotic

Setting

Our main result shows that most nodes are correctly clustered by the RMLE

under the highest dimensional asymptotic setting, where for any estimated class

assignment z, Ne(z) is the number of incorrect class assignments under z, counted

for every node whose true class under z̃ is not in the majority within its estimated

class under z. (Choi, Wolfe, and Airoldi (2012).)
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Our result uses the KL divergence between two Bernoulli distributions,

D(p∥q) = p log
p

q
+ (1− p) log

1− p

1− q
,

and we take

|Q| =
∑

{a,b}∈Q

nab. (3.1)

Theorem 1. Under the highest dimensional asymptotic setting, assume that

|Q| = o(Ns), and that for any distinct class pairs (a, b), there exists a class c

such that

D
(
θac∥

θac + θbc
2

)
+D

(
θbc∥

θac + θbc
2

)
≥ C

MK

N2
, (3.2)

then Ne(ẑ
R)/N = op(1).

With |Q| = o(Ns), the expected number of edges M =
∑

i<j EAij grows

slowly, specifically M = ω(N(logN)3+δ), where δ > 0. The other assumption

here relates to the identifiability of z̃.

4. Simulations

This section compares the RMLE’s and the MLE’s ability to estimate the

block memberships in the Stochastic Blockmodel. In our simulations, the RMLE

outperformed the MLE in a wide range of scenarios, particularly when there are

several blocks and when the out-of-block probabilities were not too heteroge-

neous.

4.1. Implementation

Computing the exact RMLE and MLE is not tractable owing to the com-

binatorial nature of the parameter space. We fit the MLE with the pseudo-

likelihood algorithm proposed in Amini et al. (2012). A slight change to the

pseudo-likelihood algorithm can fit the RMLE as well: immediately after the

pseudo-likelihood algorithm updates θ(z), we replace the off-diagonal elements

with the average of the off-diagonal elements. This often returns an estimated

partition that contains empty sets. When the implementation discards a block,

we reseeds a new block. This is done in an algorithm motivated by follow-up

work to the current paper (see Rohe and Qin (2013)):

1. Find the block in the current iteration of the partition with the smallest

empirical in-block probability.

2. For each node in this block, take its neighborhood and remove any nodes

that do not connect to any other nodes in the neighborhood. Call this the

transitive neighborhood.
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Figure 1. In the simulations, every block contains 20 nodes. Both algo-
rithms were initialized with regularized spectral clustering and the results
for this initialization are displayed by the solid line. Each point represents
the average of 300 simulations. All methods were run on the same simulated
adjacency matrices.

3. Combine into a new block the node with the most nodes in its transitive

neighborhood with its transitive neighborhood.

We found it beneficial to do this reseeding not only when blocks disappear,

but also whenever they are smaller than two nodes. Section 7 demonstrates how

this reseeding provides consistently better values of the restricted likelihood.

As with the suggestion in Amini et al. (2012), we initialize the pseudo-

likelihood algorithm with spectral clustering using the regularized graph Lapla-

cian (Chaudhuri, Chung, and Tsiatas (2012)). This runs k-means on the top

K eigenvectors of the matrix D
−1/2
τ AD

−1/2
τ , where D

−1/2
τ is a diagonal matrix

whose i, ith element is 1/
√
Dii + τ . Here Dii =

∑
j Aij is the degree of node i,

and the tuning parameter τ is set to the average degree of all nodes, as proposed

in Qin and Rohe (2013).

4.2. Numerical results

This section reports on two sets of simulations. In the first, K grows while

everything else remains fixed. The second investigates the sensitivity of the

algorithms to heterogeneous values in the off-diagonal elements of θ.

The results in Figure 1 compare the RMLE and MLE under an asymptotic

regime that keeps the population of each block fixed at twenty nodes and simply

adds blocks. In both the left and right panels, the probability of a connection

between two nodes in the same block was 8/20. In the left panel, the probability

of a connection between two nodes in separate blocks was 5/N ; in the right

panel, it was 10/N . In these asymptotics, the expected number of “signal” edges
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connected to each node was eight, while the expected number of “noisy” edges

was either five or ten.

