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Abstract: This paper introduces a flexible skewed link function for modeling binary

as well as ordinal data with covariates based on the generalized extreme value

(GEV) distribution. Extreme value techniques have been widely used in many

disciplines relating to risk analysis, but, applications to binary and ordinal data in

a Bayesian context are sparse. There are a number of non-regular situations with

the likelihood method for GEV models in which the usual asymptotic properties of

MLE do not hold, suggesting Bayesian methodology for analyzing GEV models. We

introduce the GEV distribution in reliability and survival models, and show that

our proposed model leads to an extremely flexible hazard function. We investigate

the properties of posterior distributions for binary and ordinal response models

under the generalized extreme value link using a uniform prior distribution on

the regression parameters. Necessary and sufficient conditions for the propriety of

the posterior distribution are established. We consider similar issues for survival

data models, where log survival time has a GEV distribution, and the propriety

of the posterior distribution under a uniform prior on the regression coefficients is

established. The flexibility of the proposed survival model is illustrated through a

dataset involving a lung cancer clinical trial.
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distribution, hazard function, improper prior, posterior propriety, skewness.

1. Introduction

The generalized extreme value (GEV) distribution is a family of continu-

ous probability distributions that combines the Gumbel, Fréchet, and Weibull

distributions that can be obtained as the limiting distributions of properly nor-

malized maxima of n independent and identically distributed random variables.

Extreme value analysis finds wide applications in many areas including climatol-

ogy (Sang and Gelfand (2009)), environmental science (Smith (1989); Sang and

Gelfand (2010); Wang, Dey, and Banerjee (2010)), financial strategy of risk man-

agement (Dahan and Mendelson (2001)) and survival analysis (Mann, Schafer,

and Singpurwalla (1974); Kim and Ibrahim (2000)). In this article we show the

broad applicability of the GEV distribution for analyzing binary, ordinal, and

survival data.
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The most popular model for binary response data is the logistic regression

model based on the logit link function. Other frequently used link functions are

the probit and complimentary log-log. These link functions do not always pro-

vide the best fit for a given data set. In particular, if the probability of a given

binary response approaches 0 at a different rate than it approaches 1, the use of

a symmetric link function such as probit or logit is inappropriate. In this case,

if the link function is misspecified, there can be substantial bias in the mean

response estimates (Czado and Santner (1992)). One intuitive way of guarding

against link misspecification is to embed symmetric links into a wide parametric

class of links. Several authors have introduced such parametric classes for binary

response data. For example, Aranda-Ordaz (1981), Guerreo and Johnson (1982),

Morgan (1983), and Whitemore (1983) considered different one-parameter fam-

ilies. Stukel (1988) extended these links by proposing a class of generalized

logistic models. Stukel’s (1988) models are general and such link functions as

the probit and complimentary log-log can be approximated by members of this

family. However, in the presence of covariates, Stukel’s (1988) models yield im-

proper posterior distributions for many types of non-informative improper priors,

including the improper uniform prior for the regression coefficients (Chen, Dey,

and Shao (1999)). Chen, Dey, and Shao (1999) introduced a class of skewed links

that leads to proper posterior distributions for the regression coefficients under a

standard improper prior. However, Chen, Dey, and Shao’s (1999) model has the

limitation that the intercept term is confounded with the skewness parameter.

This problem was overcome in Kim, Chen, and Dey (2008) by a class of gener-

alized skewed t-link models, though the constraint on the shape parameter δ as

0 < δ ≤ 1 greatly reduces the possible range of skewness provided by this model.

To overcome this Wang and Dey (2010) introduced the GEV distribution

as a link function. With a free shape parameter, the GEV distribution provides

great flexibility in fitting a wide range of skewness in the response curve. Wang

and Dey (2010) illustrated the flexibility of GEV link function with simulations

and data.

The misspecification of link function can also occur for ordinal data (Wang

and Dey (2011)). Many link functions for ordinal response data proposed in the

literature including the probit link, Albert and Chib’s (1993) family of t-links,

and Chen and Dey’s (2000) scale mixture of multivariate normal link functions

are symmetric and may not be appropriate. Wang and Dey (2011) employed

the GEV distribution for modeling ordinal response data. However, the authors

did not address the issue of the propriety of the posterior distribution of the

regression coefficients and of the cut points under improper uniform priors on

the parameters. Here we give rigorous proofs for the propriety of the posterior

distributions of the associated parameters for binomial as well as ordinal data.
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We further propose survival models based on the GEV distribution, and provide

sufficient conditions for the propriety of the corresponding posterior distributions

when an improper uniform prior is used on the regression coefficients.

