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Abstract: In many longitudinal studies, the response process is correlated with ob-

servation times and dropout. We propose a joint modeling for analysis of longitudi-

nal data with informative observation times and dropout. We specify a semipara-

metric linear regression model for the longitudinal process, and accelerated time

models for the observation and the dropout processes, while leaving the distribu-

tional form and dependent structure unspecified. Estimating equation approaches

are developed for parameter estimation, and the resulting estimators are shown to

be consistent and asymptotically normal. In addition, some numerical procedures

are provided for model checking. The finite sample behavior of the proposed es-

timators is evaluated through simulation studies, and an application to a medical

cost study of chronic heart failure patients from the University of Virginia Health

System is provided.
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1. Introduction

Longitudinal data frequently occur in medical follow-up studies and the like.

Here subjects often selectively miss their visits or return at non-scheduled points

in time and, as a result, observation times are irregular, and can be correlated

with the longitudinal responses. In recent years, longitudinal data with informa-

tive observation times have attracted considerable attention (Lin, Scharfstein,

and Rosenheck (2004)); Sun et al. (2005); Huang, Wang, and Zhang (2006);

Ryu et al. (2007); Liang, Lu, and Ying (2009); Song, Mu, and Sun (2012); Zhao,

Tong, and Sun (2012)). Thus, Lin, Scharfstein, and Rosenheck (2004) proposed a

class of inverse intensity-of-visit process-weighted estimators in a typical marginal

regression model, Sun et al. (2005) presented a conditional model, where the lon-

gitudinal outcome is assumed to depend only on the past observation history,

and Liang, Lu, and Ying (2009) suggested a joint model for analysis of the

longitudinal outcomes through two latent variables. All these methods require

the assumption that censoring time is non-informative about the longitudinal

response variable of interest.
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In practice, there exist informative dropouts or dependent censoring such as

death that stops the follow-up. For example, patients in a severe disease stage of-

ten die in a shorter period, and the cost for each visit tends to be higher than that

of patients in a mild disease stage (Liu, Huang, and O’Quigley (2008)). A num-

ber of methods have been developed for handling informative dropout under the

assumption that observation times are non-informative (Wu and Carroll (1988);

Wulfsohn and Tsiatis (1997); Wang and Taylor (2001); Roy and Lin (2002); Lin

and Ying (2003); Brown, Ibrahim, and DeGruttola (2005); Jin et al. (2006); Liu

and Ying (2007); Ding and Wang (2008); Li, Hu, and Greene (2009)). For ex-

ample, Lin and Ying (2003) proposed a joint modeling of longitudinal data with

informative dropouts in which an accelerated failure time model is used to model

the dropout process, while Liu and Ying (2007) proposed a combination of a lin-

ear mixed effects model for the longitudinal measurements and a semiparametric

transformation model for the dropout process.

It is common when informative observation times and dropouts occur that

observation and follow-up times are dependent on the response variable. A mo-

tivating example is a medical cost study of heart failure patients treated at the

University of Virginia Health System. For these data, Liu, Huang, and O’Quigley

(2008) and Sun et al. (2012) showed that the longitudinal medical costs could be

correlated with both hospital visit times and dropout. There is limited research

about this. For example, Sun, Sun, and Liu (2007) considered a joint model for

the longitudinal process, the observation process, and the dropout process via

a shared latent variable and assumed that the observation process is a nonho-

mogeneous Poisson process. Liu, Huang, and O’Quigley (2008) studied a joint

random effects model for longitudinal data with informative observation times

and a dependent terminal event, where the distributions of the random effects

are specified. He, Tong, and Sun (2009) developed some shared frailty models to

analyze panel count data with correlated observation and follow-up times, where

one random effect was required to be normally distributed. Sun et al. (2012) pro-

posed a joint modeling of longitudinal data with both informative observation

times and a dependent terminal event via two latent variables.

We propose a semiparametric regression model for formulating the joint dis-

tribution of the longitudinal process, the observation process, and the dropout

process. We specify a semiparametric linear regression model for the longitudi-

nal process, and the accelerated time models for the observation and the dropout

processes, while leaving the distributional form and dependent structure unspec-

ified. The proposed model generalizes the approach of Lin and Ying (2003) to

take informative observation times into account.

The rest of the article is organized as follows. Section 2 introduces notation

and the model specification. Section 3 presents the proposed methods and asymp-

totic analysis. In Section 4, we develop a technique for checking the adequacy of
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the proposed model. Section 5 reports some results from simulation studies for

evaluating the proposed methods. An application to the medical cost data for

chronic heart failure patients from the clinical data repository at the University

of Virginia Health System is provided in Section 6, and some concluding remarks

are given in Section 7.

2. Model Specification

For a longitudinal study, let Y (t) be the response at time t, and Z be a

p × 1 vector of covariates. Let D be the informative dropout time, C be the

independent censoring time, and write T = D ∧ C, and δ = I(D ≤ C), where

a ∧ b = min(a, b) and I(·) is the indicator function. Let N(t) be the count-

ing process denoting the number of the observation times before or at time t.

