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Abstract: The paper revisits two-sample hypothesis testing problems under Lehmann

alternatives. We consider the problem in a fully Bayesian nonparametric framework

with Polya tree priors. Our findings are expected to be useful in life testing and

survival analysis where Dirichlet process priors are not quite suitable. We derive

Bayes factors for some fixed power in the Lehmann alternative and also for the case

where the power is treated as a parameter. Our Bayesian solution has a closed form

even for censored data. It can be calculated easily and has a ready interpretation.
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1. Introduction

Lehmann alternatives were introduced by Lehmann (1953) in the two-sample

hypothesis testing context. Specifically, one considers independent random sam-

ples, X1, . . . , Xn1 each distributed as F (x) and Y1, . . . , Yn2 each distributed as

H(x). One tests H0 : F = H against the alternatives H1 : H(x) = 1 − {1 −
F (x)}α, where α > 0 and α ̸= 1. The power α is usually treated as a pre-

specified value, α = α0, say. Lehmann considered these tests not just for their

mathematical simplicity, but also for straightforward interpretation of alterna-

tives. For instance, when α0 is an integer, H(x) is the distribution function of the

minimum of α0 independent random variables each having distribution function

F . Moreover, the alternatives, in general, introduce a very natural stochastic

ordering of F and H. In particular, H is stochastically larger (smaller) than F

when 0 < α0 < 1 (α0 > 1). Clearly, Lehmann alternatives are also useful in

survival analysis since the survival function is 1 − F (x) under the distribution

function F . A well-known example is the Cox (1972) proportional hazards model

where the null hypothesis corresponds to a zero regression vector. Another im-

portant application was pointed out by Davies (1971). If Xi and Yi are lifetimes

of similar articles, the hypothesis asserts that the failure rate of one is a constant

multiple of the failure rate of the other.

Much of the literature on Lehmann alternatives is restricted to rank order

tests. In particular, these alternatives are used to compare the performance of
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locally most powerful rank tests against uniformly most powerful rank tests for

specific alternatives, as in Lehmann (1953) and Savage (1956). Subsequently,

Davies (1971) showed asymptotic equivalence of the approaches of Lehmman

and Savage.

Brooks (1974) addressed the problem from a Bayesian perspective. The

power α was regarded as an unknown parameter in his model. He began with

the joint distribution of rank order statistics as derived by Savage (1956), and

then assigned an F prior to α to complete the analysis.

A key feature of these articles is that the tests are based only on the ranks.

Here not just the ranks, but also the spacings of order statistics are taken into

account in the testing problem. We treat F as fully nonparametric and assign

priors to F .

Bayesian nonparametric methods have received extensive attention because

of their flexibility. Dirichlet process (DP) priors, introduced by Ferguson (1973),

are the most commonly used nonparametric priors, and a large body of theory

has been developed for them. Their scope is somewhat limited by the fact that

they select, with probability 1, only discrete probability measures. Accordingly,

it may not be reasonable to employ Dirichlet process priors, for example, in the

survival context.

There have been other approaches to accommodate continuous problems.

For instance, Kalbfleisch (1978) defines a family of random probability distribu-

tions called the Gamma process. Hjort (1990) discussed Beta processes in the

context of survival analysis. Beta process priors were also used by Damien and

Walker (2002) for testing the effects of two treatments. The Dirichlet process

mixture model introduced by Escobar and M. West (1995) received great suc-

cess in Bayesian nonparametrics. Antoniak (1974) proposed another approach,

which he referred to as mixtures of Dirichlet processes to “smooth” a Dirichlet

process that it gives positive probability to continuous distributions. However,

the posterior probability of a tie continues to be positive. We are interested in

Polya tree priors, originally introduced by Fabius (1964), while Ferguson (1974)

termed them Polya tree processes. These priors can select continuous distribu-

tions with positive probability and, if necessary, even with probability 1. Lavine

(1992, 1994) investigated the basic properties of Polya tree priors. Sufficient

conditions for these priors to assign probability 1 to the set of continuous dis-

tributions are discussed in Mauldin, Sudderth, and Williams (1992) (MSW) and

Lavine (1992). Muliere and Walker (1997) discussed how Polya tree priors could

be used in survival analysis without covariates. Hanson (2006) and Hanson and

Jara (2012) utilized mixtures of Polya tree (MPT) priors in a variety of survival

models. The reason we use Polya tree priors instead of MPT is that we end up

with an explicit expression of the Bayes factor by letting the Polya tree be data
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dependent. Chen and Hanson (2014) proposed a test for H0 : F = H vs. H1 :

F ̸= H that uses a Polya tree prior centered at a distribution that is estimated

from a parametric fit. However, they did not obtain the Bayes factor in a closed

form, and required MCMC methods to carry out the computation.

