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Abstract: In clinical trials, treatment comparisons are often cast in a regression

framework that evaluates the dependence of the relevant clinical outcomes on treat-

ment assignment and possibly other baseline characteristics. This article introduces

a reverse regression approach to randomized clinical trials, with focus on the de-

pendence of treatment assignment on the clinical outcomes of interest. A reverse

regression model is essentially a semiparametric density ratio model for the out-

come distributions in the two treatment groups. The resulting inferences can be

expected to be more robust than those based on fully parametric models for the

outcome distributions and more efficient than nonparametric inferences. In the

presence of multiple endpoints, the reverse regression approach leads to a novel

procedure for multiplicity adjustment that is readily available in standard logistic

regression routines. The proposed approach is evaluated in simulation experiments

and illustrated with an example.
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1. Introduction

Consider a randomized clinical trial for comparing two treatments with re-

spect to relevant clinical outcomes. For a patient in the target population, write

Y for the outcome of interest that may be a scalar or a vector, and Z for the

assigned treatment, Z = 1 for the experimental treatment and 0 for the control

treatment that may be “no treatment”. Denote by F or G the conditional distri-

bution of Y given Z = 0 or 1, respectively. The statistical problem is to compare

F and G. The primary objective of a clinical trial is often to confirm a treat-

ment effect by rejecting F = G in favor of an alternative hypothesis that may be

“one-sided” with respect to a certain ordering, or more inclusive (F ̸= G). It is

generally more difficult to test multiple endpoints simultaneously than a single

endpoint, due to the need to control the familywise type I error rate. Common

approaches for multiplicity adjustment include Bonferroni-type procedures

(e.g., Holm (1979); Simes (1986); Hochberg (1988); Hommel (1988, 1989)), which
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can be unduly conservative, and resampling-based procedures (e.g., Westfall and
Young (1993); Troendle (1995); Reitmeir and Wassmer (1999)), which can be
computation-intensive. One may also be interested in estimating the distribu-
tions (F,G) or some functionals of them that can be used to summarize the
treatment effect. There are various methods to address these questions, includ-
ing nonparametric and parametric methods (e.g., Piantadosi (2005); Cook and
DeMets (2007); Fairclough (2010)). Regardless of the degree of parametrization,
treatment comparison is usually cast into a regression framework that evaluates
the dependence of Y on Z and possibly some important baseline characteristics.

This article proposes a different regression approach that reverses the roles
of Z and Y termed reverse regression. It attempts to understand the relation-
ship between Z and Y by modeling the possible dependence of Z on Y . In
terms of (F,G), this approach corresponds to a semiparametric modeling strat-
egy that only specifies the density ratio dG/dF (Qin and Zhang (1997); Zhang
(2000)), so the resulting inferences can be expected to be more robust than in-
ferences based on parametric models for (F,G). Further, with a smooth model
for the density ratio the reverse regression approach may provide more insights
into the treatment effect, and better efficiency in its estimation, than does a
completely nonparametric procedure. From the reverse regression perspective,
the problem of simultaneous testing for multiple clinical endpoints becomes a
routine one of testing several regression coefficients simultaneously in a logistic
regression model. This allows multiple endpoints to be handled easily using stan-
dard procedures, without resorting to Bonferroni-type adjustments or resampling
techniques. Under certain conditions, the signs of the regression coefficients in
a reverse regression model have clinically meaningful interpretations. This mo-
tivates “one-sided” tests about the regression coefficients, which can be derived
from the intersection-union (I-U) principle (Casella and Berger (1990)) or by
extending the generalized least squares (GLS) procedures of O’Brien (1984) and
Pocock, Geller and Tsiatis (1987).

The rest of the article proceeds as follows. Section 2 introduces the main idea
and discusses model specification. Section 3 describes the estimation procedure
and presents some asymptotic results. Section 4 addresses issues in hypothesis
testing. In Section 5, the proposed method is evaluated and compared with other
methods in simulation experiments. The methods are further illustrated with an
example in Section 6. The article ends with a discussion in Section 7. Some
technical details, including proofs, are given in the Web Appendix.