The results in Figure 2 examine the sensitivity of the algorithms to deviations

from the model in Figure 1 that makes the off-diagonal elements of θ equal to

one another. In all simulations, the expected number of “signal edges” per node

was eight, the expected number of “noisy edges” per node was 5, s = 20, and

K = 40. On the left side of Figure 2, the off-diagonal elements of θ come from the

Gamma distribution. In the top left figure, the shape parameter in the Gamma

distribution (α) varies along the horizontal axis. While the shape parameter

varies, the rate parameter changes to ensure that each node has an expected

out-of-block degree equal to five. Under our scaling of the rate parameter, the

variance of the Gamma distribution is proportional to 1/α. As such, the small

values of α make the out-of-block probabilities more heterogeneous, deviating

further from the implicit model. For values of α greater than 0.18, the RMLE

outperforms the MLE. The bottom left plot shows the top left 400×400 submatrix

of the adjacency matrix for a simulated example when α = 0.18; the block pattern

is clearly recognizable at this level of α, suggesting that the RMLE is surprisingly

robust to deviations from the implicit model.

The plots on the right side of Figure 2 are similar, except the off-diagonal

elements of θ are scaled Bernoulli(p) random variables. When p = 1, this simu-

lation is identical to a setting in Figure 1. The scaling ensures that the expected

out-of-block degree is always five. Here, the break-even point is around p = 0.14

and the bottom right figure shows the top left 400× 400 submatrix of the adja-

cency matrix for a sample when p = 0.14; the block pattern is clearly recognizable

for this level of p. In both cases, the RMLE appears robust to deviations from

the implied model. At the same time, for small levels of p and α, the MLE

misclusters fewer nodes than the RMLE.

5. Discussion

This paper examines the theoretical properties of the regularized maximum

likelihood estimator (RMLE) under the highest dimensional asymptotic setting,

showing that under relevant asymptotic regime, regularization allows for weakly

consistent estimation of the block memberships.

Under the highest dimensional asymptotic setting, the size of the commu-

nities grows at a poly-logarithmic rate, not at a polynomial rate, aligning with

several empirical observations (Dunbar (1992); Leskovec et al. (2008)). There are

two natural implications of the block populations growing this slowly. Under any

Stochastic Blockmodel, to ensure the sampled graph has sparse edges, the prob-

ability of an out-of-block connection must decay. In previous “low-dimensional”

Since θ is now random, this expectation is taken over both A and θ.
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Figure 2. The top left figure displays results when elements of θ come from
the Gamma distribution with varying shape parameter; the top right figure
displays results when elements of θ come from the Bernoulli distribution with
varying probability p. In both cases, adjustments are made so that each node
has five expected out-of-block neighbors. The bottom plots illustrate the
how these heterogenous probabilities manifest in the adjacency matrix; in
both cases, A is sampled with the parameterization that corresponds to the
break-even point between the MLE and the RMLE. Each point represents
an average over 200 simulations.

analyses, it was also necessary for the probability of an in-block connection to

decay. The first implication of small blocks is that the probability of an in-block

connection must stay bounded away from zero. The second implication of small

block sizes is that the number of off diagonal elements in Θ grows nearly quadrat-

ically with N , while the number of in-block parameters (diagonal elements of Θ)

grows linearly with N .

The proposed estimator, restricts the parameter space of the SBM in a way

that leverages these implications. Since the out-of-block edge probabilities de-

cay to zero, we maximize the likelihood over a parameter space that estimates
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the probabilities as equal. Theorem 1 shows that under the highest dimensional
asymptotic setting and certain conditions that are similar to identifiability condi-
tions, the RMLE can estimate the correct block for most nodes. Correspondingly,
the simulation section demonstrates the advantages of the RMLE over the MLE.
This paper represents a first step in applying statistically regularized estimators
to high dimensional network analysis in a parametric setting. Because of the
computational issues involved in computing both the MLE and the RMLE, fu-
ture work will propose a “local estimator” that incorporates the insights gained
from the current analysis and is computationally straight-forward.

6. Proof of the Main Result

The proof requires some additional definitions. Let the expectations of θ̂(z)

and θ̂R,(z) be θ̄(z) and θ̄R,(z), and take the expectation of L(A; z,θ) to be

L̄P (z,θ) = E[L(A; z,θ)] =
∑
i<j

{Pij log θzizj + (1− Pij) log(1− θzizj )}.