The longitudinal process Y (t) is observed only at the time points where N(t)

jumps, t ≤ T. We assume that C is independent of Y (·) and N(·) conditional

on Z, whereas D is allowed to depend on Y (·) and N(·), even conditional on

Z. Let {Yi(·), Ni(·), Di, Ci, Zi}(i = 1, . . . , n) be n independent replicates of

{Y (·), N(·), D,C, Z}.
For the longitudinal process, the observation process, and the dropout time,

we assume that there exist unknown constant vectors γ0, β0, and η0 such that,

for given Z and t, the random vectors {Y (teγ
′
0Z)−β′0Z,N(teγ

′
0Z), De−η′0Z}′ have

a common but unspecified joint distribution. Specifically,Yi(te
γ′
0Zi)− β′0Zi

Ni(te
γ′
0Zi)

Die
−η′0Zi

 d
=

 Y0(t)

N0(t)

D0

 , (2.1)

where {Y0(t), N0(t), D0}′ has an arbitrary distribution, and
d
= means equal in

distribution. Under this joint model, the marginal distribution of Y (t) satisfies

a semiparametric linear regression model through scale-change for t:

E{Y (teγ
′
0Z)|Z} = µ0(t) + β′0Z,

where µ0(t) = E{Y0(t)}, while the marginal distributions of N(t) and D satisfy

an accelerated time model for counting process (Lin, Wei, and Ying (1998)) and

survival data (Tsiatis (1990)), respectively. The independent censoring time C is

allowed to depend on Z in an arbitrary manner. Our proposed model is different

from that of Lin and Ying (2003) in that N(t) and Y (t) have an arbitrary joint

distribution in the sense of (2.1).

Note that E{Y (teγ
′
0Z)|Z} = µ0(t) + β′0Z is equivalent to E{Y (t)|Z} =

µ0(te
−γ′

0Z) + β′0Z. Here γ0 and β0 can be interpreted as measuring two dif-

ferent effects the covariates might have on the longitudinal process: γ0 to reflect
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the magnitude and direction of the scale-change of the mean function of Y (t), β0
to characterize the additive effect after adjusting the scale-change of the mean

function of Y (t). If Z consists of a single treatment indicator and say eγ0 = 2, β0
is the mean difference between the treatment response at time 2t and the control

response at time t, which implies that β0 is the additive effect after adjusting

the scale-change of the mean function process in the treatment and the control

groups. Thus, under (2.1), the treatment has both the effect of the scale change

and the additive effect.

For a random sample of n subjects, the observed data consist of {Yi(t)dNi(t),

Ti, δi, Zi, Ni(t), 0 ≤ t ≤ Ti, i = 1, . . . , n}, where Ti = Di∧Ci and δi = I(Di ≤ Ci).

Our main interest is in estimating β0.

3. Inference Procedures

To construct valid estimating functions for model parameters under infor-

mative dropout, we adopt the technique of artificial censoring (Ghosh and Lin

(2003); Lin and Ying (2003)), which provides a way to create homogeneity

for observations under comparison. Let Ω be the set of all possible values

of Z. Define T ∗
i (γ, η) = Tie

−η′Zi+d and ∆i(t; γ, η) = I{T ∗
i (γ, η) ≥ t}, where

d = infz∈Ω(η − γ)′z, and d0 = infz∈Ω(η0 − γ0)
′z. Under (2.1),

E
{
[Yi(te

γ′
0Zi)− β′0Zi]dNi(te

γ′
0Zi)|Die

−η′0Zi+d0 ≥ t, Zi

}
= dA0(t). (3.1)

Define

Mi(t;β, γ, η,A) =

∫ t

0
∆i(s; γ, η)

{
[Yi(se

γ′Zi)− β′Zi]dNi(se
γ′Zi)− dA(s)

}
.

By (3.1) and the assumption that Ci is independent of Yi(·) and Ni(·) conditional
on Zi, we have

E{Mi(t;β0, γ0, η0,A0)}

=E

∫ t

0
∆i(s; γ0, η0)

[
E
{
[Yi(se

γ′
0Zi)−β′0Zi]dNi(se

γ′
0Zi)|Tie−η′0Zi+d0 ≥s, Zi

}
−dA0(s)

]
=E

∫ t

0
∆i(s; γ0, η0)

[
E
{
[Yi(se

γ′
0Zi)−β′0Zi]dNi(se

γ′
0Zi)|Die

−η′0Zi+d0 ≥s, Zi

}
−dA0(s)

]
=0, (3.2)

which implies that Mi(t;β0, γ0, η0,A0) has zero mean. Thus, for given (β, γ, η),

a reasonable estimator for A0(t) is the solution to

n∑
i=1

Mi(t;β, γ, η,A) = 0.
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Denote this estimator by Â(t;β, γ, η), and observe that

Â(t;β, γ, η) =
n∑

i=1

∫ t

0

∆i(s; γ, η)[Yi(se
γ′Zi)− β′Zi]dNi(se

γ′Zi)∑n
j=1∆j(s; γ, η)

.

