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Abstract: Varying coefficient models have been widely used in longitudinal data

analysis, nonlinear time series, survival analysis, and so on. They are natural non-

parametric extensions of the classical linear models in many contexts, keeping good

interpretability and allowing us to explore the dynamic nature of the model. Re-

cently, penalized estimators have been used for fitting varying-coefficient models for

high-dimensional data. In this paper, we propose a new computationally attractive

algorithm called IVIS for fitting varying-coefficient models in ultra-high dimensions.

The algorithm first fits a gSCAD penalized varying-coefficient model using a sub-

set of covariates selected by a new varying-coefficient independence screening (VIS)

technique. The sure screening property is established for VIS. The proposed algo-

rithm then iterates between a greedy conditional VIS step and a gSCAD penalized

fitting step. Simulation and a real data analysis demonstrate that IVIS has very

competitive performance for moderate sample size and high dimension.

Key words and phrases: Penalized regression, sure screening property, varying-

coefficient models.

1. Introduction

It is more and more common to confront situation in which when the num-

ber of predictor variables p is in the tens of thousands, potentially much larger

than the number of observations n. Examples include data from microarrays,

proteomics, brain images, etc. Variable selection hence becomes an increas-

ingly important task. There is a vast literature on variable selection for re-

gression problems under linear regression settings. Recent developments mostly

focus on penalized methods, including the LASSO (Tibshirani (1996)), SCAD

(Fan and Li (2001)), the Dantzig selector (Candes and Tao (2007)) and their

variations. These methods have been thoroughly studied for variable selection

with high-dimensional data (van de Geer (2008); Bickel, Ritov and Tsybakov

(2009); Meinshausen and Yu (2009)). A computationally simpler method that

can work well in practice for very high dimensional data is sure independence

screening (SIS), demonstrated in Fan and Lv (2008) in the classical regression
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context. The sure independence screening recruits the features with best marginal

utility, which corresponds to the largest marginal absolute Pearson correlation

between the response and predictor in the context of least-squares regression for

the linear model. Fan and Lv (2008) showed that SIS has a sure screening prop-

erty: with probability close to 1, it can retain all important features in the model.

After sure screening, the remaining covariates are used to fit a penalized linear re-

gression model. Recent works on sure screening include Fan, Samworth and Wu

(2009), Fan and Song (2010), Fan, Feng and Song (2011), Zhu et al. (2011),

Li, Zhong and Zhu (2012), Li et al. (2012), among others.

This paper concerns variable selection in the varying coefficient model, an

important and useful generalization of the linear regression model. and etc. de-

manding. It is common to present data as longitudinal observations {Yij,Xi(tij),

tij, i = 1, . . . , n, j = 1, . . . , ni}, where tij and ni are the time of the jth mea-

surement and the number of repeated measurement for the ith subject, respec-

tively, Yij and Xi(tij) = (X1i(tij), . . . ,Xpi(tij))
′ are the ith subject’s observed

outcome and covariates at time tij. Examples include longitudinal data analy-

sis (Hoover et al. (1998)) and functional response models (Rice (2004)) among

others. Interest focuses mostly on investigating the time-dependent effects of

the covariates on responses measured repeatedly and/or longitudinally. Different

regression models are proposed for this type of data, among them the varying-

coefficient model has gained a lot of popularity. For variable selection with

varying-coefficients models, Wang, Li and Huang (2008) andWang, Li and Huang

(2008) both proposed a group penalization method in the fixed p case, and

Wei, Huang and Li (2011) recently extended this work to the case of diverging

p. However, for very large p, these penalized methods remain computationally

demanding.

In this paper, we consider screening of the important covariates in varying-

coefficient models by ranking the magnitude of nonparametric marginal correla-

tions. The magnitude of the proposed screener can preserve the non-sparsity of

the varying-coefficient models under some reasonable conditions, even with con-

verging minimum strength of signals. Our work can be regarded as an extension

of the SIS procedures proposed in Fan and Lv (2008) and Fan, Feng and Song

(2011), with differences and our contributions highlighted as follows. Here the

minimum distinguishable signal is related to the stochastic error in estimating the

nonparametric components, the approximation errors in modeling nonparametric

components, and the number of observations within each subject. Efforts were

made to study the influence of the longitudinal observations on the sure screening

property. This led to a result on the extent to which the dimensionality can be

reduced by varying-coefficient independence screening. The dimensionality of the

model is allowed to grow near exponentially with the sample size. We propose
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an iterative nonparametric independence screening procedure, IVIS-gSCAD, to

reduce the false positive rate and stabilize the computation. Additionally, we use

B-spline to approximate the nonparametric coefficients, which is computationally

easier than using local polynomial regression.