Let L̄P (z) and L̄R
P (z) be

L̄P (z) = L̄P (z, θ̄
(z)) = sup

θ∈Θ
L̄P (z,θ), (6.1)

L̄R
P (z) = L̄P (z, θ̄

R,(z)) = sup
θ∈ΘR

L̄P (z,θ). (6.2)

The proof of the theorem is divided into lemmas. We bound the difference
between L̄P (z̃) and L̄R

P (ẑ
R) in Lemma 3. Lemma 3 divides L̄P (z̃)− L̄R

P (ẑ
R) into

parts as a bias-variance tradeoff; we sacrifice some bias L̄P (z̃)−L̄R
P (z̃) to decrease

the variance maxz |LR(A; z) − L̄R
P (z)|. it is necessary to develop the concept of

regularized refinement, an extension of the refinement idea proposed in Choi,
Wolfe, and Airoldi (2012). Using a concept of regularized refinement, we can
bound the error rate Ne(ẑ

R)/N with a function of L̄P (z̃) − L̄R
P (ẑ

R). Lemma 4
and Lemma 5 use a new regularized refinement to connect the bounds on the
log-likelihood with the error rate Ne(ẑ

R)/N . We write θ̂ and θ̄ for θ̂(z) and θ̄(z)

when the choice of z is understood.

Lemma 1. If M =
∑

i<j EAij, then

max
z

|LR(A; z)− L̄R
P (z)| = op(M). (6.3)

This proof follows a similar argument made in Choi, Wolfe, and Airoldi
(2012).

Proof. Let H(p) = −p log p−(1−p) log(1−p) and take X =
∑

i<j Aij log{θ̄zizj/
(1 − θ̄zizj )}. If nab denotes the maximum number of possible edges between all
different blocks,
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LR(A; z)− L̄R
P (z) = −

K∑
a=1

naa(H(θ̂aa)−H(θ̄aa))− nout(H(r̂)−H(r̄))

=
K∑
a=1

naaD(θ̂aa∥θ̄aa) + noutD(r̂∥r̄) +X − E(X).

For the first terms, by a similar argument as in Choi, Wolfe, and Airoldi

(2012), we have that, for every regularized estimator θ̂R,

pr(θ̂R) ≤ exp

{
−

K∑
a=1

naaD(θ̂aa∥θ̄aa)− noutD(r̂∥r̄)
}
.

Let Θ̂ denote the range of θ̂R for fixed z. Then the total number of sets of values

θ̂R can take is |Θ̂| = (nout + 1) · ΠK
a=1(naa + 1). As

∑
a=1(naa + 1) + (nout +

1) = N(N − 1)/2 + K + 1, we have |Θ̂| ≤ ((N(N − 1)/2(K − 1)) + 1)K+1 ≤
(N2/2K)(K+1). Then ∀ϵ > 0,

pr

{ K∑
a=1

naaD(θ̂aa∥θ̄aa) + noutD(r̂∥r̄) > ϵ

}
≤ |Θ̂|e−ϵ ≤ (

N2

2K
)(K+1)e−ϵ

≤ exp

{
2(K + 1) logN − (K + 1) log(2K)− ϵ

}
.

As for X − E(X), each Xij = Aij log{θ̄zizj/(1 − θ̄zizj )} is bounded in mag-

nitude by C = 2 logN , we have

pr{|X − E(X)| ≥ ϵ} ≤ 2 exp

{
− ϵ2

2
∑

i<j E(X2
ij) + (2/3)Cϵ

}
,

with
∑

i<j E(X2
ij) ≤ 4M log2N . By a union bound inequality over all partitions

z, we have

pr{max
z

|LR(A; z)− L̄R
P (z)| ≥ 2ϵM}

≤ exp{N logK + 2(K + 1) logN − (K + 1) log(2K)−Mϵ}

+2 exp

{
N logK − ϵ2M

8 log2N + (4/3)ϵ logN

}
.

In this asymptotic setting, the total expected degree M = ω(N(logN)3+δ).

Then, maxz |LR(A; z)− L̄R
P (z)| = op(M).