There is a close connection between categorical and survival data through

the link function specification (Banerjee et al. (2007)). Banerjee et al. (2007)

proposed a general class of non-proportional hazard models known as general-

ized odds-rate class of regression models. In a similar spirit, we develop a class

of non-proportional hazard regression models using the GEV distribution. In re-

liability and survival analysis, the probability distribution of the time-to-failure

of an equipment can be characterized by the hazard function (also known as fail-

ure rate) λ(t) = f(t)/S(t), where f(t) and S(t) are failure density and survival

function, respectively. Many widely used models including gamma, Weibull, and

the truncated normal distribution lead to monotone hazard function. However,

it has long been known that in many situations the hazard function is not mono-

tone, it is either upside-down shaped, or bathtub shaped, or a combination of them

(Lieberman (1969); Langlands et al. (1979); Bennett (1983)). A popular way of

introducing non-monotone hazard function is by considering mixture distribu-

tion models (Barlow and Proschan (1975); Finkelstein (2009)). Mixtures do not

always lead to a non-monotone hazard function, but mixtures of increasing fail-

ure rate can decrease, at least in some time intervals (Gurland and Sethuraman

(1995)). Still, mixture modeling might not be desirable since it brings flexibility

at the expense of additional parameters, consequently more parameters have to

be estimated.

For a flexible hazard function, we propose the GEV distribution for log T ,

where T denotes failure time. We show that by changing the shape parameter

of the GEV distribution, we obtain a variety of shapes for the hazard function

including the upside-down and bathtub shapes. The GEV distribution includes

the Gumbel distribution as a special case, and if T has a Weibull distribution,

then log T has a Gumbel distribution for the minimum extremes (Mann, Schafer,

and Singpurwalla (1974); Kim and Ibrahim (2000)). Here the hazard (failure)

rate is some power function of t, the time-to-failure, and is decreasing (increasing)

if the shape parameter of the Weibull distribution is < 1(> 1) (Mann, Schafer,

and Singpurwalla (1974)). However, if log T has a GEV distribution the modeling

framework is much different.

We consider situations in which the distribution of failure time T depends

on one or more covariates, in particular, accelerated failure time models that

are linear models for log T . Life data analysis involves analyzing times-to-failure

data in order to quantify the reliability of a product. But, for products with long

life time, only a few items fail during testing under normal operating conditions.

The standard method is then to test under extreme operating conditions, referred
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to as accelerated life testing (Mann, Schafer, and Singpurwalla (1974); Nelson

(1990)). Accelerated failure time or log-location-scale models are also useful in

other fields of applications. We introduce accelerated failure time models with

GEV as error distribution. We consider a Bayesian analysis of the corresponding

model under non-informative priors. Since the Jeffreys prior turns out to be

extremely cumbersome in this case, we consider a uniform prior on the regression

coefficients. We obtain sufficient conditions for the propriety of the corresponding

posterior distribution. We demonstrate the flexibility of the proposed survival

model through a lung cancer dataset.

The rest of the paper is organized as follows. Section 2 provides a short

introduction to GEV distributions. Section 3 describes the GEV link models

for binomial response data and provides necessary and sufficient conditions for

propriety of the posterior distributions. Section 4 is devoted to the development

of sufficient conditions for posterior propriety under GEV links for ordinal data.

Section 5 introduces GEV distribution in reliability and accelerated failure time

models. The paper concludes with a discussion in Section 6. The proofs of the

theorems have been relegated to appendices.

2. Generalized Extreme Value Distribution

Suppose Y1, Y2, . . . is a sequence of iid random variables and let Mn =

max{Y1, . . . , Yn}. Extreme value theory considers the existence of limn→∞ P [(Mn

−bn)/an ≤ y] ≡ F (y) for two sequences of real numbers an > 0 and bn. If F (y) is

a non-degenerate distribution, then it belongs to either the Gumbel, Fréchet, or

the Weibull family of distributions, these can all be found in the family of GEV

distributions with cumulative distribution function

G(µ,σ,ξ)(x) =

exp
[
− {1 + ξ x−µ

σ }−1/ξ
+

]
if ξ > 0 or ξ < 0,

exp
(
− exp(−x−µ

σ )
)

if ξ = 0 ,
(2.1)

where µ ∈ R is the location parameter, σ ∈ R+ is a scale parameter, ξ ∈ R
is the shape parameter and x+ = max(x, 0). The Gumbel, Fréchet, and the

Weibull distributions are obtained from (2.1) by taking ξ = 0, ξ > 0, and ξ < 0,

respectively. Detailed discussion of extreme value distributions can be found in

Coles (2001) and Smith (1985).