2. Reverse Regression

2.1. Main idea

Suppose F and G have the same support Y, with respective densities f and

g with respect to a common measure on Y. The idea of reverse regression is
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motivated by a Bayes-type identity:

P [Z = 1|Y = y] =
πg(y)

(1− π)f(y) + πg(y)
= logit −1

{
λ+ log

g(y)

f(y)

}
, (2.1)

where π = P [Z = 1] and λ = logit (π) = log{π/(1− π)}. This identity has been

discussed extensively in the contexts of case-control studies, discriminant analy-

ses, and diagnostic tests (e.g., Anderson (1972); Prentice and Pyke (1979); Qin

and Zhang (1997, 2003); Zhang (2000)); its implications in randomized clinical

trials seem worth noting. From (2.1), f = g if and only if P [Z = 1|Y = y] is free

of y, which suggests that any treatment effect on Y translates into a non-null

effect in the regression of Z on Y .

With Z binary, consider the logistic regression model

logit (P [Z = 1|Y = y]) = α+ βTt(y), (2.2)

where t(y) is a vector of known transformations of y, and (α, β) consists of the

unknown regression parameters. The linearity at (2.2) is not really restrictive

because t(·) can be arbitrary. In light of (2.1), (2.2) is equivalent to a model for

the log-density ratio:

log
{ g(y)

f(y)

}
= α∗ + βTt(y) (2.3)

with α∗ = α − λ. This can be regarded as a semiparametric modeling strategy

for (F,G) with parameters (α∗, β, F ), subject to the constraint that∫
Y
exp{α∗ + βTt(y)}dF (y) = 1. (2.4)

This parametrization allows the treatment effect to be summarized with a finite-

dimensional parameter β without fully specifying the form of (F,G).

2.2. Choice of t(y)

Specification of possible transformations of Y can be facilitated by consider-

ing plausible models for (F,G). A reverse regression model derived in this way is

more flexible than the original models for (F,G). In general, if F and G belong

to the same exponential family, then t(y) consists of sufficient statistics for the

family. Consider an exponential family of densities that can be expressed in full

rank as

pθ(y) = q(y) exp
{
c0(θ) +

L∑
l=1

cl(θ)tl(y)
}
, θ ∈ Θ,

and suppose f = pθ0 and g = pθ1 , where θ0 and θ1 range over Θ and may or may

not relate to each other. It is convenient to take t(y) = (t1(y), . . . , tL(y))
T at

(2.2) and then the corresponding regression parameters are α = λ+c0(θ1)−c0(θ0)
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and β = (β1, . . . , βL)
T, with βl = cl(θ1) − cl(θ0), l = 1, . . . , L. Some of the tl(y)

can be omitted from the logistic regression if it is predetermined that βl = 0 for

some l. The Web Appendix gives some specific examples of t(y) motivated by

parametric models for (F,G).

Now suppose there are several clinical endpoints of interest, so that Y =

(Y[1], . . . , Y[J ])
T, where each Y[j] is an individual endpoint. If the Y[j], j =

1, . . . , J , are conditionally independent given Z, then t(y) in (2.2) takes the

form (t1(y1)
T, . . . , tJ(yJ)

T)T, where each tj is, up to a linear transformation, the

appropriate form for Y[j] in the reverse regression model for Y[j] alone. Thus in-

dependence among the Y[j] implies no interactions in the reverse regression. The

converse is not true. For example, consider the case J = 2 and write

g(y1, y2)

f(y1, y2)
=

g1(y1)g2|1(y2|y1)
f1(y1)f2|1(y2|y1)

,

where the subscripts to f and g denote the (conditioning) variables concerned.

Clearly, y2 does not appear in the reverse regression if f2|1 = g2|1, in which case

Y[1] might serve as a surrogate for Y[2]. More generally, there are no interactions

between Y[1] and Y[2] in the reverse regression if the ratio g2|1(y2|y1)/f2|1(y2|y1)
can be expressed as the product of a function of y1 with a function of y2. As

a specific example, suppose F2|1(·|y1) = N(η00 + η01y1, σ
2
0) and G2|1(·|y1) =

N(η10+η11y1, σ
2
1). Then Y[1] and Y[2] interact (in the form Y[1]Y[2]) in the reverse

regression of Z on Y if and only if η01/σ
2
0 ̸= η11/σ

2
1. Thus, interactions among

the Y[j] may or may not be necessary, depending on the dependence structure.