The outline of the remaining sections is as follows. The definition and basic

properties of Polya tree priors are reviewed in Section 2. Section 3 deals with

the case when the power is set to be some pre-specified value. In Section 4, the

power α is treated as an unknown parameter. We assign a spike and slab prior to

α and compute the posterior probability of a null hypothesis. Section 5 provides

a summary of our work and some pointers for future research.

2. Polya Tree Process

Polya tree processes form a large class of priors that includes the Dirichlet

process as a special case. The tree is constructed by successive partitioning of

the sample space. The partition plays a deterministic role in Polya trees, and a

large collection of parameters makes it possible to incorporate a wide range of

beliefs.

Let E = {0, 1}, Em be the m-fold product E×E×E×· · ·×E, E0 = ∅, and
E∗ =

∪∞
0 Em. Define a separating binary tree of partitions of Ω, Π = {πm,m =

0, 1, 2, . . .}, such that π0 = Ω. Here π0, π1, . . . forms a sequence of partitions such

that
∪∞

0 πm generates the measurable sets and every B ∈ πm+1 is obtained by

splitting some B′ ∈ πm into two sets. Degenerate splits are permitted, i.e. some

B ∈ πm can be split into B
∪

∅.
For each m, πm = {Bϵ⃗m : ϵ⃗m = ϵ1, . . . , ϵm ∈ Em} is a partition of Ω such

that for all ϵ⃗m ∈ E∗, Bϵ⃗m,0, Bϵ⃗m,1 is a partition of Bϵ⃗m . Let A = {aϵ⃗m : ϵ⃗m ∈ E∗}
be a set of nonnegative real numbers and y = {Yϵ⃗m : ϵ⃗m ∈ E∗} be a collection

of random variables. Following Lavine (1992), we say a random probability

measure P on Ω has a Polya tree distribution with parameter (Π, A), written as

P ∼ PT (Π, A), if

I. Yϵ⃗m,0, for all ϵ⃗m ∈ E∗, are independent; Yϵ⃗m,1 = 1− Yϵ⃗m,0;

II. for every ϵ⃗m ∈ E∗, Yϵ⃗m,0 has a Beta distribution with parameters aϵ⃗m,0 and

aϵ⃗m,1;

III. for every m = 1, 2, . . . and every ϵ⃗m ∈ E∗,

P (Bϵ1,...,ϵm)=(
m∏

j=1;ϵj=0

Yϵ1,...,ϵj )
m∏

j=1;ϵj=1

(1− Yϵ1,...,ϵj−1,0)=
m∏
j=1

Yϵ1,...,ϵj . (2.1)

Here the form of P (Bϵ1,...,ϵm) differs from what is given in Lavine (1992) by

re-arranging Yϵ⃗m and defining Yϵ⃗m,1 = 1 − Yϵ⃗m,0. With it, we get a compact

expression for P (Bϵ1,...,ϵm), noting that Yϵ⃗m,0 and Yϵ⃗m,1 are not independent.
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Properties of Polya tree processes are listed below. For more properties, see

Lavine (1992) and Ghosh and Ramamoorthi (2003).

1. Polya trees are conjugate. If P has a Polya tree distribution, andX | P ∼ P ,

then P | X has a Polya tree distribution. The posterior distribution is

updated as follows: for every ϵ⃗m such that X ∈ Bϵ⃗m , add 1 to aϵ⃗m . If

we only observe that an X is in some set I, then for every ϵ⃗m such that

Bϵ⃗m ⊃ I, add 1 to aϵ⃗m .

2. Some Polya trees assign probability 1 to the set of continuous distributions.

A sufficient condition for this can be found in Theorem 3.3.7 in Ghosh and

Ramamoorthi (2003).

3. If we have a Polya tree with partitions {Bϵ⃗m : ϵ⃗m ∈ E∗} and parameters A,

the predictive density at x ∈ Bϵ⃗m is

f(x) = lim
m→+∞

Pr(Bϵ⃗m)

λ(Bϵ⃗m)

= lim
m→+∞

∏m
i=1 aϵ1,...,ϵj/(aϵ1,...,ϵj−1,0 + aϵ1,...,ϵj−1,1)

λ(Bϵ⃗m)
, (2.2)

where λ(·) is Lebesgue measure.

