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Abstract: P-values are a mainstay in statistics but are often misinterpreted. We

propose a new interpretation of p-value as a meaningful plausibility, where this is

to be interpreted formally within the inferential model framework. We show that,

for most practical hypothesis testing problems, there exists an inferential model

such that the corresponding plausibility function, evaluated at the null hypothesis,

is exactly the p-value. The advantages of this representation are that the notion

of plausibility is consistent with the way practitioners use and interpret p-values,

and the plausibility calculation avoids the troublesome conditioning on the truth-

fulness of the null. This connection with plausibilities also reveals a shortcoming

of standard p-values in problems with non-trivial parameter constraints.
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1. Introduction

P-values are ubiquitous in applied statistics, but are widely misinterpreted

as either a sort of Bayesian posterior probability that the null hypothesis is

true, or as a frequentist error probability. Indeed, in 2012, media were reporting

the discovery of the elusive Higgs boson particle (Overbye (2012)) and statistics

blogs were pointing out how some journalists and physicists had misinterpreted

the resulting p-values. Our objective here is to provide a new and simpler way

to understand them, so that these misinterpretations might be avoided.

A prime reason for the frequent misinterpretation of p-values is that the stan-

dard textbook definition is inconsistent with people’s common sense. The goal

of this paper is to provide a more user-friendly interpretation. We show that the

p-value can be interpreted as a plausibility that the null hypothesis is true. This

“plausibility” is precisely defined within the inferential model (IM) framework of

Martin and Liu (2013a), built upon two fundamental principles of Martin and

Liu (2014a) for valid and efficient statistical inference. Consider the problem of

testing a null hypothesis H0 versus a global alternative H1. We show that, under

mild conditions, for any p-value (depending onH0 and the choice of test statistic),

there exists a valid IM such that the plausibility ofH0 is the p-value. In this sense,

http://dx.doi.org/10.5705/ss.2013.087
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the p-value can be understood as the plausibility, given the observed data, that

H0 is true. In the Higgs boson report, since the p-value is minuscule (p ≪ 10−6),

one concludes that the hypothesisH0 : “the Higgs boson does not exist” is highly

implausible, hence, a discovery. This line of reasoning based on small p-values is

consistent with Cournot’s principle (Shafer and Vovk (2006)).

The word “plausibility” fits the way practitioners use and interpret p-values:

a small p-value means H0 is implausible, given the observed data. Evaluating

plausibility involves a probability calculation that does not require one to assume

that H0 is true, so one avoids the questionable logic of proving H0 false by using a

calculation that assumes it is true. The use of IMs to provide probabilistic inter-

pretations of classically non-probabilistic summaries is proving to be beneficial;

see, for example, Martin (2014).

The remainder of the paper is organized as follows. Section 2 sets up our

notation and gives the formal definition of p-value, with a brief discussion of its

common correct and incorrect interpretations. The basics of IMs are introduced

in Section 3, in particular, predictive random sets and plausibility functions. In

Section 4 we prove that, given essentially any hypothesis testing problem, there is

a valid IM such that the corresponding plausibility function, evaluated at the null

hypothesis, is the p-value. There we highlight a similar connection between the

IM plausibilities and objective Bayes posterior probabilities, and an apparently

unrecognized shortcoming of p-values in problems with non-trivial parameter

constraints. Two examples involving binomial and normal data are presented in

Sections 4.3–4.4, and some concluding remarks are given in Section 5.

2. The P-value

2.1. Setup and formal definition

Let X denote observable data, taking values in X. There is a sampling model

PX|θ, indexed by a parameter θ ∈ Θ, and the goal is to make inference on θ using

the observed dataX = x. Here bothX and θ are allowed to be vector-valued, but

do will not make this explicit in the notation. The hypothesis testing problem

starts with a hypothesis, or assertion, about the unknown θ. Mathematically,

this is characterized by a subset Θ0 ⊂ Θ, and we write H0 : θ ∈ Θ0 for the null

hypothesis and H1 : θ ̸∈ Θ0 for the alternative hypothesis. The goal is to use

observed data X = x to determine, with some measure of certainty, whether H0

or H1 is true.