The foregoing discussion suggests that a reverse regression model can be con-

structed as follows. Specify tj for each individual endpoint, based on a plausible

model for (Fj , Gj), where Fj (or Gj) denotes the distribution of Y[j] given Z = 0

(or 1). If the sample size is large enough, multiple models may be considered for

the same endpoint, and the suggested terms can be combined into tj . In addi-

tion to the sample size, the choice of tj also depends on the main objective of the

analysis (estimation versus hypothesis testing), as will be discussed later. Once

the tj have been chosen for all endpoints, possible interactions among these terms

can be considered in the logistic regression framework, using a model selection

criterion such as the Akaike information criterion (AIC).

3. Parameter Estimation

3.1. Estimands

A measure of treatment effect is

E[h(Y )|Z = 1]− E[h(Y )|Z = 0] =: (G− F )h,
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where h is a real-valued function. This includes comparison of means for a con-

tinuous outcome and the so-called responder analysis, where h is an indicator

function corresponding to some success criterion for individual patients. The

functional (G − F )h can be helpful in simultaneous evaluation of several end-

points, in which case h is a many-to-one utility function that defines a composite

endpoint, which can represent the tradeoff between therapeutic benefits and ad-

verse side effects. Specific forms of composite endpoints include (weighted) av-

erages, sums or maxima over different scales or time points, measures of change

over time, the area under a response curve, and the time to reach a peak or a

prespecified value (Fairclough (2010, Chap. 14)). In addition to the functional

(G − F )h, one may be interested in estimating selected quantiles, the receiver

operating characteristic (ROC) curve, or the area under the ROC curve (AUC).

While the ROC curve is typically used in diagnostic medicine, the AUC may be

of interest in studies of therapeutic agents: if F and G are both continuous, then

AUC = P [Y1 > Y0] for independent random variables Y0 ∼ F and Y1 ∼ G.

3.2. Estimators

The data consist of (Zi, Yi), i = 1, . . . , n, which we regard as independent

copies of (Z, Y ). The regression parameters (α, β) are estimated by solving the

score equation
∑n

i=1 s(Zi, Yi;α, β) = 0, where

s(z, y;α, β) = [z − logit −1{α+ βTt(y)}]
(

1

t(y)

)
.

Denote the resulting MLE by (α̂, β̂), and let π̂ = n−1
∑n

i=1 Zi, λ̂ = logit (π̂), and

α̂∗ = α̂ − λ̂. Following Qin and Zhang (1997) and Qin (1999), (F,G) can be

estimated by

F̂ =
1

n

n∑
i=1

δYi

1− π̂ + π̂ exp{α̂∗ + β̂Tt(Yi)}
,

Ĝ =
1

n

n∑
i=1

exp{α̂∗ + β̂Tt(Yi)}δYi

1− π̂ + π̂ exp{α̂∗ + β̂Tt(Yi)}
,

(3.1)

where δy denotes a point mass of 1 at y. Note that Ĝ is a weighted empirical

distribution of the Yi with weights given by the fitted values from reverse regres-

sion. The same can be said about F̂ , except that the weights are one minus the

fitted values. It can be shown, as in Qin and Zhang (1997) and Qin (1999), that

(π̂, α̂∗, β̂, F̂ ) maximizes the semiparametric likelihood

n∏
i=1

[(1− π)F{Yi}]1−Zi [π exp{α∗ + βTt(Yi)}F{Yi}]Zi
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subject to the constraint (2.4). Substituting (F̂ , Ĝ) into a chosen measure of
treatment effect yields an estimator of the effect measure.

3.3. Asymptotic theory

Under standard regularity conditions (e.g., van der Vaart (1998, Chap. 5)),

√
n

(
α̂− α

β̂ − β

)
= I−1

α,β

1√
n

n∑
i=1

s(Zi, Yi;α, β) + op(1), (3.2)

where Iα,β = Var [s(Z, Y ;α, β)] is the Fisher information for (α, β). Qin and

Zhang (1997) study the asymptotic behavior of (F̂ , Ĝ) as distribution functions,
Zhang (2000) analyzes the corresponding quantile functions, and Qin and Zhang
(2003) extend these results to the ROC curve and the associated AUC. For
functionals of the form (G − F )h, a result gives the asymptotic distribution
of the estimator (Ĝ− F̂ )h.