In view of (3.2), for given γ and η, to estimate β, by applying the generalized

estimating equation approach (Liang and Zeger (1986)) and replacing A0(t) by

its estimator, we specify an estimating function for β0:

U1(β; γ, η) =
n∑

i=1

∫ ∞

0
W (t){Zi − Z̄(t; γ, η)}

[
Yi(te

γ′Zi)− Ȳ ∗(t; γ, η)

−β′{Zi − Z̄(t; γ, η)}
]
∆i(t; γ, η)dNi(t

γ′Zi), (3.3)

where

Z̄(t; γ, η) =

∑n
i=1∆i(t; γ, η)Zi∑n
j=1∆j(t; γ, η)

,

Ȳ ∗(t; γ, η) =

∑n
i=1∆i(t; γ, η)Y

∗
i (te

γ′Zi)∑n
j=1∆j(t; γ, η)

,

Y ∗
i (t) the measurement of Yi taken at the time point nearest to t, and W (t) a

possibly data-dependent weight function.

In reality, γ0 and η0 are unknown. Note that Ni(t) is subject to informative

dropout by Di. Then for given η, using the approach of Ghosh and Lin (2003),

we propose an estimating function for γ0:

U2(γ; η) =

n∑
i=1

∫ ∞

0
{Zi − Z̄(t; γ, η)}∆i(t; γ, η)dNi(te

γ′Zi). (3.4)

Since Di is only subject to independent censoring by Ci, existing methods for

the accelerated time model can be used to estimate η0. Thus, if T̃i(η) = Tie
−η′Zi

and ND
i (t; η) = δiI{T̃i(η) ≤ t} (i = 1, . . . , n), η0 can be consistently estimated

from the estimating function

U3(η) =

n∑
i=1

∫ ∞

0
{Zi − Z̄D(t; η)}dND

i (t; η), (3.5)

where

Z̄D(t; η) =

∑n
i=1 I{T̃i(η) ≥ t}Zi∑n
j=1 I{T̃j(η) ≥ t}

.

A zero-crossing of U3(η), η̂, is consistent and asymptotically normal (Tsiatis

(1990); Lai and Ying (1991)). For given η̂, let γ̂ be a zero-crossing of U2(γ; η̂).
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For given γ̂ and η̂, we estimate β0 by solving U1(β; γ̂, η̂) = 0. The resulting

estimator has the explicit expression

β̂ =
[ n∑

i=1

∫ ∞

0
W (t){Zi − Z̄(t; γ̂, η̂)}⊗2∆i(t; γ̂, η̂)dNi(te

γ̂′Zi)
]−1

×
n∑

i=1

∫ ∞

0
W (t){Zi−Z̄(t; γ̂, η̂)}{Yi(teγ̂

′Zi)−Ȳ ∗(t; γ̂, η̂)}∆i(t; γ̂, η̂)dNi(te
γ̂′Zi),

where for a vector a, a⊗2 = aa′. If γ0 is 0, β̂ is the estimator of Lin and Ying

(2003). By using the Law of Large Numbers and the consistency of γ̂ and η̂, one

can show that β̂ is consistent.

Take θ = (β′, γ′, η′)′, θ̂ = (β̂′, γ̂′, η̂′)′, and let θ0 be the true value of θ. Then

we show in the Appendix that θ̂ is asymptotically normal. However, it is difficult

to estimate the asymptotic covariance matrix of θ̂ because γ̂ and η̂ are rank-based

estimators. To proceed, we adopt a resampling technique due to Parzen, Wei,

and Ying (1994). Let

M̂i(t; θ) =

∫ t

0
∆i(s; γ, η)

[
{Yi(seγ

′Zi)− β′Zi}dNi(se
γ′Zi)− dÂ(s;β, γ, η)

]
,

M̂i(t; γ, η) =

∫ t

0
∆i(s; γ, η){dNi(se

γ′Zi)− dΛ̂(s; γ, η)},

M̂D
i (t; η) =ND

i (t; η)−
∫ t

0
I{T̃i(η) ≥ s}dΛ̂D(s; η),

where

Λ̂(t; γ, η) =
n∑

i=1

∫ t

0

∆i(s; γ, η)dNi(se
γ′Zi)∑n

j=1∆j(s; γ, η)
,

Λ̂D(t; η) =

n∑
i=1

∫ t

0

dND
i (s; η)∑n

j=1 I{T̃j(η) ≥ s}
.

Let

Ψ̂1i =

∫ ∞

0
W (t){Zi − Z̄(t; γ̂, η̂)}

[
dM̂i(t; θ̂)− {Ȳ ∗(t; γ̂, η̂)

−β̂′Z̄(t; γ̂, η̂)}dM̂i(t; γ̂, η̂)
]
,

Ψ̂2i =

∫ ∞

0
{Zi − Z̄(t; γ̂, η̂)}dM̂i(t; γ̂, η̂),

Ψ̂3i =

∫ ∞

0
{Zi − Z̄D(t; η̂)}dM̂D

i (t; η̂),

and let θ̂∗ = (β̂∗
′
, γ̂∗

′
, η̂∗

′
)′ be the solution to
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U(θ) =

n∑
i=1

Ψ̂iGi, (3.6)

where U(θ) = (U1(β; γ, η)
′, U2(γ; η)

′, U3(η)
′)′, Ψ̂i = (Ψ̂′

1i, Ψ̂
′
2i, Ψ̂

′
3i)

′, and (G1, . . .,
Gn) are independent standard normal variables independent of the observed data.
Applying the arguments of Parzen, Wei, and Ying (1994) and Lin, Wei, and Ying
(1998), the asymptotic distribution of n1/2(θ̂ − θ0) can be approximated by the
conditional distribution of n1/2(θ̂∗ − θ̂) given the observed data. To approxi-
mate the distribution of θ̂, we produce a large number of realizations of θ̂∗ by
repeatedly generating the random samples (G1, . . . , Gn), while fixing the data
{Yi(·)dNi(·), Ti, δi, Zi, Ni(·)} (i = 1, . . . , n) at their observed values. The covari-
ance matrix of θ̂ is then approximated by the empirical covariance matrix of θ̂∗,
and confidence intervals for θ0 can be constructed accordingly.