Lemma 2. Under the true partition z̃, L̄P (z̃)− L̄R
P (z̃) = o(M).
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Proof. When N is sufficiently large,

L̄P (z̃)− L̄R
P (z̃) =

∑
a<b

nabD(θab∥r̄)

=
∑

a<b,{a,b}∈Q

nabD(θab∥r̄) +
∑

a<b,{a,b}/∈Q

nabD(θab∥r̄)

≤ |Q|C1 +
N(N − 1)

2
−

K∑
a=1

naa − |Q|)Cf(N)

N
(log(CNf(N)))

≤ |Q|C1 +N2Cf(N)

N
(logN + logCf(N)) = o(M).

Here C1 > 0 is some constant. The last equality is due to the fact that M =

Ω(Ns).

Lemma 3. For the true partition z̃ and the RMLE ẑR, L̄P (z̃)−L̄R
P (ẑ

R) = op(M).

Proof. The difference is nonnegative since z̃ maximizes L̄P (·) and L̄P (ẑ
R) ≥

L̄R
P (ẑ

R). Adding another positive term, and using Lemma 1 and Lemma 2, we

have
L̄P (z̃)−L̄R

P (ẑ
R) ≤ L̄P (z̃)− L̄R

P (ẑ
R) + LR(A; ẑR)− LR(A, z̃)

≤ |L̄P (z̃)−LR(A, z̃)|+|L̄R
P (ẑ

R)−LR(A; ẑR)|
≤ |L̄P (z̃)−L̄R

P (z̃)|+ |L̄R
P (z̃)−LR(A, z̃)|+ |L̄R

P (ẑ
R)−LR(A; ẑR)|

= op(M).

To make Ne(z) mathematically tractable, Choi, Wolfe, and Airoldi (2012)

introduced the concept of block refinements. The next paragraphs extend this

definition to the regularized block refinement.

6.1. Partitions and refinements

Refinement is the key concept to connect L̄P (z̃) − L̄R
P (ẑ

R) with the error

rate Ne(ẑ
R)/N . We review the concept of partition and refinement, then give its

regularized version.

For positive integer N , take [N ] as the set {1, . . . , N}. The partition log-

likelihood L̄∗
P is defined for any partition Π of the indices of a lower triangular

matrix, Π : {(i, j)}i∈[N ],j∈[N ],i<j → (1, . . . , L), as

Sℓ = {(i, j) : Π(i, j) = ℓ and i < j} and θ̄ℓ = |Sℓ|−1
∑

i<j:Π(i,j)=ℓ

Pij .

The partition log-likelihood is defined as

L̄∗
P (Π) =

∑
i<j

{Pij log θ̄Π(i,j) + (1− Pij) log(1− θ̄Π(i,j))}.
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Any class assignment z induces a corresponding partition Πz, Πz(i, j) = ℓ,
where ℓ = zi+(zj−1)·K, and it is straightforward to show that L̄∗

P (Π
z) = L̄P (z).

A refinement Π′ of partition Π further divides the partitions in Π into sub-
groups, so Π′(i1, j1) = Π′(i2, j2) =⇒ Π(i1, j1) = Π(i2, j2), for any i1 < j1 and
i2 < j2. From Lemma A2 in Choi, Wolfe, and Airoldi (2012),

L̄∗
P (Π) ≤ L̄∗

P (Π
′). (6.4)

To define Π∗, a specific refinement of partition Πz, we first need to define
a set of triples T . The following construction comes directly from Choi, Wolfe,
and Airoldi (2012):

“For a given membership class under z, partition the corresponding
set of nodes into subclasses according to the true class assignment z̃
of each node. Then remove one node from each of the two largest
subclasses so obtained, and group them together as a pair; continue
this pairing process until no more than one nonempty subclass remains.
Then, terminate. If pair (i, j) is chosen from the above procedure, then
zi = zj and z̃i ̸= z̃j .”

Take C1 as the number of (i, j) pairs selected by the above routine. Here at least
one of i or j is misclustered, and Ne(z)/2 ≤ C1 ≤ Ne(z). which connects the
error rate Ne(z)/N with the refinement.

Define the set T to contain the triple (i, j, k) if the pair (i, j) was tallied in
C1, and k ∈ [N ] satisfies

D

(
Pik∥

Pik + Pjk

2

)
+D

(
Pjk∥

Pik + Pjk

2

)
≥ C

MK

N2
.