Consider the description of the p-value given by (Fisher, 1959, p.39), viewed

as follows. If the observed X = x gives small p-value, then one of two things

occurred: relative to H0, a rare chance event has occurred, or H0 is false. The

unlikeliness of the former drives us to conclude the latter. To put this in more

standard terms, suppose there is a test statistic T : X → R, possibly depending
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on Θ0, such that large values of T (X) suggest that H0 may not be true. The

p-value is defined, for X = x, as

pval(x) = pvalT,Θ0
(x) = sup

θ∈Θ0

PX|θ{T (X) ≥ T (x)}. (2.1)

When Θ0 = {θ0}, a point null, (2.1) simplifies to pval(x) = PX|θ0{T (X) ≥ T (x)},
the expression found in most introductory textbooks.

Intuitively, pval(x) compares the observed T (x) to the sampling distribution

of T (X) when H0 is true. If pval(x) is small, then T (x) is an outlier under H0

and we conclude that H0 is implausible. Conversely, if pval(x) is relatively large,

then the observed T (x) is consistent with at least one PX|θ, with θ ∈ Θ0, so H0

is plausible in the sense that it provides an acceptable explanation of reality.

2.2. Standard interpretations

Standard textbooks have adopted an equivalent though arguably more ob-

scure interpretation. The standard textbook interpretation of p-value goes some-

thing like this:

pval(x) is the probability that an observable X is “at least as extreme”

as the x actually observed, assuming H0 is true.

This leads to the common misinterpretation of p-value as a sort of Bayesian

posterior probability of H0. Lehmann and Romano (2005, Sec. 3.3) after laying

out the details of the Neyman–Pearson testing program, have it that

pval(x) is the greatest lower bound on the set of all α such that the

size-α test rejects H0 based on T (x).

A danger here is that the conditioning on H0 is hidden in the definition of size;

users can potentially misinterpret pval(x) as the probability of incorrectly reject-

ing H0 based on x.

Some statisticians have abandoned the use of p-values, advocating for other

tools for measuring evidence supportingH0 and/or testingH0, such as confidence

intervals; see, e.g., Berger and Delampady (1987, Sec. 4.3) and the discussion by

G. Casella and R. Berger on that same paper. This preference for confidence

intervals is fairly common in medical, social, and other applied sciences. Some

journals, such as the American Journal of Public Health, have made concerted

efforts to get authors to use confidence intervals rather than p-values (Fidler et

al. (2004)). Still, confidence intervals are not free of their own difficulties, nor are

Bayes factors (Kass and Raftery (1995)) or Bayesian p-values (Gelman, Meng,

and Stern (1996); Rubin (1984)). We think a better or simpler way to understand

the ubiquitous p-value is a valuable contribution.
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3. Review of Inferential Models

3.1. Big picture

The inferential model (IM) framework produces exact prior-free probabilistic
measures of evidence for/against any assertion about the unknown parameter;
see Martin and Liu (2013a), Martin, Zhang, and Liu (2010), and Zhang and
Liu (2011). This is accomplished by first making an explicit association between
the observable data X, the unknown parameter θ, and an unobservable auxil-
iary variable U . Random sets are introduced to predict the unobservable U ,
and inference about θ is obtained via probability calculations with respect to
the distribution of this random set. The IM framework has some connections
with existing approaches, such as fiducial (Hannig (2009, 2013); Hannig and Lee
(2009)), confidence distributions (Xie, Singh, and Strawderman (2011); Xie and
Singh (2013)), Dempster–Shafer theory (Dempster (2008); Shafer (1976, 2011)),
generalized p-values and confidence intervals (Tsui andWeerahandi (1989); Weer-
ahandi (1993); Chiang (2001)), and Bayesian inference with default, reference,
and/or data-dependent priors (Berger (2006)); Berger, Bernardo, and Sun (2009);
Fraser et al. (2010); Fraser (2011); Ghosh (2011)).