4. Model Checking

We propose some simple graphical and numerical procedures for assessing the
adequacy of the proposed model. Model (2.1) implies that, for i = 1, . . . , n, the
Die

−η′0Zi have a common marginal distribution, the E{dNi(te
γ′
0Zi)|Die

−η′0Zi ≥ t}
have a common value, and the E

{
[Yi(te

γ′
0Zi) − β′0Zi]dNi(te

γ′
0Zi)|Die

−η′0Zi ≥ t
}

have a common value. To verify these conditions, following Lin, Robins, and Wei
(1996) and Ghosh and Lin (2003), we consider the residual processes,

F1(t; η) = n−1/2
n∑

i=1

ZiM̂D
i (t; η),

F2(t; γ, η) = n−1/2
n∑

i=1

ZiM̂i(t; γ, η),

F3(t; θ) = n−1/2
n∑

i=1

ZiM̂i(t; θ).

Let F(t; θ) = (F1(t; η)
′,F2(t; γ, η)

′,F3(t; θ)
′)′. It can be shown following the ar-

gument of Lin, Robins, and Wei (1996) that the null distributions of F(t; θ̂) is
approximated by the conditional distributions of F̂(t) = (F̂1(t)

′, F̂2(t)
′, F̂3(t)

′)′,
where

F̂1(t) = n−1/2
n∑

i=1

∫ t

0
{Zi − Z̄D(s; η̂)}dM̂D

i (s; η̂)Gi −F1(t; η̂
∗) + F1(t; η̂),

F̂2(t) = n−1/2
n∑

i=1

∫ t

0
{Zi − Z̄(s; γ̂, η̂)}dM̂i(s; γ̂, η̂)Gi −F2(t; γ̂

∗, η̂∗) + F2(t; γ̂, η̂),

F̂3(t) = n−1/2
n∑

i=1

∫ t

0
{Zi − Z̄(s; γ̂, η̂)}dM̂i(s; θ̂)Gi −F3(t; θ̂

∗) + F3(t; θ̂).
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Thus, one can obtain a large number of realizations from F̂(t) by repeatedly

generating the standard normal random sample (G1, . . . , Gn) while fixing the

observation data. Moreover, F(t; θ̂) can be plotted along with a few realizations

F̂(t). The validity of approximating F(t; θ̂) by F̂(t) depends on the correct

specification of (2.1). Hence, an unusual pattern of F(t; θ̂) compared to the

realizations of F̂(t) would suggest a lack-of-fit of (2.1). Since F(t; θ̂) is expected

to fluctuate randomly around 0, a formal lack-of-fit test can be constructed based

on the supremum statistics supt ∥F1(t; η̂)∥, supt ∥F2(t; γ̂, η̂)∥, and supt ∥F3(t; θ̂)∥.
The p-values of these tests can be obtained by comparing their observed values

with a large number of realizations from F̂1(t), F̂2(t), and F̂3(t), respectively,

with (2.1) rejected if one of these p-values is smaller than a prespecified level.

5. Simulation Studies

We conducted simulation studies to assess the performance of the proposed

estimators with the focus on estimating β0. We considered that Z was generated

from a Bernoulli distribution with success probability 0.5 or that Z was generated

from a uniform distribution on (0, 1). Let v be a gamma random variable with

mean 1 and variance σ2, where σ2 = 0, 1 or 4; given v, the dependent censoring

time D0 and the baseline gap time between every two successive observations

were generated as independent exponential random variables with hazard rates

v and 4v, respectively. We took Y0(t) as Y0(t) = a0+a1 sin t+ ϵ(t), where a0 = 0,

a1 = 1, and ϵ(t) is normal with mean 0 and variance v/(1 + v) for all t.

We multiplied D0 and the baseline gap times by eη0Z and eγ0Z to produce

the informative dropout time and gap times associated with Z, where η0 = 0.25

and γ0 = log(3), and set Y (t) = β0Z+Y0(te
−γ0Z), where β0 = 1. The dependence

among Y (t), N(t), and D was induced by the common random effect v. When

σ2 = 0, the three related processes were independent. The independent censoring

time C was generated from a uniform distribution on (0, τ) with τ = 5 or 20.

For each simulation study, we set W (t) = 1. The results presented were based

on 1000 replications with sample sizes n = 100 and 200. For each data set,

the resampling distribution was based on 100 realizations; this was found to be

adequate.