Theorem 1. Suppose (2.2) and (3.2) hold, and let h : Y → R be such that
E[h(Y )2] < ∞. Then

√
n{(Ĝ−F̂ )−(G−F )}h converges to a normal distribution

with mean 0 and variance Var (U1) + Var (U2), where

U1 =
E[Z|Y ]{h(Y )−Gh}

π
− (1− E[Z|Y ]){h(Y )− Fh}

1− π
,

U2 =
aTI−1

α,βs(Z, Y ;α, β)

π(1− π)
−

(
Gh

π
+

Fh

1− π

)
(Z − E[Z|Y ]).

In a randomized clinical trial, the true values of π and λ are known, making
it possible to substitute π and replace α̂∗ with α̂−λ in (3.1). Denote by (F̂ ∗, Ĝ∗)
the result of an arbitrary combination of such replacements. The next result
shows that such replacements will not lead to any efficiency gain.

Theorem 2. Under the conditions of Theorem 1,
√
n{(Ĝ∗ − F̂ ∗) − (G − F )}h

converges to a zero-mean normal distribution with variance greater than or equal
to the asymptotic variance of (Ĝ− F̂ )h.

Without making any parametric assumptions, one could estimate (F,G) with
the empirical distributions in each arm:

F̃ =

∑n
i=1(1− Zi)δYi∑n
i=1(1− Zi)

, G̃ =

∑n
i=1 ZiδYi∑n
i=1 Zi

.

Interestingly, (F̃ , G̃) is equivalent to (F̂ , Ĝ) for estimating the expectations of
certain functions h(Y ). Specifically, it follows from the definition of (α̂, β̂) that
F̂ h = F̃ h and Ĝh = G̃h if h(Y ) is a linear combination of 1 and t(Y ). In general,
(F̃ , G̃) is more robust than (F̂ , Ĝ), which relies on (2.2). On the other hand,
(F̂ , Ĝ) can be expected to be more efficient under (2.2).
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Theorem 3. Under the conditions of Theorem 1,
√
n{(G̃ − F̃ ) − (G − F )}h

converges to a zero-mean normal distribution with variance greater than or equal

to the asymptotic variance of (Ĝ− F̂ )h, with equality holding if and only if h(·)
is a linear combination of 1 and t(·).

Both Theorems 2 and 3 can be easily adapted to quantile estimation. An

analogue of Theorem 3 for estimating the ROC curve is given by Qin and Zhang

(2003).

4. Hypothesis Testing

The null hypothesis F = G is true if and only if β = 0 in the reverse regres-

sion model (2.2). It is straightforward to conduct a Wald test or a likelihood ratio

test using standard procedures for logistic regression, and correct specification

of (2.2) is not essential for the validity of the test. Under the null hypothesis,

any form of (2.2) is correctly specified with β = 0, so the type I error rate is

effectively controlled, at least asymptotically. The test can become less pow-

erful or even inconsistent when (2.2) is misspecified or overparameterized. For

simultaneous testing of multiple endpoints, this approach removes the need to

perform a conservative Bonferroni-type adjustment for multiplicity (e.g., Holm

(1979); Simes (1986); Hochberg (1988); Hommel (1988, 1989)) or to rely on

computation-intensive resampling techniques (e.g., Westfall and Young (1993);

Troendle (1995); Reitmeir and Wassmer (1999)).

In clinical trials, one is usually more interested in differences between F and

G in certain “favorable” directions. For a single endpoint, a one-sided test under

the reverse regression approach is made possible as follows: a positive effect of

Y on Z in the reverse regression, in the sense that P [Z = 1|Y = y] increases

with y, translates into a monotone density ratio g(y)/f(y), which implies that

G is stochastically larger than F . This corresponds to a trivial test of the sign

of β if the reverse regression model contains only one term that happens to be a

monotone function of Y . If the reverse regression model contains several terms,

all of which are increasing functions of Y , then it makes sense to restrict attention

to alternatives where each component of β is positive. A formal test is readily

available from the I-U principle (Casella and Berger (1990, Sec. 8.2.4)). Denote

by pj the p-value for testing the null hypothesis βj ≤ 0 against the alternative

hypothesis βj > 0, where βj denotes the jth component of β. Then p = maxj pj
is the p-value for the I-U test of the overall null hypothesis that βj ≤ 0 for

some j. Under the usual “forward regression” approach, it is not straightforward

to test for stochastic monotonicity without strong distributional assumptions.