The importance of GEV distribution as a link function arises from the fact

that the shape parameter ξ controls the tail behavior of the distribution (Wang

and Dey (2010)). The Gumbel distribution is the least positively skewed distri-

bution in the GEV class when ξ is non-negative. Wang and Dey (2010) provide

a plot of the probability distributions of the GEV family that demonstrates the

flexibility of the GEV distribution.
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Since the usual definition of skewness µ3 = {E(X − µ)3}{E(X − µ)2}−3/2

does not work for large positive values of ξ’s for the GEV model, Wang and

Dey (2010) extended Arnold and Groeneveld’s (1995) skewness measure to the
GEV distribution in terms of its mode. Wang and Dey (2010) showed that,

based on this skewness definition, the GEV distribution is negatively skewed for
ξ < log 2− 1 and positively skewed for ξ > log 2− 1.

3. Generalized Extreme Value Link for Binomial Regression Models

Suppose y = (y1, . . . , yn) is a vector of n independent binomial random

variables. Also, let xi be the k × 1 vector of covariates associated with yi, and
suppose X denotes the n × k design matrix with rows x′i. Let β be the k × 1

vector of regression coefficients. Assume that yi ∼ Bin(ni, pi) i = 1, . . . , n, and
that

pi = 1−Gξ(−x′iβ) ,

where Gξ(x) is the cumulative probability at x for the GEV distribution with
µ = 0, σ = 1, and an unknown shape parameter ξ. The joint pmf of y is then

f(y|β, ξ) =
n∏

i=1

(
ni

yi

)(
1−Gξ(−x′iβ)

)yi(
Gξ(−x′iβ)

)ni−yi
.

It is possible to estimate the shape parameter ξ here by the maximum likelihood.
However, the usual asymptotic properties of the maximum likelihood estima-

tor may not hold. Smith (1985) studied maximum likelihood estimation for the
three-parameter GEV distribution and found that when ξ < −0.5 the standard
asymptotic likelihood results do not follow. Since it does not depend on such reg-

ularity assumptions Bayesian inference provides a viable alternative for analyzing
the GEV link model.

In the next two subsections we consider the uniform and the Jeffreys priors
on (β, ξ) and study the property of the corresponding posterior distributions.

3.1. Uniform prior

We consider an improper uniform prior on β, π(β) ∝ 1, β ∈ Rk, and a proper

prior on ξ, π(ξ) = 0.5I[−1,1](ξ). The joint posterior density is

π(β, ξ|y) ∝
n∏

i=1

(
ni

yi

)(
1−Gξ(−x′iβ)

)yi(
Gξ(−x′iβ)

)ni−yi 1

2
I[−1,1](ξ).

We provide sufficient conditions for propriety of the posterior density, π(β, ξ|y).
It is proper if and only if

c(y) :=

∫ 1

−1

∫
Rk

f(y|β, ξ)dβdξ < ∞.
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We denote the pmf of yi by

f(yi|β, ξ) =
(
ni

yi

)(
1−Gξ(−x′iβ)

)yi(
Gξ(−x′iβ)

)ni−yi
,

and have

f(yi|β, ξ) ≤


Gξ(−x′iβ) if yi = 0,

1−Gξ(−x′iβ) if yi = ni,(
ni
yi

)(
1−Gξ(−x′iβ)

)(
Gξ(−x′iβ)

)
if 1 ≤ yi ≤ ni − 1 .

Let Nn = {1, . . . , n}. We partition Nn as Nn = I1 ⊎ I2 ⊎ I3, where I1 = {i ∈ Nn :

yi = 0}, I2 = {i ∈ Nn : yi = ni} and I3 = {i ∈ Nn : 1 ≤ yi ≤ ni − 1} (Chen,

Ibrahim, and Shao (2004b)), so

f(y|β, ξ) =
n∏

i=1

f(yi|β, ξ)

≤
∏
i∈I1

Gξ(−x′iβ)
∏
i∈I2

(
1−Gξ(−x′iβ)

)∏
i∈I3

(
ni

yi

)(
1−Gξ(−x′iβ)

)(
Gξ(−x′iβ)

)
.