4. A Polya tree can be constructed with centering at an arbitrary distribution.

There are two ways to do this. Suppose Ω = R and we want a Polya tree to

center at a pre-specified distribution function G. Let the partition be such

that the elements of πm are taken as the intervals [G−1(k/2m), G−1((k +

1)/2m)) for k = 0, 1, . . . , 2m− 1, with the obvious interpretation for G−1(0)

and G−1(1). We refer to this as Method 1. The other approach is to make

the partition data-dependent, as mentioned in Muliere and Walker (1997).

Suppose we specify a number of points x1 < · · · < xn as end points, and

let B1 = [x1,+∞), B11 = [x2,+∞),. . . ,B1, . . . , 1︸ ︷︷ ︸
n

= [xn,+∞). We need the

parameters aϵ⃗m to satisfy

aϵ1,...,ϵj−1,0

aϵ1,...,ϵj−1,1
=
G(Bϵ1,...,ϵj−1,0)

G(Bϵ1,...,ϵj−1,1)
(2.3)

with aϵ⃗m growing quickly enough to ensure the continuity property. (Here

and later, any unspecified subintervals are generated by splitting their par-

ent intervals into two equal parts with respect to the G measure.) For

example, B0 = (0, x1), and B00 = (0, xx) and B01 = [xx, x1) are obtained

by specifying a xx ∈ (0, x1) such that G(B00) = G(B01) = G(B0)/2. This

we refer to as Method 2. We take aϵ⃗m ∝ cm2 to ensure continuous priors.
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Method 2 has some benefits. First, the expectation of this Polya tree is G.

Second, as seen by (2.2), it assigns probability 1 to the set of continuous proba-

bility measures. We carried out calculations based on the partitions described in

Method 2. Generally, results only depend on finitely many parameters, a1, . . . , 1︸ ︷︷ ︸
k

and a1, . . . , 1︸ ︷︷ ︸
k−1

,0 for k = 1, . . . , n. Calculations go through as long as Polya trees

select continuous distributions with probability 1, and aϵ1,...,ϵm grows to infinity

as m→ +∞.

3. Two-Sample Tests with Fixed α = α0

Consider the two-sample case with fixed α = α0. There are some Polya tree

based nonparametric hypothesis tests in the two sample case, such as in Holmes et

al. (2009), Ma andWong (2012), and Chen and Hanson (2014), focusing primarily

on testing the difference of the distributions of the two samples. We limit our

attention to testing Lehmann alternatives. Suppose we have samples of sizes n1
and n2 drawn from distributions F and H, respectively. We discuss the case

H(x) = 1 − {1 − F (x)}α. Let X1, . . . , Xn1 and Y1, . . . , Yn2 be the two samples,

and denote the combined sample by V1, . . . , Vn1+n2 . Thus Vk, k = 1, . . . , n1+n2,

is a sample from F (x) under the null hypothesis H0 : α = 1 and a mixture of two

samples from different distributions under the alternative H1 : α = α0, where α0

is some fixed known real number not equal to 1. Without loss of generality we

assume that the Vk’s are ordered, in the absence of ties, V1 < V2 < · · · < Vn1+n2 .

Let, for k = 1, . . . , n1 + n2,

Zk =

{
0, if Vk ∈ X = {X1, . . . , Xn1}
1, if Vk ∈ Y = {Y1, . . . , Yn2}

. (3.1)

We consider censoring and take d1, . . . , dn1+n2 to be the censoring indicators

corresponding to V1, . . . , Vn1+n2 .

3.1. Derivation of the Bayes factor

Suppose that a Polya tree prior is applied to F (x) . For Bayesian hypothesis

testing, the Bayes factor is a widely used tool. Kass and Raftery (1995) reviewed

and summarized its uses. Here the Bayes factor is

BF01 =
posterior odds

prior odds
=
P (H0 | V1, . . . , Vn1+n2)/P (H1 | V1, . . . , Vn1+n2)

π(H0)/π(H1)
.