Unlike two-sided tests, the one-sided reverse regression test does require correct

specification of the reverse regression model.
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For multiple endpoints, “one-sided” test procedures that are sensitive to

treatment differences in favorable directions have been proposed by O’Brien

(1984) and Pocock, Geller and Tsiatis (1987) under the “forward regression”

approach. In the reverse regression approach, it is natural to consider tests con-

cerning the signs of the elements of β as they can be interpreted in a manner

similar to the case of a single endpoint, under suitable conditions concerning the

dependence among the Y[j]. Recall that Fj (or Gj) denotes the distribution of

Y[j] given Z = 0 (or 1).

Theorem 4. For Y = (Y[1], . . . , Y[J ])
T, suppose

logit (P [Z = 1|Y ]) = α+
J∑

j=1

βjtj(Y[j]),

where each tj is scalar-valued and strictly increasing. For any x ∈ R and any sub-

set of distinct indices {j1, . . . , jK}⊂{1, . . . , J}, suppose P [Y[j1]>x|Y[j2], . . . , Y[jK ],

Z = 0] is increasing in each of the Y[jk], k = 2, . . . ,K. If βj ≥ 0 for every j,

then Gj is stochastically larger than Fj for every j.

It may be reasonable to expect a positive dependence structure among several

clinical endpoints in the same treatment group. Under the conditions of Theorem

4, it makes sense to restrict attention to alternatives where βj > 0 for all j. An I-U

test can then be constructed as before. Alternatively, a GLS test can be obtained

by extending the procedures of O’Brien (1984) and Pocock, Geller and Tsiatis

(1987) as follows. Consider the test statistic T = n1/2eTV̂ −1
β β̂/(eTV̂ −1

β e)1/2,

where e = (1, . . . , 1)T and V̂β is a consistent estimate of the asymptotic variance

of β̂. It follows from (3.2) and Slutzky’s Theorem that T is asymptotically

standard normal if F = G. The test rejects for large values of T , which are more

likely if the βj are positive.

5. Simulation Results

5.1. Estimation

The reverse regression method was compared with a nonparametric method

for estimating (G− F )h in a simulation study. We considered two cases:

Case 1. A composite endpoint based on two continuous outcomes is defined by

requiring that a patient-level success criterion be met for each outcome. Here, F

is the standard bivariate normal distribution with correlation coefficient ρ, G is a

bivariate normal distribution with mean vector µ and the same variance matrix

as F , and h(y1, y2) = 1y1>0,y2>0.
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Table 1. Efficiency comparison (in terms of standard deviation) of the reverse
regression (RR) method with a nonparametric (NP) method for estimating
the treatment effect on some functionals of the outcome distributions. The
cases are described in Section 5.1. Each entry is based on 10,000 replicates.

Case
Parameters

NP RR
ρ µ

1 0 (0, 0) 0.038 0.025
(0.5, 0) 0.040 0.028
(0.5, 0.5) 0.042 0.030
(0.5,−0.5) 0.037 0.026

0.9 (0, 0) 0.045 0.035
(0.5, 0) 0.044 0.038
(0.5, 0.5) 0.044 0.035
(0.5,−0.5) 0.043 0.039

2 0 (0, 0) 0.072 0.063
(0.5, 0) 0.074 0.066
(0.5, 0.5) 0.074 0.064
(0.5,−0.5) 0.076 0.069

0.9 (0, 0) 0.088 0.087
(0.5, 0) 0.089 0.088
(0.5, 0.5) 0.088 0.087
(0.5,−0.5) 0.090 0.090

Case 2. A composite endpoint is defined as the maximum of two continu-

ous outcomes, with (F,G) following the same specification as in Case 1, and

h(y1, y2) = y1 ∨ y2, where ∨ denotes maximum.

These cases were chosen to cover some situations of practical relevance and

also to avoid the trivialities noted in Theorem 3. In each case, 10,000 trials were

simulated for each combination of parameter values. Each trial consisted of 500

patients allocated according to π = 0.5.

Table 1 compares the reverse regression method with the nonparametric

method described in Section 3.3. The reverse regression method was based on a

logistic regression model with linear terms (y1, y2). Both methods were virtually

unbiased, so the comparison is focused on efficiency. As expected, the reverse

regression method was generally more efficient than the nonparametric method.