The outline of the paper is as follows. In Section 2, we propose the varying-

coefficient independence screening method based on B-spline to approximation.

In Section 3, an iterative varying-coefficient screening (IVIS) method is proposed.

In Section 4, simulation studies are Brought up to demonstrate the performance

of the proposed method. In addition, a data set is used as an illustration of

varying-coefficient regression models. The paper concludes in Section 5 and the

Web Appendix contains all technical proofs.

2. Varying-coefficient Independence Screening

Consider the population {X(t), Y (t)} from the time-varying coefficient model

Y (t) = X(t)′α(t) + ǫ(t), t ∈ T , (2.1)

whereX(t) = (X1(t), . . . ,Xp(t))
′ are the covariates, α(t) = (α1(t), . . . , αp(t))

′ are

the time-varying coefficients, ǫ(t) is a mean zero stochastic process, Y (t) is a mean

zero outcome function, and T is the time interval in which the measurements are

taken.

Our purpose is to identify the set M⋆ = {l : αl(t) 6= 0}. We consider p

marginal nonparametric regression problems:

min
β(t)∈L2(P )

E(Y (t)−Xl(t)β(t))
2, (2.2)

where P denotes the joint distribution of X(t) and Y (t), and L2(P ) is the class

of square integrable functions under the measure P . The minimizer of (2.2) is

βl0(t) = EXl(t)Y (t). The population version of VIS is to screen the time-varying

coefficients αl(t) in (2.1) according to |EXl(t)Y (t)| to select a small group of

covariates via thresholding.

Suppose there is a random sample of n independent subjects {Xi(t), Yi(t)}
n
i=1

from model (2.1). Let tij and ni be the time of the jth measurement and the

number of repeated measurement for the ith subject. Yij = Yi(tij) and Xi(tij) =

(X1i(tij), . . . ,Xpi(tij))
′ are the ith subject’s observed outcome and covariates at

time tij . Based on longitudinal observations {Yij ,Xi(tij), tij , i = 1, . . . , n, j =

1, . . . , ni}, the model can be written as:

Yi(tij) = Xi(tij)
′
α(tij) + ǫi(tij). (2.3)

For l = 1, . . . , p, let {Blk(·), k = 1, . . . ,Kl} denote a basis of B-spline func-

tions. Each βl(t) can be approximated by a linear combination of B-spline ba-

sis functions. We consider marginal weighted least square estimation based on
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B-spline expansion, for l = 1, . . . , p, by minimizing el =
∑n

i=1 ωi
∑ni

j=1

(
Yij −

∑Kl

k=1XlijBlk(tij)γlk

)2
with respect to the γlk. Choices of ωi can be 1 or 1/ni,

equal weight to observations and equal weight to subjects respectively.
Let γl = (γl1, . . . , γlKl

)′. Define Bl(t) = (Bl1(t), . . . , BlKl
(t))′, Ulij = Xlij

Bl(tij), Uli = (Uli1, . . . ,Ulini
)′ andWi = diag(wi, . . . , wi) with size ni. LetYi =

(Yi1, . . . , Yini
)′ and Xlij = Xli(tij) for j = 1, . . . , ni and Xli = (Xli1, . . . ,Xlini

)′.
We can express el as el = el(γl) =

∑n
i=1(Yi − Uliγl)

′Wi(Yi − Uliγl). Let
U′

lWY =
∑

iU
′
liWiYi and U′

lWUl =
∑

i U
′
liWiUli. Since U′

lWUl is in-
vertible with probability approaching one (as is established in Lemma 1 in the
Web Appendix), the unique minimizer of el(γl) is

γ̂l =
(
U′

lWUl

)−1
U′

lWY. (2.4)