IMs, fiducial, and Dempster–Shafer theory all introduce auxiliary variables
into the inference problem. Both fiducial and Dempster–Shafer theory condition
on the observedX = x, then develop a sort of distribution on the parameter space
by inverting the data–parameter–auxiliary variable relationship and assuming
that U retains its a priori distribution after X = x is observed. The IM approach
targets the (unattainable) best possible inference corresponding to the case where
U is observed. Uncertainty about θ, after X = x is observed, is propagated
from the uncertainty about hitting the true U with a random set. In addition
to accomplishing Fisher’s goal of prior-free probabilistic inference, IMs produce
inferential output which is valid for any assertion of interest (Section 3.3); fiducial
probabilities are valid only for special kinds of assertions (Martin and Liu (2013a,
Sec. 4.3.1)). Moreover, a general theory of optimal IMs, concerning efficiency of
the resulting inference, may not be out of reach.

3.2. Construction

Following Martin and Liu (2013a), the IM construction proceeds in three
steps.

A-step. This proceeds by specifying an association between X, θ, and U . Like
fiducial, Dempster–Shafer, and Fraser’s (1968) structural models, this can be
described by a pair (PU , a), where PU describes the distribution (and also, im-
plicitly, the support U) of the auxiliary variable U , and a describes the data-
generating mechanism driven by PU . We write this as

X = a(θ, U), with U ∼ PU .
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That is, if U is sampled from PU and then plugged in to the function a for a

given θ, then the resulting X has distribution PX|θ. The association need not be

described by a formal equation—it is enough to have a rule/recipe to construct

X from a given θ and U ; see e.g., Section 4.3. To complete the A-step, construct

a sequence of subsets of Θ indexed by (x, u):

Θx(u) = {θ : x = a(θ, u)}. (3.1)

P-step. Based on the idea that knowing the unobserved value of U is “as good

as” knowing θ itself, the goal of the prediction step is to predict this unobserved

value with a predictive random set, denoted by S. Certain assumptions are

required on the support S and distribution PS of the predictive random set; see

Section 3.3.

C-step. This step combines the observed X = x, which specifies a sub-collection

of sets Θx(·) in (3.1), with the predictive random set S. The result is an x-

dependent random subset of Θ:

Θx(S) =
∪

u∈S Θx(u). (3.2)

Evidence for/against an assertion A ⊆ Θ concerning the unknown parameter can

now be obtained via the PS-probability that Θx(S) is/is not a subset of A. More

precisely, we evaluate

belx(·;S) = PS{Θx(S) ⊆ ·}, (3.3)

the belief function, at both A and Ac, as a summary of evidence for and against

A, respectively. Alternatively, we can report belx(A;S) together with

plx(A;S) = PS{Θx(S) ∩A ̸= ∅} = 1− belx(A
c;S), (3.4)

the plausibility function at A. It can be readily shown that belx(A;S) ≤ plx(A;S)
for any A and any S. Then, as described briefly below, the pair {belx(·;S),
plx(·;S)} is used for inference about θ; see Martin and Liu (2013a) for details.

Statistical inference based on the IM output focuses on the relative magni-

tudes of belx(A;S) and plx(A;S). An assertion A is deemed true (resp. untrue),

given X = x, if both belx(A;S) and plx(A;S) are large (resp. small). Conversely,

if belx(A;S) is small and plx(A;S) is large, then there is no clear decision to be

made about the truthfulness of A, given X = x, so maybe one needs more data.

The definition of “small” and “large” values of belief/plausibility functions are

specified by the theoretical validity properties discussed in Section 3.3.

One can also construct frequentist procedures based on plausibility functions.

For example, for α ∈ (0, 1), a 100(1− α)% plausibility region for θ is defined as

Πα(x) = {θ : plx(θ;S) > α}. (3.5)
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It is a consequence of Theorem 1 below that this region achieves the nominal

1− α frequentist coverage probability.