An obvious reason for the observed efficiency gain is the fact that correct mod-

eling assumptions increase the amount of relevant information. In addition, it

is possible that part of the efficiency gain comes from the ability to work with

the continuous outcomes rather than a dichotomized version. In Case 2, the

difference between the two methods was clearly larger when the two continuous

variables were uncorrelated than if they were strongly correlated. A heuristic ex-

planation is that, with ρ approaching 1, the two continuous variables act like one,
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in which case the reverse regression method is equivalent to the nonparametric

method, Theorem 3.

These observations may help to address a common criticism of responder

analysis and the use of composite endpoints, namely that information is lost

when continuous variables are dichotomized or otherwise summarized prior to

analysis (e.g., Senn and Julious (2009)). A possible solution is to utilize all the

available information, as opposed to dichotomized or reduced data, to improve the

precision in estimating the quantity of interest (e.g., proportion of responders,

mean value of a composite endpoint). Thus, one can work with a simplified

estimand that may be easier to interpret by clinicians, without reducing the data

and losing information.

5.2. Hypothesis testing

Extensive simulation experiments were conducted to evaluate the reverse

regression method for testing hypotheses. We considered the bivariate case Y =

(Y[1], Y[2])
T where both components are continuous. A common method here

is the multivariate analysis of variance (MANOVA), which assumes F and G

are bivariate normal with the same variance matrix and possibly different mean

vectors (Hand and Taylor (1987)). The appropriate reverse regression model

includes Y[1] and Y[2] as the only two linear terms. It does not require bivariate

normality (only a suitable form of the density ratio), and the resulting test seems

more generally applicable than the MANOVA test. The two tests performed

almost indistinguishably in a wide range of simulated scenarios including non-

normality (results not shown). This suggests a possible connection between the

MANOVA test and reverse regression models of certain forms.

Assuming bivariate normality but not equal variance, F = G can be tested

using a likelihood ratio test based on the bivariate normal model. This corre-

sponds to a reverse regression model with five terms (Y[1], Y[2], Y 2
[1], Y 2

[2] and

Y[1]Y[2]). The two methods were compared in a simulation study that consisted

of three cases:

Case A. Here, F is the standard bivariate normal distribution with correlation co-

efficient ρ, and G is a bivariate normal distribution with mean vector µ, variances

(σ2
1, σ

2
2) and the same correlation coefficient.

Case B. We generate Y as a bivariate standard normal vector with correlation

coefficient ρ, and then generate Z from a reverse regression model where α is

chosen such that P [Z = 1] = 0.5 for given β.

Case C. Here, Y has standard exponential marginals and a normal copula (Nelsen

(1998)) with correlation coefficient ρ, and Z is generated from a reverse regression

model where α is chosen such that P [Z = 1] = 0.5 for given β. The generation of
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Table 2. Comparison of likelihood ratio tests based on a bivariate normal
(BVN) model for F and G and the corresponding reverse regression (RR)
model, in terms of type I error rate and power for detecting a treatment
difference (F ̸= G). The cases are described in Section 5.2. Each entry is
based on 10,000 replicates.

Case Parameters BVN RR
A ρ µ (σ1, σ2)

0 (0, 0) (1, 1) 0.05 0.05
(0.2, 0.2) (1, 1) 0.67 0.68
(0, 0) (1.2, 1.2) 0.90 0.90

(0.2, 0.2) (1.2, 1.2) 0.98 0.98
0.9 (0, 0) (1, 1) 0.05 0.05

(0.2, 0.2) (1, 1) 0.38 0.39
(0, 0) (1.2, 1.2) 0.90 0.90

(0.2, 0.2) (1.2, 1.2) 0.96 0.96
B ρ β

0 (0, 0, 0, 0, 0) 0.05 0.06
(0.1, 0.1, 0, 0, 0) 0.19 0.19
(0, 0, 0.1,−0.1, 0) 0.34 0.35

(0.1,−0.1, 0.1,−0.1, 0.1) 0.57 0.58
0.9 (0, 0, 0, 0, 0) 0.05 0.06

(0.1, 0.1, 0, 0, 0) 0.35 0.35
(0, 0, 0.1,−0.1, 0) 0.10 0.10

(0.1,−0.1, 0.1,−0.1, 0.1) 0.24 0.25
C ρ β

0 (0, 0, 0, 0, 0) 0.37 0.05
0.9 (0, 0, 0, 0, 0) 0.44 0.05

Y uses the same mechanism as in Case B followed by a monotone transformation

of each component into a standard exponential variable.