Let q = #(I3) be the cardinality of I3. Let the q × k matrix with rows x′i, i ∈ I3

be denoted by X̃ and let
≈
X be the (n+ q)× k matrix(

X

X̃

)
.

Define τ1, τ2, . . . , τn+q where τi = −1 if i ≤ n and i ∈ I1 ∪ I3, τi = 1 if i ≤ n

and i ∈ I2, and τn+i = 1 for i = 1, . . . , q. Let X∗ be the (n+ q)× k matrix with

ith row −τi
≈
x
′
i, where

≈
x
′
i is the ith row of

≈
X, and let X∗

ℓ,m be the (m − ℓ) × k

matrix with rows −τi
≈
x
′
i, ℓ < i ≤ m.

Theorem 1. Suppose that there exist integers p,m0, · · · ,mp such that p > k,

0 = m0 < · · · < mp ≤ n + q, and that X∗
mℓ−1,mℓ

is of full rank with positive

vectors a1, a2, . . . , ap such that a′ℓX
∗
mℓ−1,mℓ

= 0 for ℓ = 1, . . . , p. Then c(y) < ∞
.

The proof of the Theorem 1 is given in Appendix A.

Notice that binary regression models can be obtained as a special case of

binomial regression models by taking ni = 1 for i = 1, . . . , n. In this case

I3 = ∅, q = 0, and X∗ is an n × k matrix with ith row x′iI{0}(yi) − x′iI{1}(yi).

In order to gain intuition behind the conditions in Theorem 1, consider the

special case of binary regression models. If X is of full rank, the existence of

a positive vector a with a′X∗ = 0 implies that there is no point β0 ∈ Rk \ {0}
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such that x∗i β0 ≤ 0 for all i = 1, 2, . . . , n (Roy and Hobert (2007, p.261)). Thus
every point in Rk \ {0} lies on the positive side of some of the n hyperplanes
x∗iβ0 = 0 and on the negative side of the rest. The existence of a positive
vector a satisfying a′X∗ = 0 also implies that the data set is overlapped (Albert
and Anderson (1984)). Since the GEV distribution need not have higher order
moments (for example, it does not have finite second moment for ξ ≥ 1/2), we
need to impose stronger conditions than the mere existence of a positive vector
a satisfying a′X∗ = 0 (Chen and Shao (2000)). If we assume that ξ < 1/k,
then the GEV distribution has finite kth moment, and the existence of a > 0
with a′X∗ = 0 implies that c(y) < ∞. Roy and Hobert (2007) provide a simple
way to check the existence of a positive vector a with a′X∗ = 0 that involves
maximizing 1′g subject to g′X∗ = 0, (J − I)g ≤ 1(element wise), and gi ≥ 0
for i = 1, . . . , n + q, where 1 and J denote a column vector and the matrix of
1s, respectively. This can be easily implemented in many statistical software
languages. For example, the “simplex” function in the “boot” library of R (R
Development Core Team (2011)) can be used.

Theorem 2. For binary regression models, for c(y) < ∞ it is necessary that
the design matrix X is of full rank, and there exists a positive vector a =
(a1, a2, . . . , an)

′ ∈ Rn such that a′X∗ = 0.

The proof of the Theorem 2 is given in Appendix B. Thus, if it is assumed
that ξ < 1/k, these conditions are necessary and sufficient for c(y) < ∞.

3.2. Jeffreys prior

Consider the prior on (β, ξ) given by

π1(β, ξ) = π(β|ξ)π(ξ),

where π(β|ξ) ∝ |I(β|ξ)|1/2, with I(β|ξ) the Fisher information matrix for the
Binomial distribution with the GEV link and π(ξ) = 0.5I[−1,1](ξ). The posterior
density is then

π1(β, ξ|y) ∝ f(y|β, ξ)|I(β|ξ)|1/2I[−1,1](ξ).

Theorem 3. The posterior density π1(β, ξ|y) is proper.

The proof of the Theorem 3 is given in Appendix C.