Let β̂l(t) = B′
l(t)γ̂l =

∑
k γ̂lkBlk(t). Take

M̂νn = {l : ωl =
1

|T |

∫

T

β̂l(t)
2dt ≥ νn}

as the selected set, where |T | is the length of T , and νn is a pre-specified threshold.
To compute

∫
T
β̂l(t)

2dt/|T |, we take N equally spaced time points t1 ≤ . . . ≤ tN

in T , and compute ωNl = (1/N)
∑N

i=1 β̂l(ti)
2. As long as N is large enough, ωNl

can be used as ωl. In our numerical study we let N = 10, 000.
We correspondingly define the population version of the marginal least square

regression,
ul = ul(γl) = E(Y−Ulγl)

′W(Y−Ulγl). (2.5)

It can be shown that the unique minimizer of ul(γl) is

γ̃l =
(
EU′

lWUl

)−1
EU′

lWY.

Let β̃l(t) = B′
l(t)γ̃l =

∑
k γ̃lkBlk(t). It can be shown that β̃l(t) is the projection

of βl0(t) onto the space Gl, a linear space of spline functions on T with a fixed
degree and knot sequence.

Let Xli = diag(Xli1, . . . ,Xlini
), and take

Bli =




Bl1(ti1) . . . Bl1(tini
)

...
. . .

...

BlKl
(ti1) . . . BlKl

(tini
)


 .

It can be seen that Uli = XliB
′
li. With some algebra, we can rewrite (2.4) as

γ̂l =
(∑

i

BliXliWiXliB
′
li

)−1 ∑

i

BliXliWiYi.

When ni = 1 for i = 1, . . . , n, (2.3) boils down to the linear model. In this case,
β̂l(t) is the marginal correlation proposed in Fan and Lv (2008).
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3. Theoretical Results

To establish the sure screening property, we decompose β̂l(t) − βl0(t) =

β̂l(t)− β̃l(t)+ β̃l(t)−βl0(t) corresponding to the estimation error and the approx-

imation error, respectively. Define ω = maxi ωi, N = maxi ni, Ks = minl Kl,

Km = maxl Kl, and dist(βl,Gl) = infgl∈Gl
supt∈T |βl(t) − gl(t)| as the L∞ dis-

tance between βl(·) and Gl, where Gl is a linear space of spline functions on T .

Let ρn = maxl dist(βl0,Gl). The following conditions are needed.

A. The observation times {tij} , j = 1, . . . , ni, i = 1, . . . , n, are chosen in-

dependently according to a distribution FT on a finite interval T . L1 ≤

|T | ≤ L2. They are independent of the response and covariate processes

(Yi(t),Xi(t)), i = 1, . . . , n. The Lebesgue density fT (t) satisfies M1 ≤ fT (t) ≤

M2 uniformly over t ∈ T for some positive constants M1 and M2.

B. There is a positive constant M3 such that |Xl(t)| ≤ M3 for t ∈ T and l =

1, . . . , p.

C. minl∈M⋆
(1/|T |)

∫
T
(EXl(t)Y (t))2dt ≥ c1n

−2κ for some κ ∈ (0, 1/2).

A lemma shows that the minimum signal {
∫
T
β̃l(t)

2dt/|T |}j∈M⋆
is at the

level of the integrated marginal correlation, provided the approximation error is

negligible.

Lemma 1. Under A–C, we have

min
l∈M⋆

1

|T |

∫

T

β̃l(t)
2dt ≥ c1ξn

−2κ,

if ρ2n ≤ c1M1(1 − ξ)n−2κKmM−1
2 L−1

2 for some ξ ∈ (0, 1).

Now we establish the sure screening properties of the varying-coefficient

independence screening (VIS). Let Ỹij = Xi(tij)
′
α(tij), Ỹi = (Ỹi1, . . . , Ỹini

)′,

Ỹ = (Ỹ1, . . . , Ỹn)
′. We need additional conditions:

D. ‖Ỹ‖∞ < B1 for some positive constant B1, ‖ · ‖∞ the sup norm.

E. The random errors {εi(t)}
n
i=1 are i.i.d. with conditional mean zero and, for

any B2 > 0, there exists a positive constant B3 such that E[exp(B2|εi(t)|) |

Xi(t)] < B3, for t ∈ T .