Let π(H0) = p0 = 1 − π(H1), where 0 < p0 < 1. Suppose the joint pdf of
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V1, . . . , Vn1+n2 is f0 under H0 and f1 under H1. Then

P (H0 | V1, . . . , Vn1+n2)

=

∫
p0f0(v1, . . . , vn1+n2)dPT (P )∫

p0f0(v1, . . . , vn1+n2)dPT (P ) +
∫
p1f1(v1, . . . , vn1+n2)dPT (P )

,

P (H1 | V1, . . . , Vn1+n2)

=

∫
p1f1(v1, . . . , vn1+n2)dPT (P )∫

p0f0(v1, . . . , vn1+n2)dPT (P ) +
∫
p1f1(v1, . . . , vn1+n2)dPT (P )

.

Therefore

BF01 =

∫
f0(v1, . . . , vn1+n2)dPT (P )∫
f1(v1, . . . , vn1+n2)dPT (P )

. (3.2)

And the Bayes factor is the ratio of the marginal distributions of V1, . . . , Vn1+n2

under H0 to that under H1. For more details, see Yuan and Johnson (2008).

We have a closed form expression of the Bayes factor for testing H0 against

H1 under Polya tree priors.

Theorem 1. Suppose that a Polya tree prior is applied to F (x) with partitions

B1 = [v1,+∞), B11 = [v2,+∞),. . . ,B1, . . . , 1︸ ︷︷ ︸
n1+n2

= [vn1+n2 ,+∞), and G is a strictly

increasing baseline measure (with respect to the Polya tree). Then the Bayes

factor of the test is

BF01 =
1

α
∑n1+n2

i=1 diZi

0

Γ(a1 + n1 + n2)Γ(a0 + a1 + n1 + n2α0)

Γ(a0 + a1 + n1 + n2)Γ(a1 + n2α0)

n1+n2−1∏
i=1

[ Γ(a1, . . . , 1︸ ︷︷ ︸
i

,1 + n1 + n2 − i)

Γ(a1, . . . , 1︸ ︷︷ ︸
i

,1 + n1 + n2 − i+ (α0 − 1)ti+1)

Γ(a1, . . . , 1︸ ︷︷ ︸
i

,0 + a1, . . . , 1︸ ︷︷ ︸
i

,1 + n1 + n2 − i+ (α0 − 1)ti+1 + di)

Γ(a1, . . . , 1︸ ︷︷ ︸
i

,0 + a1, . . . , 1︸ ︷︷ ︸
i

,1 + n1 + n2 − i+ di)

]
(3.3)

where ti =
∑n1+n2

j=i Zj.

The proof of the theorem is provided in the supplementary material. As

BF01 depends on α0, we write it as BF01(α0). Intuitively, ti shows how many

observations on the tail of the mixed sample are coming from sample Y at time

Vi. Thus if F (x) > H(x), we would expect larger ti’s because sample Y is

stochastically larger than sample X.
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The assumption that the baseline measure G is strictly increasing is not used

explicitly in the proof of the theorem. It is made to ensure that when m→ +∞,

λ(Bϵ⃗m) → 0 in a way such that the limit in (2.2) makes sense.

The Bayes factor does not depend on m, and involves only a finite number of

parameters, a1, . . . , 1︸ ︷︷ ︸
k

and a1, . . . , 1︸ ︷︷ ︸
k−1

,0, for k = 1, . . . , n1+n2. We re-parameterize

as 

σk = a1, . . . , 1︸ ︷︷ ︸
k

+ a1, . . . , 1︸ ︷︷ ︸
k−1

,0,

rk =
G([vk,+∞))

G([vk−1,+∞)) =

a1, . . . , 1︸ ︷︷ ︸
k

a1, . . . , 1︸ ︷︷ ︸
k−1

,0+a1, . . . , 1︸ ︷︷ ︸
k

,
(3.4)

where we have used the assumption that a1, . . . , 1︸ ︷︷ ︸
k

∝ G([vk,+∞)) and a1, . . . , 1︸ ︷︷ ︸
k−1

,0

∝ G([vk−1, vk)).

The Bayes factor now simplifies to

BF01(α0) =
1

α
∑n1+n2

i=1 diZi

0

Γ(σ1r1 + n1 + n2)Γ(σ1 + n1 + n2α0)

Γ(σ1 + n1 + n2)Γ(σ1r1 + n1 + n2α0)

×
n−1∏
i=1

Γ(σi+1ri+1 + n1 + n2 − i)Γ(σi+1 + n1 + n2 − i+ (α0 − 1)ti+1 + di)

Γ(σi+1 + n1 + n2 − i+ di)Γ(σi+1ri+1 + n1 + n2 − i+ (α0 − 1)ti+1)
.