Throughout it is assumed that Θx(u) in (3.1) satisfies Θx(u) ̸= ∅ for all

(x, u) pairs. This boils down to there being no non-trivial constraints on the

parameter space Θ. When this fails, one can usually take a dimension-reduction

step, described in Martin and Liu (2014b), to transform to a problem where this

assumption holds. Under this condition, it is sometimes convenient to evaluate

the plausibility on the u-space as opposed to the θ-space as in (3.4). Given x

and A, let

Ux(A) = cl{u : Θx(u) ⊆ A}, (3.6)

where clB denotes the closure of the set B. If Θx(u) ̸= ∅ for all (x, u), as we

have assumed, then belief and plausibility can be evaluated on the u-space as

belx(A;S) = PS{S ⊆ Ux(A)} and plx(A;S) = 1− PS{S ⊆ Ux(A
c)}. (3.7)

This formulation is used in the main result in Section 4.

3.3. IM validity

It is important that the IM’s belief and plausibility functions are meaningful

across similar studies. This type of meaningfulness is referred to as validity in

Martin and Liu (2013a). Here, the IM is said to be valid if

sup
θ∈A

PX|θ{plX(A;S) ≤ α} ≤ α, ∀ A ⊆ Θ, ∀ α ∈ (0, 1). (3.8)

This means that, if A is true, then plx(A;S) is small for only a small proportion

of possible x values, “outliers.” Since it holds for all A ⊆ Θ, a similar statement

about belX(A;S) can also be made. Validity holds, without special modification,

even for the scientifically important case of singleton A. In fact, for reasonably

chosen predictive random sets (Martin and Liu (2013a, Corollary 1)), the latter

“≤ α” can be replaced by “= α;” hence plX(A;S) ∼ Unif(0, 1) when A = {θ0}
is true. In Theorem 2 below we show that the p-value is a plausibility function

at the null hypothesis. So (3.8) restates the familiar result that, if the null

hypothesis is true, then the p-value is (stochastically dominated by) a Unif(0, 1)
random variable.

The validity property (3.8) holds if the predictive random set S satisfies

certain conditions, no requirements on PX|θ or the association (PU , a) are needed.

Let (U,U ) be the measurable space on which PU is defined, and assume that

U contains all closed subsets of U. Martin and Liu (2013a) gives the following

result.

Theorem 1. The IM is valid for all assertions A ⊆ Θ if Θx(u) ̸= ∅ for all (x, u)

and the predictive random set S satisfies the following:
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P1. The support S ⊂ 2U of S contains ∅ and U, and:
(a) each S ∈ S is closed and, hence PU -measurable, and

(b) for any S, S′ ∈ S, either S ⊆ S′ or S′ ⊆ S.

P2. The distribution PS of S satisfies PS{S ⊆ K} = supS∈S:S⊆K PU (S), K ⊆ U.

Martin and Liu (2013a) show that a wide variety of predictive random sets

are available for which P1–P2 hold, so that IM validity is rather easy to arrange.

However, efficiency is a concern and, for this, they present a theory of optimal

IMs.

4. P-value as an IM plausibility

4.1. Main result

On the association (a,PU ), the null hypothesis Θ0, and the test statistic

T : X → T, we assume the following.

A1. For every (x, u) there exists θ such that T (x) = T (a(θ, u)).

A2. supθ∈Θ0
T (a(θ, ·)) is a PU -measurable function.

A3. PU{supθ∈Θ0
T (a(θ, U)) < t} = infθ∈Θ0 PU{T (a(θ, U)) < t} for all t ∈ T.

Here, A2 ensures the meaningfulness of the probability statement in A3, and

holds generally under mild separability and continuity conditions, respectively,

on Θ0 and on T and a, while A3 makes precise the stochastic smoothness and

stochastic ordering T (X) should possess as a function of θ. Assumptions A2–A3

hold trivially for the important point-null case. It is also easy to check A3 in

many common examples, e.g., if X1, . . . , Xn are iid N(θ, 1), and T (X) = X̄, then

T (a(θ, U)) = θ + U , and A3 holds for any Θ0 of the form (−∞, θ0].