F. There exist a positive constant c1 and a ξ ∈ (0, 1) such that ρ2n ≤ c1M1(1 −

ξ)n−2κKmM−1
2 L−1

2 .

Theorem 1. If A-F hold, and νn = c6n
−2κ with c6 ≤ c1ξ/2, then

P (M⋆ ⊂ M̂νn) ≥ 1− snKm

{
(8 + 2Km) exp

(
−c3N

−2ω−2n1−4κK−3
m

)

+6c5Km exp
(
−c4nK

−1
m

)}
.
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This implies we can handle the NP-dimensionality

log pn = o(N−2ω−2n1−4κK−3
m + nK−1

m ). (3.1)

For pn and n satisfying this condition, P (M⋆ ⊂ M̂νn) → 1. The maximal size

of spline basis Km, the maximal number of observational time points, and the

maximal weight affect the order of dimensionality. In (3.1), the larger the min-

imum signal level, the smaller the number of basis functions, the smaller the

weights, or the smaller the number of observational time points, the higher di-

mensionality the varying-coefficient independence screening (VIS) can handle.

The approximation rate ρn also affects this dimensionality, through its relation

with the choice of Km as required in Condition F. Since the approximation er-

ror cannot be too large, the number of basis functions cannot be too small.

When the βl have bounded second derivatives and the number of observations

for each subject is bounded, we have ρn = O(K−2
m ) (Schumaker (1981)), by tak-

ing Kl = n1/5, the optimal rate for nonparametric regression (Stone (1985)),

we have log pn = o(n2/5). The second term on the right-hand side of (3.1) is

improved compared with Fan, Feng and Song (2011).

Controlling false selection rates is also an important criteria. To achieve

vanishing false selection rate, we bound the size of the selected set as follows.

Theorem 2. Suppose A–F hold and Var (Y) = O(1). Then for any νn =

c6Kmn−2κ, there exist positive constants c3, c4, and c5 such that

P [|M̂νn | ≤ O{n2κλmax(Σ)}]

≥1−pnKm

{
(8 + 2Km) exp

(
−c3N

−2ω−2n1−4κK−3
m

)
+6c5Km exp

(
−c4nK

−1
m

)}
,

where Σ = E(UWU′).

Thus the correlation within the basis functions leads to dimension reduction

with varying-coefficient models. When the number of observations for each sub-

ject and the weights are bounded, Km = 1, and λmax(Σ) = O(nτ ), the number of

selected variables is of order O(n2κ+τ ). This is the same order as in Fan and Lv

(2008) for the i.i.d. case.

4. Iterative VIS Procedure

As the independence screening procedure with marginal utilities uses only

the marginal information of the covariates instead of the full model, its sure

screening property may fail when the required technical conditions are not satis-

fied. Fan and Lv (2008) summarize potential problems for SIS with linear mod-

els. Similar problems are possible issues for the proposed screening methods as
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well: A covariate that is jointly important but marginally unimportant to the

response is not picked up by independent screening methods. Unimportant co-

variates that are highly correlated with the important covariates can have higher

priority of selection by independent screening methods than important covariates

that are relatively weakly related to the response. This issue does not affect sure

screening, but it increases the false positive selection rates.

To address these issues while maintaining the computational expediency,

Fan and Lv (2008) proposed iterative screening procedure to jointly employ a

large-scale screening and moderate-scale selection strategy for linear models. We

adapt the idea and propose an iterative screening procedure for VIS as follows.

1. Initial selection with marginal VIS and moderate-size variable selection. For

every l ∈ {1, · · · , p}, apply the independence VIS procedure to choose a set

A1 of indices of size k1, which can be taken as ⌊2n/(3 log(n))⌋ to guarantee

at least two iterations. Apply some existing penalized algorithm for grouped-

variables selection, such as the group lasso in Yuan and Lin (2006), or the

group SCAD in Wang, Chen and Li (2007), to the set A1 to select a subset

M1. Inside the penalized method, the penalty parameter can be selected by

Bayes information type of criterion or (generalized) cross validation.