Table 1 gives the simulation results on the estimates of β0. In the table, Bias

is the sampling mean of the estimate minus the true value, SE is the sampling

standard error of the estimate, SEE is the sampling mean of standard error

estimate, and CP is the 95% empirical coverage probability for β0 based on the

normal approximation. Table 1 shows that the proposed method performed well

for both informative (σ2 ̸= 0) and non-informative (σ2 = 0) cases. Thus, the

proposed estimators were virtually unbiased, the estimated standard errors were

close to the empirical standard errors, and the coverage probabilities of the 95%
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Table 1. Simulation results for the estimation of β0 = 1.

n Z σ2 τ Bias SE SEE CP
100 Bernoulli(0.5) 0 5 -0.0045 0.1015 0.1051 0.951

20 -0.0030 0.0903 0.0950 0.948
1 5 -0.0085 0.1311 0.1343 0.946

20 -0.0008 0.0981 0.1066 0.956
4 5 0.0083 0.1925 0.2076 0.948

20 0.0067 0.1510 0.1691 0.962

Uniform(0,1) 0 5 -0.0013 0.1751 0.1954 0.944
20 -0.0053 0.1617 0.1749 0.957

1 5 0.0008 0.2299 0.2496 0.945
20 -0.0022 0.1899 0.2023 0.958

4 5 0.0077 0.3565 0.4001 0.953
20 0.0032 0.2916 0.3217 0.951

200 Bernoulli(0.5) 0 5 -0.0034 0.0700 0.0707 0.949
20 0.0000 0.0643 0.0655 0.945

1 5 -0.0019 0.0916 0.0924 0.946
20 -0.0030 0.0706 0.0719 0.956

4 5 0.0043 0.1435 0.1401 0.938
20 0.0017 0.1114 0.1147 0.947

Uniform(0,1) 0 5 -0.0018 0.1202 0.1272 0.951
20 0.0017 0.1137 0.1173 0.945

1 5 -0.0063 0.1645 0.1673 0.954
20 0.0017 0.1220 0.1330 0.966

4 5 -0.0048 0.2458 0.2598 0.949
20 -0.0024 0.1880 0.2107 0.961

confidence intervals were reasonable. The performance of the proposed estimator

improved when the sample size increased from 100 to 200. We also considered

other setups and the results were similar.

For comparison, we considered the method of Lin and Ying (2003) (denoted

by LY) using the same setup as in Table 1, but with n = 200. In these situations,

the models were misspecified for LY’s method even when σ2 = 0, because γ0 ̸= 0.

Thus we considered another model, M1, that was correctly specified for LY’s

method: as in Lin and Ying (2003), Y (t) = sin(t) + β0Z + ϵ(t), where Z was

Bernoulli with success probability 0.5, ϵ(t) was normal with mean ϕ and variance

1 for all t, and ϕ was a standard normal random variable. HereN(t) was a Poisson

process with intensity rate ψeγ0Z with γ0 = 0.5, and ψ was an independent

gamma random variable with mean 1 and variance 0.25; D was set to be D0e
η0Z

with η0 = 0.5, where D0 was the exponential of a normal random variable with

mean ϕ and variance 1; C was a uniform variable on (0, 30). Table 2 gives

the results for β0 = 1. It can be seen that LY’s method yielded consistent
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Table 2. Comparison results on estimation of β0 = 1 with n = 200.

Ours LY
Z σ2 τ Bias SE Bias SE

Bernoulli(0.5) 0 5 0.0014 0.0712 -0.2705 0.0621

20 -0.0028 0.0640 -0.2364 0.0698

1 5 -0.0047 0.0906 -0.2523 0.0809

20 -0.0068 0.0692 -0.0960 0.0886

4 5 0.0046 0.1409 -0.2451 0.1631

20 0.0024 0.1076 -0.1055 0.2181

Uniform(0,1) 0 5 -0.0036 0.1246 -0.2825 0.1032

20 0.0042 0.1106 -0.2481 0.1035

1 5 0.0036 0.1591 -0.2540 0.1289

20 -0.0005 0.1237 -0.0939 0.1305

4 5 -0.0064 0.2345 -0.2411 0.2891

20 0.0017 0.1847 -0.1136 0.3424

M1 0.0630 0.2618 0.0008 0.2535

estimators when the observation times were noninformative, while the proposed

estimator showed some bias. However, the LY estimator was highly biased when

the observation times were informative.

The bias of the proposed estimator under model M1 was caused by a scale-

change of Y (t) from t to teγ0Z . Thus, we conducted an additional simulation

study with γ0 = 0, using the same setup as in Table 1 but with γ0 = 0 and

n = 200. Model M2 was the same as M1 but with γ0 = 0. The results for β0 = 1

are in Table 3. As anticipated, the LY estimator was unbiased under σ2 = 0

and M2, which was correctly specified for LY’s method. Under these conditions,

both methods provided reasonable and comparable estimates for β0. However,

when σ2 ̸= 0, the LY estimator appeared biased, especially when σ2 was large,

while the proposed estimator was essentially unbiased for all cases considered.

We considered other setups and the results were similar.