Note that the data appear in the expression of the Bayes factor through ri’s

and ti’s. Basically, the ti’s here correspond to the effects of rank order statistics

and the ri’s explain the effect of the spacings of order statistics.

3.2. Properties of the Bayes factor

3.2.1. Monotonicity of the Bayes factor

Fix tj , then BF01(α0) is a function of ri. For i = 1, . . . , n− 1, if

qi+1(ri+1) = log(Γ(σi+1ri+1 + n1 + n2 − i))

− log(Γ(σi+1ri+1 + n1 + n2 − i+ (α0 − 1)ti+1)),

its derivative is

q′i+1(ri+1) = ψ(σi+1ri+1+n1+n2− i)−ψ(σi+1ri+1+n1+n2− i+(α0−1)ti+1)),

where ψ(·) is Digamma function. Hence, qi+1(ri+1) is decreasing if α0 > 1 and

increasing if α0 < 0, because ψ(·) is strictly increasing in (0,+∞). The same

result holds for the term log(Γ(σ1r1+n1+n2))− log(Γ(σ1r1+n1+n2α0)). This
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makes sense because large ri’s imply that the data are highly clustered, and

more likely under the alternative hypothesis. An analogous statement is true

when α0 < 1.

Similar calculations show the monotonicity of the Bayes factor on the ti’s

when the ri’s are fixed; BF01(α0) is increasing in the tj ’s if α0 > 1 and decreasing

if α0 < 1. This make sense since, when α0 > 1, it is less likely to observe large

ti’s under the alternative than under the null hypothesis, for one.

3.2.2. Effects of spacings

The proposed test considers order statistics and their spacings; the effect of

the ordering is reduced if two observations are close. This clearly enhances the

robustness of the test.

Consider, for example, that for some k0 ∈ {2, . . . , n1 + n2}, Vk0−1 and Vk0
are close, then

rk0 =
G([vk0 ,+∞))

G([vk0−1,+∞))
≈ 1,

and hence

Γ(σk0rk0 + n1 + n2 + 1−k0)Γ(σk0 + n1 + n2 + 1−k0 + (α0−1)tk0 + dk0−1)

Γ(σk0 + n1 + n2 + 1−k0 + dk0−1)Γ(σk0rk0 + n1 + n2 + 1−k0 + (α0−1)tk0)
(3.5)

≈ σk0 + n1 + n2 + 1− k0 + (α0 − 1)tk0
σk0 + n1 + n2 + 1− k0

. (3.6)

Here, reversing the order of Vk0−1 and Vk0 leaves all ti’s intact except for tk0 .

Hence, if the order is changed, the new Bayes factor differs from the original

one only by one term. If Vk0−1 and Vk0 are from the same sample, exchanging

their positions does not affect the Bayes factor. If not, tnewk0
= toldk0

± 1. The plus

(minus) sign corresponds to the case where Vk0−1 ∈ Y (X) and Vk0 ∈ X (Y). To

compute the new Bayes factor, (3.6) is replaced by

σk0 + n1 + n2 + 1− k0 + (α0 − 1)tnewk0

σk0 + n1 + n2 + 1− k0
.

Therefore,

BF01(α0)
new =

σk0 + n1 + n2 + 1− k0 + (α0 − 1)tnewk0

σk0 + n1 + n2 + 1− k0 + (α0 − 1)toldk0

BF01(α0)
old

=
(
1± α0 − 1

σk0 + n1 + n2 + 1− k0 + (α0 − 1)toldk0

)
BF01(α0)

old.

We call | (α0 − 1)/(σk0 + n1 + n2 + 1− k0 + (α0 − 1)toldk0
) | the expansion

rate. The flexibility of choosing parameters enables one to test H0 vs H1 ac-

cording to one’s needs. For instance, if σ1 = · · · = σn1+n2 , the expansion rate
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goes up as k0 increases, which implies that the order statistics play a more im-

portant role in the tail than at the beginning. The expansion rate grows as α0

increases for α0 > 1 or α0 → 0+ for α0 < 1. Thus the effect of ordering is

enhanced when the distance from the alternative to the null is increased. Gen-

eral selection of σk0 = ck20 ensures that the expansion rate is small when k0 is

large; When k0 is small, with reasonable sample sizes, n1 +n2 − k0 is reasonably

large, and the expansion rate does not expand or shrink the original Bayes factor

overwhelmingly.