2. Forward large-scale conditional marginal screening. For every l ∈ Mc
1 =

{1, · · · , p}\M1, compute the conditional marginal least squares with the set

of features M1 in the model.

min

n∑

i=1

(Yi −
∑

m∈M1

Umiγm −Uliγl)
′Wi(Yi −

∑

m∈M1

Umiγm −Uliγl).

This regression reflects the additional contribution of the lth covariate condi-

tioning to M1. After marginally screening, as in the first step, pick a set A2

of indices of size k2 = 1.

3. Backward moderate-size variable selection. Apply the penalized method used

in the first step to the set M1
⋃

A2 to select a subset M2.

4. Iteration until stabilization. Iterate Steps 2 and 3 until |Ml| is beyond a

pre-specified number, or Ml = Ml−1.

In the next section, we discuss the performance of IVIS in numerical ex-

amples. From our simulation studies, IVIS seems to combine the strength of

large scale screening and moderate-scale selection in both variable selection and

prediction performance. The rationale is that false negatives can be effectively

controlled in the initial screening step and the subsequent conditional screening

steps, and the false positives can be effectively decreased in the penalized vari-

able selection steps. Our numerical studies are consistent with this conjecture,
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see Table 3. Iterations stabilize the whole process and can lead to good prediction

performance of IVIS. Detailed theoretical analysis justification here is beyond the

present scope and is to be considered in future research.

5. Numerical Examples

5.1. Simulations

We used three simulation models to examine the finite-sample performance

of IVIS and VIS+gSCAD. We fixed the sample at 200 and the dimension at 500

in all examples. For each model we ran 100 independent replicates.

Simulation model 1, Wei, Huang and Li (2011). The response variable was

generated as yi(tij) =
∑p

l=1 xli(tij)βl(tij)+ ǫi(tij). The time points tij were taken

from {1, 2, 3, . . . , 30} with probability 0.4; The number of observed time points

ni for different subjects are different. Only the first six variables had nonzero

coefficient functions. The coefficient functions were

β1(t) = 15 + 20 sin(
πt

15
), β2(t) = 15 + 20 cos(

πt

15
),

β3(t) = 2− 3 sin(
π(t− 25)

15
), β4(t) = 2− 3 cos(

π(t− 25)

15
),

β5(t) = 6− 0.2t2, β6(t) = −4 +
(20− t)3

2, 000
.

The variables were

x1(t) ∼ Unif[
t

10
, 2 +

t

10
], {xl(t)}

5
l=2 ∼ N(0,

1 + x1(t)

2 + x1(t)
),

x6(t) ∼ N(3 exp(
t

30
), 1), {xl(t)}

500
l=7 ∼ MVN(0,Σ),

where Σt,s = Cov (xl(t), xl(s)) = 4 exp(−|t − s|). The random error ǫ(t) =

Z(t) + E(t), where Z(t) had the same distribution as {xl(t)}
500
l=7 and E(t) is

N(0, 4).

Simulation model 2. The response variable was again

yi(tij) =
∑p

l=1 xli(tij)βl(tij) + ǫi(tij), where time points were taken from {1, 2,

. . . , 30} with probability 0.5. The variables (x1, x2, . . . , xp) were simulated as

xl =
Wl + U

2
, l = 1, . . . , p,

where W1,W2, . . . ,Wp and U were i.i.d. Unif(0, 1). The random error ǫ ∼
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Table 1. Variable selection performance of IVIS and VIS+gSCAD.

IVIS VIS+gSCAD
SA ES MS OS1 OS2+ SA ES MS OS1 OS2+

Model 1 100% 99% 0% 0% 1% 88% 88% 12% 0% 0%
Model 2 100% 78% 0% 17% 5% 0% 0% 100% 0% 0%
Model 3 100% 88% 0% 11% 1% 100% 100% 0% 0% 0%

N(0, 1). The coefficient functions were

β1(t) = 7 cos2(
t− 10

7
) + 0.1t, β2(t) = −0.5t,

β3(t) =
(t− 15)2

20
, β4(t) = 15 sin(

t+ 5

3.5
) exp(−

t

30
),

βl(t) = 0, l ≥ 5.