In each case, 10,000 trials were simulated for each combination of parameter

values. Each trial consisted of 500 patients allocated according to π = 0.5. Table

2 presents the results (type I error rate and power) of the likelihood ratio tests

at level 0.05 based on bivariate normal model versus reverse regression. The two

methods performed similarly under the bivariate normal model (Case A) and even

when the model was slightly misspecified (Case B). However, when the bivariate

normal model was grossly misspecified (Case C), the “forward” method failed to

control the type I error rate while the reverse regression method remained valid.

We also considered the bivariate case Y = (Y[1], Y[2])
T where Y[1] is binary

and Y[2] is continuous. The data were generated as in Case A of the previous

simulation study with σ1 = σ2 = 1, except that the first component of Y was

then dichotomized according to its sign (1 if positive, 0 otherwise). A common

method for this type of data is a Bonferroni procedure, which in this case consists
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Table 3. Comparison of a Bonferroni procedure with a reverse regression
(RR) method with two linear terms (Y[1] and Y[2]), in terms of type I error
rate and power for detecting a treatment difference (F ̸= G), when Y[1] is
binary and Y[2] is continuous. The true distributions are described in Section
5.2. Each entry is based on 10,000 replicates.

ρ µ Bonferroni RR
0 (0, 0) 0.05 0.05

(0.1, 0) 0.12 0.12
(0, 0.1) 0.16 0.15
(0.1, 0.1) 0.21 0.23
(0.1,−0.1) 0.20 0.22

0.9 (0, 0) 0.05 0.05
(0.1, 0) 0.11 0.19
(0, 0.1) 0.15 0.29
(0.1, 0.1) 0.17 0.16
(0.1,−0.1) 0.22 0.67

of a t-test for the continuous variable and a z-test for the binary one, both at

level 0.025. This was compared with a likelihood ratio test based on a reverse

regression model with two linear terms (Y[1] and Y[2]). This reverse regression

model was not correctly specified, both for simplicity (the true model is not

straightforward to derive) and to reflect the reality that all models are wrong in

practice. The results, shown in Table 3, indicate that the two methods perform

similarly when the two variables are independent (ρ = 0) and that the reverse

regression method can be much more powerful (for some alternatives) when the

underlying correlation is high (ρ = 0.9).

6. A Data Example

We illustrate the methods with data from a randomized, placebo-controlled,

double-blinded clinical trial (Reitmeir and Wassmer (1999)). The main objective

of the trial was to demonstrate the efficacy of a new drug for treating patients

with anxiety attacks, tension states, or uneasiness of non-psychotic origin. The

evaluation of efficacy was based on changes (from baseline) in six measurements:

the somatic and psychic scores (1–2) of the Hamilton Anxiety scale, the anxiety,

aggressiveness and tension scores (3–5) of the “Erlanger Angstskala”, and a sum-

mary score of complaints (6). Higher values of these scores represent undesirable

outcomes, and we therefore negated the original values in defining Y . Figure

1 shows boxplots for the six endpoints (as indicated above) in each treatment

group. Available for our analysis were data from 69 patients (32 in the experi-

mental group, 37 in the placebo group). The observed treatment difference was

in the favorable direction for each endpoint, with a standardized mean difference
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Figure 1. Treatment-specific empirical distributions of the six endpoints in
the data example (see Section 6 for details).

ranging from 0.17 to 2.07. In univariate analyses using t-tests, three endpoints

were marginally significant (0.01 < p < 0.05) and the other three were not sig-

nificant (p > 0.1) against one-sided alternatives. With a Bonferroni correction,

none of these endpoints would be significant. Table 1 of Reitmeir and Wassmer

(1999) gives more details about these univariate analyses.

To construct a reverse regression model for all six endpoints, we started by

identifying the appropriate form of tj for each individual endpoint. The empirical

distributions shown in Figure 1 suggested that a normal model is appropriate

for each endpoint in each treatment group. For the second, third, and fifth

endpoints, Figure 1 also suggested that a common variance could be assumed for

the two treatment groups. The common variance assumption has less empirical

support for the other three endpoints; however, the data do not provide clear
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Table 4. Estimated reverse regression model for the data example in Section
6: point estimates (β̂j), standard errors (SE) and 95% confidence intervals
(CI) for the regression coefficients.