To evaluate the loss of efficiency by artificial censoring, we considered the

case of no informative observation times and dropout. Using the setup of Table

1 with σ2 = 0, we compared the proposed method and the naive method that

simply replaced I{T ∗
i (γ, η) ≥ t} with I{Tie−γ′Zi ≥ t} in our method. Table 4

gives the results for β0 = 1. Both methods provided reasonable estimates, and

the variances of our method were only slightly larger than those of the naive

method. This amounts to little loss of efficiency by artificial censoring when

there were no informative observation times and dropout.

To investigate the performance of model checking method, we conducted

some simulations to assess the size and power of tests based on supt ∥F1(t; η̂)∥,
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Table 3. Comparison results on estimation of β0 = 1 with γ0 = 0 and n = 200.

Ours LY
Z σ2 τ Bias SE Bias SE

Bernoulli(0.5) 0 5 -0.0007 0.0436 0.0010 0.0407

20 -0.0010 0.0370 0.0001 0.0367

1 5 0.0030 0.0596 -0.0132 0.0569

20 -0.0019 0.0483 -0.0129 0.0474

4 5 0.0047 0.0959 -0.0599 0.1679

20 0.0002 0.0853 -0.0593 0.1762

Uniform(0,1) 0 5 -0.0053 0.0853 -0.0033 0.0707

20 -0.0044 0.0694 -0.0025 0.0667

1 5 -0.0015 0.1044 -0.0156 0.1043

20 -0.0032 0.0895 -0.0120 0.0891

4 5 0.0060 0.1845 -0.0451 0.2839

20 -0.0019 0.1505 -0.0594 0.3228

M2 -0.0025 0.2551 -0.0013 0.2522

Table 4. Comparison results on estimation of β0 = 1 with σ2 = 0.

Ours Naive
n Z τ Bias SE Bias SE
100 Bernoulli(0.5) 5 -0.0038 0.1052 -0.0036 0.0940

20 -0.0028 0.0906 -0.0027 0.0804
Uniform(0,1) 5 0.0031 0.1705 0.0011 0.1471

20 0.0005 0.1586 -0.0007 0.1292

200 Bernoulli(0.5) 5 -0.0037 0.0692 -0.0040 0.0625
20 -0.0020 0.0638 -0.0006 0.0578

Uniform(0,1) 5 -0.0025 0.1229 0.0007 0.1062
20 -0.0007 0.1087 -0.0001 0.0937

supt ∥F2(t; γ̂, η̂)∥, and supt ∥F3(t; θ̂)∥ with n = 800. We only considered that Z

followed a Bernoulli distribution with success probability 0.5. We assumed that

the longitudinal process, the observation process, and the dropout time were asYi(te
γ′
0Zi + 0.25kZi)− β′0Zie

0.5kZi

Ni(te
γ′
0Zi + 0.25kZi)

(Di − 0.1kZi)e
−η′0Zi

 d
=

 Y0(t)

N0(t)

D0


with k = 0, 1, 2, 3, and 4. All other setups are the same as in Table 1 with τ = 20.

We considered the null hypothesis H0 as k = 0. Table 5 reports the empirical

sizes and powers of the proposed tests at the significance level of 0.05. In the

Table 5, T1, T2, and T3 denote tests based on supt ∥F1(t; η̂)∥, supt ∥F2(t; γ̂, η̂)∥,
and supt ∥F3(t; θ̂)∥, respectively. The results show that the empirical sizes were
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Table 5. The empirical sizes and powers of the model tests with n = 800.

σ2 Test k = 0 k = 1 k = 2 k = 3 k = 4
0 T1 0.0520 0.3520 0.9520 1.0000 1.0000

T2 0.0540 0.9580 1.0000 1.0000 1.0000
T3 0.0410 0.9930 1.0000 1.0000 1.0000

1 T1 0.0440 0.1670 0.7370 0.9890 1.0000
T2 0.0520 0.6740 0.9870 0.9990 1.0000
T3 0.0440 0.7910 1.0000 1.0000 1.0000

4 T1 0.0420 0.0820 0.4200 0.7300 0.8750
T2 0.0460 0.3590 0.7540 0.8870 0.9340
T3 0.0540 0.1220 0.3470 0.7430 0.9760

close to nominal, and the tests had reasonable powers to detect deviations from

the null hypothesis, with power increasing as the value of k increased.

We conducted some simulations to assess the sensitivity with respect to the

dependence assumption. We assumed that the longitudinal process, the obser-

vation process, and the dropout time were given byYi(te
γ′
0Zi + 0.25k3Zi)− β′0Zie

0.5k3Zi

Ni(te
γ′
0Zi + 0.25k2Zi)

(Di − 0.1k1Zi)e
−η′0Zi

 d
=

 Y0(t)

N0(t)

D0


with (k1, k2, k3) = (4, 0, 0), (0, 4, 0) and (0, 0, 4). All other setups are the same as

in Table 5. We considered the null hypothesis H0 as (k1, k2, k3) = (0, 0, 0). Table

6 presents the empirical sizes and powers of the proposed tests at the significance

level of 0.05. The results indicate that the model checking method was sensitive

to the dependence assumption. In particular, the T1 results affected the perfor-

mance of T2 and T3, and T2 affected T3. We suggest the three supremum tests

be conducted in the order T1, T2, and T3; if T1 is rejected, it does not make

sense to run the others.