Simulation model 3: The response variable was as before except that the time

points were taken from {1, 2, . . . , 30} with probability 0.3. Only the first six

coefficient functions were nonzero:

β1 = β3 = β5 = 1 and β2 = β4 = β6 = −1.

Here {xk(t)}
450
l=1 were i.i.d Gaussian processes with mean zero and variance one

and

xl(t) =
6∑

j=1

xj(t)(−1)(j+1)

5
+

√
1−

6

25
ǫl(t), k = 451, . . . , 500,

where {ǫl(t)}
500
k=451 were Gaussian with mean zero and variance three. The ran-

dom error ǫ(t) ∼ N(0, 1). This model is a parametric linear model in order to

examine whether nonparametric screening and estimation does much worse than

parametric screening and estimation.

As shown in Table 1, we used several quantities to measure the variable

selection performance: “SA” is the percentage of occasions on which all the

correct variables are included in the selected model; “ES” is the frequency of

exactly selecting all true variables and nothing else; “MS” is the percentage of

occasions on which some correct variables are missed; “OS1” is the frequency of

exactly one false variable selected and “OS2” is the frequency of selecting 2 or

more false variables. We see that VIS+gSCAD tends to be too greedy in Models

1 and 2, missing some true variables, but IVIS always selects all true variables.

A 0% for “MS” indicates extremely low false negative rates for all three models

using IVIS. Small values for “OS1” and “OS2+” show low false positive rates of

variable selection. Overall, IVIS has a very good variable selection performance.
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Table 2. The number of iterations needed to achieve stabilization in IVIS.

Iterations 2 3 4 5 >5
Model 1 43 40 16 0 1
Model 2 1 23 69 7 0
Model 3 88 11 0 1 0

Computation time depends heavily on the implementation of the group

SCAD algorithm, as the screening process is pretty fast. So if IVIS can achieve

stability within a few iterations, the computation is reasonably fast. Here we

report the number of iterations needed to achieve stability. Two is the minimum

number of iterations needed to confirm that variables selected in the current it-

eration match the previous selection, and we observe that stability is reached

almost always within 5 iterations. In Model 3 with six constant coefficients, IVIS

converges within 3 steps 99% of the time.

In Table 3 we record the average numbers of false positives and false neg-

atives in the first 4 iterations for the three models. In our simulations of these

different models, after the first step (VIS+groupSCAD) usually the majority

of true variables were selected with occasionally, a few false variables. As the

number of iteration increased, the number of false positives decreased after the

screen step, the number of false negatives increased after the gSCAD step, and

stability was achieved quickly. When false variables were selected, the accuracy

of coefficient estimation for the true variables was not compromised.

Two quantities are used to measure the estimation accuracy of IVIS in Table

4. For each coefficient function estimator β̂j(t), the integrated mean squared error

(IMSE) is
∫
(β̂j(t)−βj(t))

2dt. This can be computed by numeric integration. We

also report the relative IMSE (RIMSE) which is the ratio of the IMSE of an

estimator relative to the IMSE of the oracle estimator, that knows the true

variables and only needs to estimate the true coefficient functions. In Models 1

and 2, the oracle estimator uses 5 and 10 B-spline basis functions to estimate

each true coefficient function, as does IVIS. The RIMSE of IVIS is close to 1 in

these two models, which is expected given the variable selection results in Table

1. In Model 3 the RIMSE of IVIS is larger than 2, although IVIS still does good

variable selection. This disparity can be explained by the fact that in Model 3 we

actually allow the oracle to use the knowledge that the true coefficient functions

are constant so that the oracle estimator directly estimates these constants, and

not using 5 B-splines basis functions.

In Table 5 we compare the prediction accuracy of the oracle estimator, IVIS,

and VIS+gSCAD. The prediction errors were computed on an independent test

dataset. We see that IVIS and the oracle have nearly identical prediction per-

formance in all three models. In Models 1 and 3, VIS+gSCAD performs very
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Table 3. The average false positive and false negative rates with standard er-
ror in prentases, after screening and after gSCAD for the first four iterations
for Models 1, 2, and 3.