From (3.2), if (i, j) is tallied in C1, then there exists at least one such k. Further,
if zk = zℓ, then (i, j, ℓ) is also in T . For each (i, j, k) ∈ T , remove (i, k) and (j, k)
from their previous subset under Πz, and place them into their own, distinct two-
element set. Define the resulting partition as Π∗. Notice that it is a refinement
of Πz.

6.2. Regularized partition and regularized refinement

To extend the analysis to the RMLE, we define the regularized partition ΠzR

and the associated refinement partition Π∗R. ΠzR partitions the nodes into K+1
groups; if zi = zj , then ΠzR(i, j) = zi and if zi ̸= zj , then ΠzR(i, j) = K + 1. It
follows from the definition of L̄∗

p that L̄R
p (z) = L̄∗

p(Π
zR).

Construct Π∗R as follows. For each (i, j, k) ∈ T , remove (i, k) and (j, k)
from their previous subset under ΠzR, and place them into their own, distinct
two-element set. The resulting partition is Π∗R. Take

R =
{
(q, k) ∈ [N ]× [N ] : zq ̸= zk, (q, x, k) ̸∈ T, (x, q, k) ̸∈ T, for any x ∈ [N ]

}
.
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Here R is a group in Π∗R, make a refinement Π′ by subdividing R into
(
K
2

)
new

groups:

For u < v, u ∈ [K], v ∈ [K], Guv = {(i, j) ∈ R : zi = u, zj = v or zi = v, zj = u} .

It follows that Π′ = Π∗. So, Π∗ is a refinement of Π∗R and Π∗R is a refinement

for ΠzR.

Lemma 4 (Choi, Wolfe, and Airoldi (2012)). For any partition z and Π∗ being

its refinement, if the size of the smallest block s = Ω(MK/N2), and for any

distinct class pairs (a, b), there exists a class c such that Equation (3.2) holds,

then

L̄P (z̃)− L̄∗
P (Π

∗) =
Ne(z)

N
Ω(M). (6.5)

Lemma 5. Let ΠẑR be the partition corresponding to ẑR. If Π′ is the refinement

of ΠẑR , and Π′R is the regularized refinement of ΠẑR ,

L̄P (z̃)− L̄R
P (ẑ

R) ≥ L̄P (z̃)− L̄∗
P (Π

′R) ≥ L̄P (z̃)− L̄∗
P (Π

′). (6.6)

Proof. The first inequality holds since Π′R is a refinement of the partition ΠẑR ,

the second since Π′ is a refinement of Π′R.

Proof of main theorem. The conditions in Lemma 4 are satisfied by the

highest dimensional asymptotic setting assumption. By Lemmas 3, 4 and 5, we

have

op(M) = L̄P (z̃)− L̄R
P (ẑ

R) ≥ L̄P (z̃)− L̄∗
P (Π

′)

=
Ne(ẑ

R)

N
Ω(M). Hence

Ne(ẑ
R)

N
= op(1).

7. Reseeding

Section 4 describes a reseeding technique that ensures that the pseudo-

likelihood implementation of the RMLE returns an estimated partition with the

desired number of non-empty sets. We compareed the implementation with re-

seeding (reseed) to the implementation without reseeding (no.reseed). Overall,

reseed never attains a smaller likelihood score and often attains a larger likeli-

hood scores. Moreover, reseed is more stable over different initializations.

In the following simulation, K = 30, n = 600, θii = 8/20 for all i, and

θij = 10/580 for all i ̸= j. So, in expectation, each node connects to 8 nodes

in the same block and 10 nodes in other blocks. For each simulated adjacency

matrix A, both reseed and no.reseed were initialized 50 times with spectral

clustering. The simulations in Section 4 reseeded whenever a block contains either

zero nodes or a single node. In this simulation, blocks were reseeded whenever

they had fewer than five nodes.
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There were 175 adjacency matrices A simulated from this model. For the ith

simulated adjacency matrix, ẑireseed was the partition that attained the largest

likelihood over all 50 initializations of reseed. Similarly, ẑino.reseed was the

same partition for no.reseed. Over the 175 simulated adjacency matrices,

LR(A; ẑireseed) > LR(A; ẑino.reseed) on 22% of the simulations. In the remain-

ing simulations, they found the same maximum. Never did ẑino.reseed attain a

larger likelihood score. Moreover, on each initialization, the reseed was much

more likely to find the maximum (72 % compared to 14 %).
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