Theorem 2. If A1–A3 hold for the given association (a,PU ), hypothesis Θ0, and

test statistic T : X → T, then there exists an admissible predictive random set

S, depending on T and Θ0, such that the plausibility function plx(Θ0;S) equals

pval(x) = pvalT,Θ0
(x) in (2.1) for all x ∈ X.

Proof. Without loss of generality, we reduce the baseline association X =

a(θ, U), with U ∼ PU , to T (X) = T (a(θ, U)), again with U ∼ PU . In this

case, the A-step of the IM construction generates the collection of subsets:

Θx(u) = {θ : T (x) = T (a(θ, u))}, x ∈ X, u ∈ U.

These sets are non-empty for all (x, u) by A1. For the P-step, we define a

collection S = {St : t ∈ T} of subsets of U with

St = cl{u : supθ∈Θ0
T (a(θ, u)) < t}, t ∈ T.
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The sets are closed, are nested, and PU -measurability follows from A2. Thus P1

in Theorem 1 holds. Define a predictive random set S, supported on S, with
distribution PS satisfying

PS{S ⊆ K} = PU (St⋆K
) = inf

θ∈Θ0

PX|θ{T (X) < t⋆K}, K ⊆ U, (4.1)

where t⋆K = sup{t ∈ T : St ⊆ K}; the last equality in (4.1) is a consequence of

A3. For such as S, the corresponding IM is valid. For notational consistency, set

A = Θ0. The C-step proceeds as in the general case in Section 3.2, and, for any

x ∈ X, the plausibility function (3.7), evaluated at A, satisfies

plx(A;S) = 1− PS{S ⊆ Ux(A
c)} = 1− PS{S ⊆ ST (x)}. (4.2)

The second equality in (4.2) needs justification. First, we have ST (x) ⊆ Ux(A
c)

since

u ∈ ST (x) =⇒ T (x) > supθ∈A T (a(θ, u))

=⇒ T (x) = T (a(θ, u)) ∃ θ ̸∈ A

=⇒ Θx(u) ⊆ Ac

=⇒ u ∈ Ux(A
c).

It remains to show that ST (x) is the largest of the St’s contained in Ux(A
c). For

any small ε > 0, there exists u ∈ ST (x)+ε such that T (x) ≤ supθ∈A T (a(θ, u)); for

this u, Θx(u) ̸⊆ Ac, so u ̸∈ Ux(A
c). We have verified (4.2), so

plx(A;S) = 1− PS{S ⊆ ST (x)}
= 1− inf

θ∈A
PX|θ{T (X) < T (x)} [by (4.1)]

= sup
θ∈A

PX|θ{T (X) ≥ T (x)}.

The right-hand side is pval(x) in (2.1), completing the proof.

Corollary 1. Under A1, if Θ0 = {θ0}, then the conclusion of Theorem 2 holds.

Proof. Conditions A2–A3 hold automatically for singleton Θ0 and suitable T .

4.2. Remarks

Dempster (2008, p.375) points out a similar connection between plausibility

and p-value; specifically, he shows numerically how Fisher’s p-value can be de-

composed into two pieces—one piece corresponding to belief in H0 and the other

corresponding to “don’t know”—the sum of which is our plausibility. His exam-

ple is for the standard test for a Poisson mean based on a one-sided alternative

hypothesis, and he claims no such a correspondence in general.
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In the Bayesian setting, a search for “objective” priors often focuses on prob-

ability matching (e.g., Ghosh (2011)), that is, choose the prior such that the

corresponding posterior tail probabilities and p-values are asymptotically equiv-

alent. Given the connection between p-values and IM plausibilities, these objec-

tive Bayes posterior probabilities can also be interpreted as plausibilities. This

is perhaps not surprising given that objective Bayes posterior distributions can

be viewed as a simple and attractive way to approximate frequentist p-values

(Fraser (2011)).