4. Generalized Extreme Value Link for Independent Ordinal Regres-
sion Models

Suppose we have n observations y1, y2, . . . , yn, where yi takes value in {j :
j = 1, . . . , J}. A common way to model ordinal data is to consider underlying
continuous latent variables wi, i = 1, . . . , n and assume that we observe

yi = j if γj−1 < wi ≤ γj ,
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where −∞ = γ0 < γ1 < γ2 < · · · < γJ−1 < γJ = ∞ are cut point parameters

that determine the discretization of the data into J ordered categories (Albert

and Chib (1993)). Here we assume that

wi = x′iβ + ϵi ,

i = 1, . . . , n, where the x′i’s are k-dimensional vectors of covariates, β is the

vector of regression parameters, and ϵi ∼ GEV (µ = 0, σ = 1, ξ) (Wang and Dey

(2011)). Since

P (yi = j) = P (γj−1 < wi ≤ γj)

= P (γj−1 − x′iβ < ϵi ≤ γj − x′iβ)

= Gξ(γj − x′iβ)−Gξ(γj−1 − x′iβ)

the likelihood function for the above model is

L(β, γ, ξ|y) =
n∏

i=1

[
Gξ(γyi − x′iβ)−Gξ(γyi−1 − x′iβ)

]
.

Consider the priors on the parameters β, ξ, and γ = (γ1, γ2, . . . , γJ−1) given by

Π(β) ∝ 1, β ∈ Rp,

Π(ξ) =
1

2
I[−1,1](ξ),

Π(γ) = 1 I[γ1<γ2<···<γJ−1](γ) .

The posterior density of β, γ, and ξ is then

Π(β, γ, ξ|y) ∝ L(β, γ, ξ|y)Π(β)Π(γ)Π(ξ)

∝
n∏

i=1

[
Gξ(γyi − x′iβ)−Gξ(γyi−1 − x′iβ)

]
I[γ1<γ2<···<γJ−1](γ)I[−1,1](ξ) .

We provide sufficient conditions for the posterior density Π(β, γ, ξ|y) to be proper.
In order to state them, we introduce some notations. Partition the set Nn =

{1, . . . , n} into Nn = U ⊎ L ⊎M where

U = {i ∈ Nn : yi = J},

L = {i ∈ Nn : yi = 1},

M = {i ∈ Nn : 1 < yi < J}.

Let X be the n × k design matrix with rows x′i and take x∗i = (1, x′i)
′ for i =

1, . . . , n.
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Theorem 4. Assume that

(A1) there exists p > k + J − 1 such that we can partition

U =

p⊎
ℓ=1

Uℓ, L =

p⊎
1

Lℓ, and M =

p⊎
1

Mℓ,

where Uℓ, and Lℓ are non-empty for ℓ = 1, . . . , p. Define

X1ℓ = {x∗i , i ∈ Uℓ,−x∗j , j ∈ Lℓ ∪Mℓ}′,
X2ℓ = {x∗j , j ∈ Lℓ,−x∗i , i ∈ Uℓ ∪Mℓ}′, ℓ = 1, . . . , p .

Then the posterior is proper if one of the following two conditions is sat-

isfied.

(A2)′ X1ℓ is of full column rank and ∃ bℓ > 0 such that b′ℓX1ℓ = 0 for ℓ = 1, . . . , p.

(A2)′′ X2ℓ is of full column rank and ∃ bℓ > 0 such that b′ℓX2ℓ = 0 for ℓ = 1, . . . , p.

The proof of Theorem 4 is given in Appendix D.

Here is another set of sufficient conditions for a proper posterior. Following

Chen and Shao (1999), we define

Tℓ,1 =
{
(i, j) : i ∈ U, j ∈ L, xiℓ − xjℓ > 0

}
,

Tℓ,−1 =
{
(i, j) : i ∈ U, j ∈ L, xiℓ − xjℓ < 0

}
.

For η = (η1, η2, . . . , ηk) where ηℓ = ±1, let

T (η) =

k∩
ℓ=1

Tℓ,ηℓ .

Suppose there exist U(η) ⊂ U and L(η) ⊂ L such that U(η)× L(η) ⊂ T (η). Let

M∗ = min
η

min
(
#U(η),#L(η)

)
, where as before #A is the cardinality of the set

A.

Theorem 5. If M∗ > k + J − 1, then the posterior Π(β, γ, ξ|y) is proper.

The proof of Theorem 5 is given in Appendix E.