After Screening After gSCAD
false negative false positive false negative false positive

Model 1:
Iteration 1 0.13 19.13 0.13 0.01

(0.034) (0.034) (0.034) (0.010)
Iteration 2 0.00 0.88 0.00 0.43

(0.000) (0.036) (0.000) (0.050)
Iteration 3 0.00 1.43 0.00 0.18

(0.000) (0.050) (0.000) (0.052)
Iteration 4 0.00 1.54 0.00 0.08

(0.000) (0.061) (0.000) (0.042)
Model 2:
Iteration 1 1.96 22.96 1.96 1.13

(0.049) (0.037) (0.037) (0.103)
Iteration 2 0.96 1.13 0.96 0.90

(0.037) (0.103) (0.037) (0.033)
Iteration 3 0.05 0.99 0.05 0.06

(0.022) (0.017) (0.022) (0.028)
Iteration 4 0.00 1.01 0.00 0.03

(0.103) (0.017) (0.000) (0.017)
Model 3:
Iteration 1 0.00 19.00 0.00 0.00

(0.000) (0.000) (0.000) (0.000)
Iteration 2 0.00 1.00 0.00 0.10

(0.000) (0.000) (0.000) (0.030)
Iteration 3 0.00 1.10 0.00 0.10

(0.000) (0.030) (0.000) (0.030)
Iteration 4 0.00 1.10 0.00 0.10

(0.000) (0.030) (0.000) (0.030)

similarly to IVIS and the oracle estimator but has significantly worse prediction

in Model 2. This is consistent with its unsatisfactory variable selection perfor-

mance in Table 1.

In Figure 1−3 we depict the estimated coefficient functions by IVIS compared

to the ground truth.

5.2. Data

The experiment of Spellman et al. (1998) recorded genome-wide mRNA lev-

els for 6178 yeast ORFs (open reading frames) simultaneously over approximately

two cell cycle periods at 7-minutes intervals for 119 minutes with a total of 18

time points. The cell cycle is an ordered set of events and the cell cycle process is
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Table 4. IMSE and relative IMSE for estimating true β’s.

β1 β2 β3 β4 β5 β6

Model 1 (IMSE) 3.29 22.41 1.83 0.69 0.76 0.47
(1.18) (0.71) (0.47) (0.44) (0.44) (0.26)

Model 1 (RIMSE) 1.14 1.00 1.00 1.02 1.01 1.27
(0.27) (0.00) (0.01) (0.18) (0.05) (0.54)

Model 2 (IMSE) 4.27 3.75 3.84 4.24 NA NA
(2.29) (1.70) (2.28) (1.69) NA NA

Model 2 (RIMSE) 1.19 1.10 1.10 1.05 NA NA
(0.64) (0.35) (0.39) (0.18) NA NA

Model 3 (IMSE) 0.16 0.21 0.25 0.23 0.17 0.16
(0.22) (0.27) (0.43) (0.34) (0.22) (0.23)

Model 3 (RIMSE) 2.17 2.61 3.14 2.94 2.22 1.96
(3.15) (4.84) (5.54) (5.24) (3.70) (3.69)

Table 5. Prediction error comparison.

Oracle IVIS VIS+gSCAD
Mode 1 8.93 8.95 9.75

(0.28) (0.29) (2.20)
Model 2 1.04 1.05 3.58

(0.03) (0.03) (0.71)
Model 3 1.01 1.04 1.04

(0.03) (0.04) (0.04)

commonly divided into G1-S-G2-M stages, where the G1 stage stands for “GAP

1”, the S stage stands for “Synthesis” during which DNA replication occurs, the

G2 stage stands for “GAP 2”, and the M stage stands for “mitosis” during which

nuclear and cytoplasmic division occur. The experiment identified approximately

800 genes that vary in a periodic fashion during the yeast cell cycle; little was

known about the regulation of most of these genes. Transcription factors (TFs)

play critical roles in gene expression regulation. A transcription factor is a pro-

tein that binds to specific DNA sequences, thereby controlling the flow of genetic

information from DNA to mRNA.