6. An Application

We illustrate the proposed methods using the medical cost data of chronic

heart failure patients treated at the University of Virginia Health System. These

data have been analyzed by Liu, Huang, and O’Quigley (2008) and Sun et al.

(2012) In the study, there were 1,475 patients aged 60-89 years who were first

diagnosed with heart failure and treated in 2004. The follow-up ended with each

patient’s last hospital admission (up to July 31, 2006) or death date, which was

obtained from the Death Certificate Data at the Virginia Department of Vital

Statistics. For each patient, the observed information included the clinical visit

times (in month), and the medical cost for each hospital visit. In addition, three



JOINT MODELING OF LONGITUDINAL DATA 1499

Table 6. The empirical sizes and powers of the sensitivity to the dependence
assumption.

σ2 Test (k1, k2, k3) = (4, 0, 0) (k1, k2, k3) = (0, 4, 0) (k1, k2, k3) = (0, 0, 4)
0 T1 1.0000 0.0450 0.0440

T2 0.0420 1.0000 0.0520
T3 0.0460 1.0000 0.0720

1 T1 1.0000 0.0460 0.0430
T2 0.2370 1.0000 0.0530
T3 0.0690 1.0000 0.2610

4 T1 0.8860 0.0440 0.0450
T2 0.4190 0.9730 0.0490
T3 0.1280 0.4980 0.0770

Table 7. Joint analysis of the medical cost data for heart failure patients.

β γ η
Est. SE p-value Est. SE p-value Est. SE p-value

White -0.3310 0.1138 0.0036 0.0966 0.0488 0.0475 0.3869 0.2236 0.0835
Age -0.1046 0.0533 0.0495 -0.0763 0.0270 0.0048 -0.7286 0.1081 0.0000

Note: Est. is the estimate of the parameter, and SE is the standard error estimate.

baseline covariates were measured: gender, race, and age. Preliminary studies

showed that patients visiting the hospital more often tended to pay more for each

visit, and these patients also had a higher mortality rate. Since gender had been

shown to have no effect on the medical cost and the hospital visits (Liu, Huang,

and O’Quigley (2008); Sun et al. (2012)), we focused on the effects of race and

age on the medical cost with observation times and death.

For patient i, let Yi(t) be the log-transformed cost. Let Zi1 be a binary

indicator of race (white=1, nonwhite=0), and Zi2 denote the age group, taking

values 0, 1, and 2 for 60-69, 70-79, and 80-89 years, respectively. We took the data

to be described by (2.1), and used 100 realizations to estimate the asymptotic

variance. We also took W (t) = 1. The results are summarized in Table 7. They

suggest that both race and age had significant effects on the medical cost for

each visit. Specifically, white patients tended to be at less risk for hospitalization

and had less medical costs at each visit. Older people were more likely to visit

the hospital and had lower medical cost. In addition, on average, the times to

hospitalizations for white patients were 1.1 times longer than those of nonwhite

patients, and white patients lived 1.47 times as long as nonwhite patients. Older

patients tended to have higher hazard compared to younger patients. These

findings are similar to those obtained by Liu, Huang, and O’Quigley (2008) and

Sun et al. (2012).
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We applied our model checking techniques to assess the adequacy of (2.1)

for these data. We calculated F(t; θ̂) and obtained supt ∥F1(t; η̂)∥ = 0.4092

with a p-value of 0.28, supt ∥F2(t; γ̂, η̂)∥ = 1.5606 with a p-value of 0.33, and

supt ∥F3(t; θ̂)∥ = 11.0798 with a p-value of 0.29, based on 100 realizations of the

corresponding statistics supt ∥F̂1(t)∥, supt ∥F̂2(t)∥ and supt ∥F̂3(t)∥, respectively.
These indicated no evidence of model misspecification.

7. Concluding Remarks

The proposed estimator may be inefficient if the range of (η0 − γ0)
′Z is very

large, because then there would be excessive artificial censoring. We can use

stratification to alleviate this problem (e.g., Lin and Ying (2003)). For example,

if the large range of (η0 − γ0)
′Z is caused by some extreme values in a particular

component of Z, we would stratify the sample on this covariate: one stratum

containing the middle values of this covariate, and the other containing the rest.

The estimating functions for regression parameters can be constructed separately

in the two strata by using different values of d. Then we can combine the two

estimating functions by adding them together.

Model (2.1) assumes the same set of covariates Z for the longitudinal pro-

cess, the observation process, and the dropout process. The proposed estima-

tion procedure can be extended in a straightforward manner to deal with differ-

ent set of covariates for them. We have assumed that the covariates are time-

independent. If not, we can specify that, for given Z(t) and t, the random vec-

tor {Y (
∫ t
0 e

γ′
0Z(u)du)− β′0Z(t), N(

∫ t
0 e

γ′
0Z(u)du),

∫ D
0 e−η′0Z(u)du}′ has an arbitrary

common joint distribution. If Ω(t) is the set of all possible values of Z(t) for each

t ≥ 0, we take T ∗
i (γ, η) as

∫ Ti

0 e−η′Zi(t)+ddt, where d = infz(t)∈Ω(t),t≥0{(η−γ)′z(t)}.
With these modifications, applying Lin and Ying (1995) and Lin, Wei, and Ying

(1998), the results in Section 3 continue to hold for time-dependent covariates.