Endpoint β̂j SE 95% CI
1 0.20 0.14 (−0.07, 0.46)
2 -0.09 0.12 (−0.32, 0.15)
3 -0.29 0.18 (−0.65, 0.06)
4 -0.01 0.17 (−0.36, 0.33)
5 0.23 0.16 (−0.07, 0.54)
6 0.03 0.05 (−0.07, 0.12)

evidence to the contrary. For example, in a univariate reverse regression model

that already includes Y[j], the term Y 2
[j], which would be required to account for

unequal variances, is not significant (p > 0.5 for all endpoints). Considering the

small sample size, it seemed appropriate to start with the parsimonious model

where tj(y) = y for every j. Next, we considered possible interactions between

endpoints in the reverse regression model. An AIC-based model selection process

indicated that no interaction terms were needed, and we therefore chose the

parsimonious model as the final model. For this model, Theorem 3 indicated

that the reverse regression estimates of mean differences would be identical to

the nonparametric estimates based on sample means.

Table 4 shows the results of the reverse regression analysis based on the final

model. The regression coefficients in this model are not directly interpretable as

treatment effects on individual endpoints; they are intermediate quantities in a

joint analysis of all endpoints. Table 5 presents the results of testing all end-

points simultaneously using the reverse regression and the “forward regression”

approaches. The table includes global tests for the existence of any difference

between F and G as well as one-sided tests for favorable differences. In the lat-

ter case, the I-U principle and the GLS approach were used to derive one-sided

tests. Under the “forward” approach, the global test was a MANOVA test, the

I-U test was based on univariate t-tests, and the GLS test was from O’Brien

(1984). None of these tests was significant at level 0.05. Under the reverse re-

gression approach, the global test was a likelihood ratio test, the I-U test was

based on univariate Wald tests, and the GLS test was from Section 4. The two

approaches yielded similar results, with the most significant result due to the

reverse regression approach.

7. Discussion

This article introduces a reverse regression approach to randomized clinical

trials that corresponds to a semiparametric modeling strategy which only specifies
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Table 5. Test results for the data example in Section 6: p-values for si-
multaneous testing of all six endpoints under the standard “forward regres-
sion” approach as well as the reverse regression (RR) approach. Both the
intersection-union (I-U) principle and the generalized least squares (GLS)
approach are used for one-sided testing.

Alternative Test
Hypothesis std RR

any difference 0.189 0.154
one-sided (I-U) 0.435 0.947
one-sided (GLS) 0.075 0.050

the density ratio for the outcome distributions in the two treatment groups. For

estimating treatment effects, the reverse regression approach is more robust than

methods based on fully parametric models for the outcome distributions and

generally more efficient than nonparametric methods. In the presence of multiple

endpoints, it provides a simple and novel method of simultaneous testing that is

readily available in standard logistic regression routines.

Application of the proposed approach requires specification of t(y), which is

an important practical question. Our strategy, suggested in Section 2.2 and il-

lustrated with the data example, is to first specify tj for each individual endpoint

based on plausible parametric models for (Fj , Gj) and then to consider possible

interactions in a logistic regression framework. The choice of tj clearly depends

on the data and the sample size. In addition, the objective of the analysis is

also important to consider. For estimation, the reverse regression model must be

correct, and one might choose to be conservative by including several terms sug-

gested by different models for (Fj , Gj), provided the sample size is large enough.

For testing the global alternative F ̸= G, the reverse regression model need not

be correct, and choosing a conservative model can result in a loss of power. For

one-sided testing, the reverse regression model must be of certain forms for the

signs of the regression coefficients to be interpretable.

An important assumption for the proposed approach is that F and G have

the same support. For a single endpoint, this assumption can be evaluated by

examining and comparing descriptive statistics and graphs for F and G, as we

did for the data example. For multiple endpoints, there is the additional compli-

cation that a shared support for each component of Y does not imply a shared

support for all of Y (as a random vector), because some combinations of values

may be supported in one treatment group but not the other. When the shared

support assumption is violated, model (2.2) is guaranteed to be misspecified,

regardless of the specification of t(y). Therefore, it is important in practice to

check the model using residual plots and goodness-of-fit tests, and the power for

detecting model misspecification depends on the sample size and the severity of
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the misspecification. It seems reasonable to expect the shared support assump-

tion to hold when the treatment effect is small or moderate, as is the case in

many clinical trials.
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