Note that if either L or U is empty, then there is no information available to

estimate γ1 or γJ−1, so we need at least the sets U and L to be non-empty for a

proper posterior. On the other hand, the posterior can still be proper even if the

set M is empty. Also, the full rank condition of the design matrix is a necessary

condition for the posterior to be proper (Chen and Shao (1999)).
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5. Generalized Extreme Value Distribution in Survival Analysis

5.1. Shape of the hazard function

Suppose T denotes time to failure. We assume that log T ∼ GEV (µ = 0, σ =

1, ξ), so the pdf of T is

fξ(t) =


exp[−(1+ξ log t)−1/ξ]

t(1+ξ log t)1/ξ+1 t > exp(−1
ξ ) if ξ > 0 ;

t < exp(−1
ξ ) if ξ < 0 ,

exp(−1
t ) ·

1
t2

0 < t < ∞ if ξ = 0 .

The survival function Sξ(t) = P (T ≥ t) here is

Sξ(t) =


1− exp

(
− (1 + ξ log t)

− 1
ξ

+

)
if ξ ̸= 0,

1− exp(−1
t ) if ξ = 0,

and the hazard function λξ(t) = fξ(t)/Sξ(t) is

λξ(t) =


1

t(1+ξ log t)
1/ξ+1
+

{
exp
(
(1+ξ log t)

−1/ξ
+

)
−1
} if ξ ̸= 0,

1

t2
(
exp(1/t)−1

) if ξ = 0 .

Figure 1 shows the plot of the GEV hazard function for ξ = 0.3, 0,−0.3,−0.5,

and −1.5. It shows that a GEV model is extremely flexible in modeling survival

data. Another advantage is that by varying only the shape parameter, ξ, we

obtain different shapes for the hazard function, whereas mixture models provide

flexibility at the expense of many extra parameters.

We have a result regarding the hazard function of λ0(t).

Theorem 6. The hazard function, λ0(t) is an upside down function.

The proof of Theorem 5 is given in Appendix F.

5.2. Generalized extreme value regression models

Here we consider GEV as the error distribution in accelerated failure time

models. Let Ti denote the failure times, and assume that

log Ti ∼ GEV (x′iβ, σ, ξ) ,

for i = 1, . . . , n, where the xi’s are the k dimensional covariates, β is the

vector of regression coefficients, and σ is the scale parameter. A version of the

extreme value distribution is widely used in survival data analysis; for example,
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Figure 1. Hazard functions of the generalized extreme value distribution
for different values of ξ.

Kim and Ibrahim (2000) consider the extreme value regression model when Ti

has a Weibull distribution.

Let {(ti, νi); i = 1, . . . , n} be the observed data where ti, i = 1, . . . , n de-

notes the observed failure or right censored time and νi is an indicator vari-

able taking value 1 if ti is an observed failure time and 0 if ti is censored. Let

t = (t1, t2, . . . , tn) and ν = (ν1, ν2, . . . , νn). The likelihood function (assuming

right censoring) is given by

L(β, σ, ξ|t, ν) =
n∏

i=1

{
1

σti

(
1 + ξ

yi−x′
iβ

σ

)1/ξ+1

+

exp

[
−
(
1 + ξ

yi − x′iβ

σ

)−1/ξ

+

]}νi

×
{
1− exp

[
−
(
1 + ξ

yi − x′iβ

σ

)−1/ξ

+

]}1−νi

, (5.1)

where yi = log ti for i = 1, . . . , n.

The GEV distribution is irregular as its support depends on the parameters

(Smith (1985)). When σ and ξ are known, the Jeffreys prior for β, π(β|σ, ξ),
is proportional to the square root of the determinant of the Fisher information

matrix, π(β|σ, ξ) ∝ |I(β|σ, ξ)|1/2. It can be shown that

I(β|σ, ξ) := E
(
− ∂2

∂βi∂βj
logL(β, σ, ξ|t, ν)

∣∣∣β, σ, ξ)
1≤i,j≤k

= E
(
XTWX

∣∣β, σ, ξ),
where X is the n×k covariate matrix, and W is an n×n diagonal matrix. The ith

diagonal element of W is a very complicated function of di = 1 + ξ(yi − x′iβ)/σ.

So we use a uniform prior on β. Kim and Ibrahim (2000) made similar comments

regarding the Jeffreys prior for their extreme value regression model.
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Consider a prior on (β, σ, ξ),

π(β, σ, ξ) ∝ π(σ)π(ξ); β ∈ Rk, σ ∈ R+,

where π(σ) is a (proper or improper) density on R+ and π(ξ) = 0.5I[−1,1](ξ).