3.2.3. Asymptotic results

We can track the asymptotic behavior of the Bayes factor when α0 ap-

proaches a limit, for example when α0 → ∞. The power of α0 in BF01(α0)

is the negative of
∑n1+n2

i=1 diZi, which is the number of uncensored observations

in sample Y. Given one uncensored observation in sample Y, there is a corre-

sponding di ̸= 0 for some i ∈ 1, . . . , n1 + n2. Then, for any i such that diZi ̸= 0,

we have di ̸= 0, di = 1, and one term in the expression of Bayes factor associated

with this particular di is

Γ(σi+1ri+1 + n1 + n2 − i)Γ(σi+1 + n1 + n2 − i+ (α0 − 1)ti+1 + di)

Γ(σi+1 + n1 + n2 − i+ di)Γ(σi+1ri+1 + n1 + n2 − i+ (α0 − 1)ti+1)

= const.× Γ(σi+1 + n1 + n2 − i+ (α0 − 1)ti+1 + di)

Γ(σi+1ri+1 + n1 + n2 − i+ (α0 − 1)ti+1)

> const.× Γ(σi+1 + n1 + n2 − i+ (α0 − 1)ti+1 + di)

Γ(σi+1 + n1 + n2 − i+ (α0 − 1)ti+1)

= const.× {σi+1 + n1 + n2 − i+ (α0 − 1)ti+1}, (3.7)

which is O(α0) when ti+1 ̸= 0.

These terms offset the power of negative
∑n1+n2

i=1 diZi. Thus, if there exists

at least one uncensored observation in the sample X and the indicator function

in (3.7) is nonzero, BF01 → ∞. When all uncensored observations in sample

Y are clustered closely and they are uniformly smaller than any observations in

sample X, the ti’s attain their minimums, denoted by tmin
i ’s, where{

t1 = n2, t2 = n2 − 1, . . . , tn2 = 1,

ti = 0, for i = n2 + 1, . . . , n1 + n2.
(3.8)

Also, ri ≈ 1 for i = 2, . . . , n2. One can show that in this case BF01 → 0, as

expected.
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Table 1. Ovarian Cancer.

Treatment Survival Time (Days)

Treatment 1 59, 115, 156, 268, 329, 431, 448+, 477+, 638, 803+, 855+, 1040+, 1106+

Treatment 2 353, 365, 377+, 421+, 464, 475, 563, 744+, 769+, 770+, 1129+, 1206+, 1227+

Table 2. Cox proportional hazards model.

coef exp(coef) se(coef) P-value lower .95 upper .95
Treatment 2 -0.5964 0.5508 0.5870 0.31 0.1743 1.74

3.2.4. Impact of prior parameters

Technically, specifying a Polya tree prior requires selection of infinitely many

parameters, aϵ⃗m , or σk and rk. Our partition is essentially based on order statis-

tics, putting larger observations at a higher level of the Polya tree. This leads to

larger σk and causes smaller impact to the Polya tree. Therefore, these tests are

insensitive in the tails. One can alter the situation by assigning aϵ⃗m accordingly.

For instance, one can use a common value for all corresponding σk’s, which leads

to a test equally sensitive on R+. As long as one restricts the assignment of σk’s

to a finite number, it is not going to affect the continuity property of the Polya

tree priors because one then modifies only a finite number of parameters.

3.3. Data analysis

We take the ovarian cancer dataset in the Survival package of R software

as a data example. The data set was originally reported by Edmunson et al.

(1979), and was analyzed in a number of papers (e.g. Collett (2003)). The

study included n = 26 patients with advanced ovarian carcinoma (stages IIIB

and IV). Treatment of patients using either cyclophosphamide alone (1 g/m2) or

cyclophosphamide (500 mg/m2) plus adriamycin (40 mg/m2) by i.v. injection

every 3 weeks produced partial improvement in approximately one third of the

patients. The objective of the trial was to see if the two treatments differentiate

in prolonging the time of survival.

As an illustration, we used the Treatment 1 group as the baseline group. A

simple Cox proportional hazards model regression gives an estimated α̂ = 0.55.

We used this as the power parameter in the alternative.

3.3.1. Bayes factor using the proposed method

The maximum likelihood estimates of a and b are (0.947, 980.4), based on

the combined sample, where the Weibull (a, b) has density

f(x) =
a

b
(
x

b
)a−1e−(x/b)a . (3.9)
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Figure 1. Ovarian Cancer: log(BF) for different α0.