We applied our IVIS method to investigate the transcription factors (TFs)

involved in the yeast cell cycle. We considered 240 genes without missing values,

and there were 96 transcriptional factors with at least one nonzero binding prob-

ability. Let yi(tj) denote the log-expression level for gene i at time point tj during

the cell cycle process; the chromatin immunoprecipitation (ChIP-chip) data of

Lee et al. (2002) was used to derive the binding probabilities. This dataset has

been analyzed by Wang, Li and Huang (2008) and Wei, Huang and Li (2011)

who used a varying coefficient model to link the binding probabilities to the

log-gene expression levels:
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Figure 1. Model 1: the line is the true β curve, while the dashed lines are
estimated curves by IVIS in three runs.

yi(tj) = µ(tj) +

96∑

l=1

xi,lβl(tj) + ǫi(tj).

This dataset has a moderately high dimension, p = 96 with n = 240. We first

used gSCAD to obtain a sparse estimator of the varying coefficient model. Figure

1 in the Web Appendix, shows the estimated β curves over time for 21 known
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Figure 2. Model 2: the line is the true β curve, while the dashed lines are
estimated curves by IVIS in three runs.

yeast TFs.

In order to demonstrate the performance of IVIS in a high dimensional case,

we added extra 384 pure noise variables to the original data to have a total

480 variables. We can test IVIS in the high-dimensional setting, as the total

number of variables is double the number of subjects. The 384 noise variables for

each subject were independently sampled from the standard normal distribution.

We applied IVIS to the augmented dataset and repeated the process 100 times.

Among the 21 known important TFs, IVIS on average identified 14 TFs with

standard deviation 0.84. Figure 2 in Web Appendix shows the estimated β curves

of 14 TFs identified by IVIS in one trial. Although the curves are not the same

as those in Figure 1 in the Web Appendix, similar patterns are shown for most

of the 14 TFs. We compare the estimated transcriptional effects side-by-side for

5 TFs in Figure 4.

We also compared the prediction error of IVIS with estimation for the full

model without variable selection. Five-fold cross validation was used to calculate

prediction error. We ran 100 replicates for each method. In Table 6, we record

the prediction error of SCAD, IVIS, and that of no variable selection with and

without adding 384 noise variables. Here IVIS significantly outperforms the
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Figure 3. Model 3: the line is the true β curve, while the dashed lines are
estimated curves by IVIS in three runs.

estimation without variable selection in terms of prediction when noise variables

are added. The performance of IVIS in the high dimensional setting is close

to the SCAD in much lower dimensional setting. The prediction error of IVIS

is also much lower than that of the full model without variable selection and

without noise variables. This suggests the prediction power of IVIS in data with

very high dimensional covariates. The R codes for the data analysis are available

upon request.
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Figure 4. Comparison of estimated time-varying transcriptional effects for
5 TFs identified by SCAD w/o noise (left column) and IVIS w/ 384 noise
(right column).

Table 6. Prediction error comparison.

w/o noise variables w/ 384 noise variables
SCAD no variable selection IVIS no variable selection

prediction error 0.225 0.507 0.294 0.782
(standard deviation) (0.004) (0.019) (0.017) (0.037)

6. Conclusion

We have studied VIS for variable screening in varying-coefficient models

and established its sure screening property. We have proposed IVIS for fitting

varying-coefficient models in ultra-high dimensions by iterating between a greedy

conditional VIS step and a gSCAD penalized fitting step. The proposed method-

ology has been supported by numeric examples.
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As to VIS and the nonparametric independence screening (NIS) in

Fan, Feng and Song (2011), both methods are flexible extensions of the marginal

correlation ranking idea in Fan and Lv (2008), and both methods use B-splines

to compute their marginal ranking statistics. The marginal ranking statistics is

the fundamental quantity in a marginal screening method. The two methods use

different marginal statistics as they are designed for different data structures. NIS

uses the marginal correlation of the response variable and the estimated marginal

nonparametric regression functions. VIS uses (1/|T |)
∫
T
β̂j(t)

2dt to rank the jth

covariate, where β̂j(t) is the estimated marginal coefficient function of the jth

covariate; this can be viewed as the integrated marginal correlation of the time-

varying response variable and the jth time-varying covariate projected onto the

B-Spline space. Efforts were taken in VIS to analyze the influence of longitudinal

observations on the dimensionality that VIS can handle.
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