This will be reported elsewhere.

Here we assume that the rescaling time for the longitudinal process is com-

pletely determined by the rate of the observation process, and this has the benefit

of always having observed values for Y (·) when N(·) jumps. This assumption

can be violated. In general, we can assume that there exist unknown con-

stant vectors γ0, β0, and η0 such that, for given Z and t, the random vectors

{Y (t) − β′0Z,N(teγ
′
0Z), De−η′0Z}′ have a common, but completely unspecified,

joint distribution. The proposed estimation procedure for model (2.1) cannot be

extended in a straightforward manner to deal with this case. It is a challenging

problem and requires further research.

In practice, some covariates have the effect of a scale change, and others

can have an additive effect. Here, let Z and X are p × 1 and q × 1 vectors of
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covariates, respectively, where covariates Z have the effect of a scale change, and

those in X have an additive effect. Then we can assume the marginal model

E{Y (teγ
′
0Z)|Z,X} = µ0(t) + β′0X.

A more general model can be seen in Gray and Brookmeyer (1998). Model (2.1)

can also be modified accordingly, and the proposed estimation procedure can be

extended in a straightforward manner to deal with this case.
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Appendix: Proofs of Asymptotic Results

Under (2.1), the conditional expectations E{dNi(te
γ′
0Zi)|Die

−η′0Zi+d0 ≥ t, Zi}
(i = 1, . . . , n) have a common value

E{dNi(te
γ′
0Zi)|Die

−η′0Zi+d0 ≥ t, Zi} = dΛ0(t). (A.1)

Let

Mi(t) =

∫ t

0
∆i(s; γ0, η0){dNi(se

γ′
0Zi)− dΛ0(s)}.

By (A.1) and the assumption that Ci is independent of Ni(·) conditional on Zi,

we have that Mi(t) is a zero-mean process (Ghosh and Lin (2003)). Let ΛD
0 (t)

be the common cumulative hazard function for Die
−η′0Zi(i = 1, . . . , n) so that

MD
i (t) = ND

i (t; η0)−
∫ t

0
I{T̃i(η0) ≥ t}dΛD

0 (s)

is a martingale process (Tsiatis (1990)). Let Mi(t) = Mi(t;β0, γ0, η0,A0), see

(3.2). Simple manipulation yields

U1(β0; γ0, η0) =
n∑

i=1

∫ ∞

0
W (t){Zi − Z̄(t; γ0, η0)}

×
[
dMi(t)− {Ȳ ∗(t; γ0, η0)− β′0Z̄(t; γ0, η0)}dMi(t)

]
,
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U2(γ0; η0) =

n∑
i=1

∫ ∞

0
{Zi − Z̄(t; γ0, η0)}dMi(t),

U3(η0) =

n∑
i=1

∫ ∞

0
{Zi − Z̄D(t; η0)}dMD

i (t).

Using Lemma 1 of Appendix A.1 of Lin and Ying (2001), we have

n−1/2U1(β0; γ0, η0) = n−1/2
n∑

i=1

∫ ∞

0
w(t){Zi − z̄(t)}

×
[
dMi(t)− {ȳ∗(t)− β′0z̄(t)}dMi(t)

]
+ op(1), (A.2)

n−1/2U2(γ0; η0) = n−1/2
n∑

i=1

∫ ∞

0
{Zi − z̄(t)}dMi(t) + op(1), (A.3)

n−1/2U3(η0) = n−1/2
n∑

i=1

∫ ∞

0
{Zi − z̄D(t)}dMD

i (t) + op(1), (A.4)

where w(t), z̄(t), ȳ∗(t) and z̄D(t) are the limits ofW (t), Z̄(t; γ0, η0), Ȳ
∗(t; γ0, η0),

and Z̄D(t; η0), respectively. Note that U(θ) = (U1(β; γ, η)
′, U2(γ; η)

′, U3(η)
′)′,

see (3.6). Since the right hand sides of (A.2), (A.3), and (A.4) consist of

sums of independent random vectors plus asymptotically negligible terms, the

Multivariate Central Limit Theorem implies that n−1/2U(θ0) converges in dis-

tribution to a normal random vector with mean zero and covariance matrix

Σ = limn→∞ n−1
∑n

i=1E{Ψ⊗2
i }, where Ψi = (Ψ′

1i,Ψ
′
2i,Ψ

′
3i)

′,

Ψ1i =

∫ ∞

0
w(t){Zi − z̄(t)}

[
dMi(t)− {ȳ∗(t)− β′0z̄(t)}dMi(t)

]
,

Ψ2i =

∫ ∞

0
{Zi − z̄(t)}dMi(t),

Ψ3i =

∫ ∞

0
{Zi − z̄D(t)}dMD

i (t).

Applying the technique of Ying (1993) and Lin, Wei, and Ying (1998), we can

show that for θ in a small neighborhood of θ0,

n−1/2U(θ) = n−1/2U(θ0) +An1/2(θ − θ0) + op(1),

where A is the asymptotic slope matrix of n−1U(θ0). It then follows that

n−1/2(θ̂ − θ0) is asymptotically normal with mean zero and covariance matrix

A−1ΣA−1.
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