The large scale parameter is due to the fact that one third of all patients

in the study showed improvement. We assigned a Weibull (0.947, 980.4) distri-

bution as the baseline of Polya tree for illustrationl. The centering of the Polya

tree process at a Weibull distribution should not compromise the result because

the Polya tree itself has large variability, and thus it can accommodate many

distributions other than Weibull distributions so that the centering of the Polya

tree is not that critical. For testing H0 : α = 1 vs H1 : α = α0 = 0.55, we find

log(BF01(0.55)) = −0.604. Based on the criteria described in Kass and Raftery

(1995), this shows little evidence against H0. Repeating the test with α0 ranging

from 0 to 6 on the data set, we obtain the curve as shown in Figure 1. We took

c = 1, and have a discussion of this below.

The lower dotted line is at level −3, which shows the region for strong ev-

idence against H0 with respect to Kass and Raftery (1995) criteria. For this

particular data set, there appears to be no evidence against H0 at any α.

3.3.2. Sensitivity to the Choice of c

The choice of c is generally subjective. It serves as a precision parameter in

that it affects the prior variance of P (Bϵ⃗m), as derived in Hanson (2006)

Var (P (Bϵ⃗m)) = 4−m[
m∏
j=1

2cj2 + 2

2cj2 + 1
− 1].

The variance converges to 0 as c → ∞. In this case, the Polya tree places

all mass on distributions which more closely resemble the centering distribution.
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Figure 2. Ovarian Cancer: log(BF) for different α0 and c.

Holmes et al. (2009), Berger and Guglielmi (2001) and a few others look at the

Bayes Factors for different values of c to investigate sensitivity. Generally speak-

ing, the parameter c does not impact the results too much. As an illustration,

the Ovarian data were used to calculate the Bayes Factors for c = 0.1, c = 1 and

c = 10. From Figure 2, the Bayes Factors (logarithm transformed) are close to

each other.

3.4. Robustness study through simulations

Simulation studies were carried out to investigate the robustness of mis-

specifiying the center of the Polya tree priors. The results of many parametric

methods depend heavily on the distributional assumptions. We alleviate this

dependence by assigning a prior on a large family of distributions. When the

Polya tree process covers a large set of distributions, it can capture the true

distribution even though the center of the process is incorrectly specified. To

illustrate this, we generated the X sample from a Weibull (3,12) distribution,

with the distribution of sample Y chosen according to H1.

Figure 3 shows how log(BF01(α0)) decreases as n1 and n2 increase when α0

is set to be 1.5, and 0.5. In each graph, three Bayes factors were calculated:

one with the Weibull distribution as the center of Polya tree process prior (as

shown by circles), one with the Gamma distribution with estimated parameters

based on sample X as the center (as shown by triangles), and one with the

Normal distribution with estimated parameters (as shown by diamonds). The

test is consistent in the sense that the Bayes factor decreases to −∞ as the
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(a) Baseline Measure: True and Est.
Weibull Distribution with α0 = 1.5.

(b) Baseline Measure: True and Est.
Weibull Distribution with α0 = 0.5.

Figure 3. log(BF) as sample size increases under the alternative hypothesis.

(a) Baseline Measure: True and Est.
Weibull Distribution with α0 = 1.5.

(b) Baseline Measure: True and Est.
Weibull Distribution with α0 = 0.5.

Figure 4. log(BF) as sample size increases under the null hypothesis.

sample size grows. Robustness is suggested by the fact that the curves with

Gamma and Normal distributions do not depart much from the one with the

true distribution. Figure 4 demonstrates the patterns of log(BF01(α0)) when

testing H1 with α0 = 1.5 and α = 0.5 under the null hypothesis.
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4. Bayesian Analysis with α Unknown

4.1. Posterior probability calculation

Brooks (1974) treated the power α as a unknown parameter and assigned a

F (2ν1, 2ν2, δ) prior to it,

p(α) ∝ αν1−1

(α+ δ)ν1+ν2
.

Then the posterior distribution of α is analyzed under the usual Bayesian paradigm.