This connection between p-values and plausibilities also casts light on the

argument in Schervish (1996) concerning the use of p-values as measures of evi-

dence; see, also, Berger and Sellke (1987). He shows that, in general, p-values fail

to satisfy that, for a given x, if Θ′
0 ⊆ Θ0, then the p-value for Θ′

0 should be no

more than the p-value for Θ0. Theorem 2 explains this lack of coherence in that

p-values for different hypotheses may be plausibilities with respect to different

IMs with different scales. The same is true for Bayesian posterior probabilities

for Θ′
0 and Θ0 if different priors are used for each testing problem, which would

not necessarily be unusual.

In case Θx(u) = ∅ for some pair (x, u), constructing an IM with plausibility

function matching the p-value cannot be done as described in the proof of The-

orem 2. Such a situation arises, for example, in a normal mean problem N(θ, 1)

with Θ = [−1, 1]. If X = −1 is observed, then Θ−1(u) = {θ ∈ [−1, 1] : −1 =

θ + Φ−1(u)} is empty for u > 1/2. For such problems, Ermini Leaf and Liu

(2012) present a modification of the IM approach that stretches the predictive

random set just enough so that Θx(S) is not empty while maintaining validity.

The result of this stretching is, in general, an increase in the plausibility function.

The p-value depends only on the null hypothesis, so is not affected by parameter

constraints. This is a shortcoming of the p-value, as evidence for a particular

assertion should automatically become larger when the range of possible alter-

natives shrinks.

4.3. Binomial example

Consider a binomial model, X ∼ Bin(n, θ), where n is a known positive

integer and θ ∈ (0, 1) is the unknown success probability. Inference on θ in the

binomial model is a basic problem that is far from trivial (e.g., Brown, Cai, and

DasGupta (2001)). In this case, the natural association is

Fθ(X − 1) ≤ U < Fθ(X), U ∼ Unif(0, 1),

where Fθ is the Bin(n, θ) distribution function. There is no simple equation link-

ing (X, θ, U) in this case, just a rule “X = a(θ, U)” for producing X with given θ

and U . We construct the p-value-based IM for a one-sided assertion/hypothesis.



1712 RYAN MARTIN AND CHUANHAI LIU

Consider A = (0, θ0] for some fixed θ0 ∈ (0, 1). If the null hypothesis is H0 :

θ ∈ A, then the uniformly most powerful test rejects H0 in favor of H1 : θ ∈ Ac

if and only if T (X) = X is too large. With this choice of T , for the A-step, we

write

Θx(u) = {θ : T (x) = T (a(θ, u))} = {θ : Fθ(x− 1) ≤ u < Fθ(x)}.

If Ga,b denotes the Beta(a, b) distribution function, then we may rewrite Θx(u)

as

Θx(u) = {θ : Gn−x+1,x(1− θ) ≤ u < Gn−x,x+1(1− θ)}
= {θ : 1−G−1

n−x+1,x(u) ≤ θ < 1−G−1
n−x,x+1(u)}.

For the P-step, we construct the support S = {St : t ∈ T}, where, in this case,

T = X = {0, 1, . . . , n}. It is easy to see that

St = cl{u : supθ∈A T (a(θ, u)) < t} = [Fθ0(t), 1].

When equipped with the measure PS in P2, determined by PU = Unif(0, 1), the

C-step produces a plausibility function for A = (0, θ0], at the observed X = x,

given by

plx(A;S) = 1− Fθ0(x),

which is exactly the standard p-value for the one-sided test in a binomial problem.