Similar analysis is possible under our setup. Instead of a continuous prior

over (0,+∞) for α, we propose a spike and slab prior so that both the prior and

posterior probability of H0 are non-zero and can be evaluated explicitly. To test

H0 : α = 1 vs H1 : α ̸= 1, suppose π0 is fixed, with 0 < π0 < 1. Let p(α) be the

density of a pre-specified continuous prior on (0,+∞). A spike and slab prior for

α is π(α) = π0I[α=1] + (1− π0)p(α), where π(H0) = π0 > 0. It is straightforward

that

BF01 =

∫
f0(v1, . . . , vn1+n2 | α = 1)dPT (P )∫ ∫
f1(v1, . . . , vn1+n2 | α)dPT (P )p(α)dα

=

(∫ ∫
f1(v1, . . . , vn1+n2 | α)dPT (P )∫

f0(v1, . . . , vn1+n2 | α = 1)dPT (P )
p(α)dα

)−1

=

(∫
1

BF01(α)
p(α)dα

)−1

. (4.1)

We can also calculate the posterior probability as follows.

π(H0 | v1, . . . , vn1+n2)

=
π(H0)f(v1, . . . , vn1+n2 | H0)

f(v1, . . . , vn1+n2)

=
π0f0(v1, . . . , vn1+n2)

π0f0(v1, . . . , vn1+n2) + (1− π0)
∫
f(v1, . . . , vn1+n2 | α)p(α)dα

=

(
1 +

1− π0
π0

∫
f(v1, . . . , vn1+n2 | α)p(α)

f0(v1, . . . , vn1+n2)
dα

)−1

=

(
1 +

1− π0
π0

∫
p(α)

BF01(α)
dα

)−1

. (4.2)

Hypothesis tests can be made based on π(H0 | v1, . . . , vn1+n2). A naive rejec-

tion region can be taken as {v1, . . . , vn1+n2 : π(H0 | v1, . . . , vn1+n2) < 0.5}. The

exact posterior distribution of α is analytically untractable. However, standard

MCMC methods can be used to approximate its posterior distribution. We do

not address this issue.
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Table 3. Posterior probability with a spike and slab prior.

p(α) π(H0 | v1, . . . , vn1+n2) π(H0 | v1, . . . , vn1+n2) π(H0 | v1, . . . , vn1+n2)
π0 = 0.1 π0 = 0.5 π0 = 0.9

Gamma(2,3) 0.0985 0.4958 0.8985
Gamma(5,2) 0.4038 0.8591 0.9821

F(3,5) 0.1453 0.6047 0.9323
F(6,3) 0.1426 0.5995 0.9309

Beta(3,3) 0.0746 0.4204 0.8672

4.2. Data application: Revisting ovarian cancer

We assigned three prior probabilities to the null hypothesis H0, π0 = 0.1,

0.5, 0.9. A spike and slab prior with Gamma distribution, central F distribution

and Beta distribution were used. The resulting posterior probabilities are shown

as follows.

The posterior probabilities in Table 3 are fairly sensitive to π0: log(BF01) is

relatively large for different α for this data set as shown in Figure 1. There is

no clear evidence here that the survival curves for the two treatment groups are

different.

5. Discussion

Our results on Bayes factors work only in cases without ties, and there are

situations where ties occur. Here there are ties of censored data and ties of event

times. For the first of these, our calculations still work. However, this is not so

for the second type.

The problem is that the limit (2.2) may not exist or is infinity for some

x ∈ R+ because the density does not necessarily exist when the underlying

distribution is not absolutely continuous. In addition, when multiple events are

observed at the same time, we know that the underlying distribution must be

non-continuous. In this case, to keep the prior reasonable, we should not assign

parameters such that the Polya tree gives probability 1 to the set of continuous

distributions. We need to assign parameters to Polya tree accordingly, depending

on whether it gives positive probability to the set of discrete distributions, or

to the set of partly discrete, and partly continuous distributions. Taking into

account the fact that the Dirichlet Process is a special case of a Polya tree, one

would like to utilize it in cases where ties occur. We did calculate the Bayes factor

under this assumption. No asymptotic properties could be developed, since the

Bayes factor depends not only on the number of tied observations, but also on

the location on R+ of the occurrences of ties.

We can borrow some ideas from how people deal with ties in the partial

likelihood function. Suppose observed data set (tk, δk), k = 1, 2, . . . , n, sorted by
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tk, has tied event times tk0 = tk0+1 = t. If the underlying distribution of times

is continuous, ties are attributable to measurement error. Take tk0 > tk0+1 and

tk0 < tk0+1 as equally likely. We can calculate an approximate BF01 by letting

both tk0 = t + ϵ, tk0+1 = t and tk0+1 = t + ϵ, tk0 = t for some ϵ . Then the

overall BF01 can be taken as the average of the two resulting Bayes factors. The

continuity of BF01 on rk0 guarantees that the approximate BF01 is close to its

true value for small ϵ.
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