4.4. Normal variance example

Consider a normal model, N(µ, σ2), and a sequence of independent samples

X1, . . . , Xn. Here, θ = (µ, σ2) is unknown, but the goal is inference on σ2, with

µ a nuisance parameter. Following the general conditioning principles in Martin

and Liu (2014b), we can focus on IMs determined by the minimal sufficient

statistic,

X̄ = µ+ σn−1/2Z and (n− 1)S2 = σ2W,

where Z ∼ N(0, 1) and W ∼ ChiSq(n−1), independent. This association involves

two auxiliary variables but, since the goal is inference about the scalar σ2, we

can reduce the dimension. Write

X̄ = µ+
S

n1/2

Z

{W/(n− 1)}1/2
and (n− 1)S2 = σ2W.

Since µ is a location parameter, it follows from Martin and Liu (2013b) that

the first expression displayed above can be ignored, leaving the second as the

marginal association for σ2, which we now write as

T = σ2F−1(U), U ∼ Unif(0, 1),
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Figure 1. Plot of plausibility as a function of σ2
0 in the normal variance

example.

where T = (n− 1)S2 and F is the ChiSq(n− 1) distribution function.

Consider testing H0 : σ2 ≤ σ2
0 versus H1 : σ2 > σ2

0. For observed T = t, the

standard test has p-value pval(t) = P{T ≥ t} = 1−F (t/σ2
0). It is straightforward

to check that, with predictive random set S = [0, U), with U ∼ Unif(0, 1), the

plausibility function is

plt({σ2 ≤ σ2
0};S) = PS

{
S ∋ F

( t

σ2

)}
= P

{
U ≥ F

( t

σ2
0

)}
= 1− F

( t

σ2
0

)
,

which is exactly the p-value. Moreover, the predictive random set above is “op-

timal” in the sense of Martin and Liu (2013a, Sec. 4.3.1), which provides some

IM-based explanation for this test being the standard one in the statistics liter-

ature.

For an illustration, consider data presented in Problem 2-14 of Montgomery

(2001) on the etch uniformity on silicon wafers taken during a qualification ex-

periment. In this case, the sample size is n = 20 and the sample variance is

S2 = 0.79. If σ2
0 = 1 so the goal is testing if σ2 ≤ 1, the p-value is 0.72, and the

null hypothesis is quite plausible. More generally, we can plot the plausibility

(or p-value) as a function of σ2
0; see Figure 1. The horizontal line at α = 0.1

characterizes a 90% plausibility lower bound for σ2 defined by keeping all those

σ2
0 values with plausibility greater than 0.1; see (3.5).

5. Discussion

We have developed a new user-friendly interpretation of the familiar but

often misinterpreted p-value. Specifically, we have shown that, for essentially
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any hypothesis testing problem, under mild conditions, there exists a valid IM

such that its plausibility function, evaluated at the null hypothesis, is exactly

the usual p-value. This representation of p-values in terms of IM plausibilities

casts light on a potential shortcoming of p-values that can arise in problems with

non-trivial parameter constraints. In such cases, it is not clear how to modify

the p-value, while modifications of the IM plausibility are readily obtained via

the methods described in Ermini Leaf and Liu (2012).

There are a numerous alternatives to p-value in the hypothesis testing lit-

erature, popular, at least in part, because of the difficulties in interpreting p-

values. For example, Jim Berger (and co-authors) have recommended converting

p-values to Bayes factors, or posterior odds, for interpretation; for example, Sel-

lke, Bayarri, and Berger (2001) make a strong case for their suggested “−ep log p”

adjustment. However, it is unlikely that p-values will ever disappear from text-

books and applied work, so compared to offering an alternative to the familiar

p-value, it may be more valuable to offer a more user-friendly interpretation. To

borrow an analogy Larry Wasserman used on his blog: many people are poor

drivers, but eliminating cars is not the answer to this problem.

The connection between plausibility and p-value casts light on the nature of

the IM output. IM belief and plausibility functions are understood in Martin and

Liu (2013a) as measures of evidence given data. The fact that, in some cases,

plausibility and p-value match up is useful, suggesting that one could reason with

IM plausibilities as with p-values. The correspondence between plausibilities,

p-values, and some objective Bayes posterior probabilities, suggests that the

IM framework may in fact provide a unified perspective on robust, objective,

probabilistic inference.
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