The posterior density is

π(β, σ, ξ|t, ν) ∝ L(β, σ, ξ|t, ν)π(σ)π(ξ) . (5.2)

Theorem 7. Let X̆ be an n×k matrix with rows νix
′
i, i = 1, . . . , n. Assume that

r(X̆) = k and
∫∞
0 (1/σm−k)π(σ)dσ < ∞, where m = #{i : νi = 1} is the number

of uncensored observations. Then the posterior density in (5.2) is proper.

The proof of Theorem 7 is given in Appendix G.

Remark 1. [Kim and Ibrahim (2000)] considered conditions for posterior propri-

ety in the special case that Ti has a Weibull distribution. One of their conditions

was that the likelihood function based on any n − k observations be bounded.

But we have propriety without such a restriction.

5.3. An illustrative example

We consider the survival data on 40 advanced lung cancer patients as in

Lawless (2003, p. 7). The dataset has three covariates: performance status (PS)

at diagnosis (a measure of general medical condition on a scale of 10 to 90, with

lower numbers indicating poorer conditions), age of the patient at diagnosis in

years (age), and the number of months from diagnosis of cancer to entry into

the study (diag). Three of the 40 observations are censored. This dataset has

been previously analyzed by Kim and Ibrahim (2000) who assumed that the

survival time follows a Weibull distribution. The shape parameter of the Weibull

distribution was estimated to be 0.949 which implies a monotone decreasing

hazard rate. Figure 2 shows the plots of the estimated baseline hazard function

using the nonparametric kernel methods described in Müller and Wang (1994).

We used the “muhaz” package in R (R Development Core Team (2011)) to make

these plots. The plot in the left panel was obtained using the global bandwidth

selection algorithms of Müller andWang (1994) and the maximum time was taken

to be the time at which ten patients remain at risk (default choice in the “muhaz”

function). The plot in the right panel was based on the local bandwidth choices

as prescribed in Müller and Wang (1994), and the time domain was stretched to

the maximum observed survival time (999 days). The plots in Figure 2 suggest

that the true hazard rate may be U-shaped or modified bathtub shaped so a

Weibull model for the survival time may not be appropriate here. We used the
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Figure 2. Estimated hazard functions for lung cancer patients.

GEV accelerated failure time model proposed in Section 5.2 to analyze this data

set.

We considered the improper uniform prior on the regression coefficients, and

the inverse gamma IG(1,1) prior on σ. The posterior estimates reported here are

fairly robust with respect to the hyperparameter values of the IG prior. Since

r(X̆) = 4, from Theorem 7 we know that the posterior density, π(β, σ, ξ|t, ν)
in (5.2) is proper. We used the Metropolis-Hastings (with normal and trun-

cated normal kernels) within Gibbs sampling algorithm for MCMC sampling.

We standardized the covariate values to improve convergence of the MCMC al-

gorithms. The R codes implementing the MCMC sampling scheme is available in

the supplementary materials for the paper. The convergence of all the results was

examined by visual trace plots, autocorrelation plots, Geweke’s (1992) test statis-

tic, and the Gelman-Rubin scale reduction factor (Brooks and Gelman (1998))

based on multiple sequences with widely dispersed starting values. The posterior

means and 95% central credible intervals for ξ and σ were −0.34(−0.62,−0.04),

and 1.26(0.98, 1.67), respectively. The baseline hazard function corresponding

to ξ = −0.34 and σ = 1.26 is modified bathtub shaped (as with ξ = −0.3 in

Figure 1). The posterior means and 95% central credible intervals for the inter-

cept parameter and the regression coefficients corresponding to the three vari-

ables PS, age, and diag were 3.72(3.25, 4.16), 1.16(0.74, 1.6), 0.07(−0.38, 0.52),

and 0.04(−0.32, 0.42), respectively. As noted by Lawless (2003), the variable PS

is important whereas the other two variables are not significant.

6. Concluding Remarks

Extending our results to multivariate categorical response and discrete choice

models is quite challenging (Chen, Dey, and Ibrahim (2004a)). For the life testing

and survival analysis models, further study can be done on fitting regression

models for ordinal response and a proportional hazards model with a frailty

distribution. The methodology proposed here can be extended to left censored

or interval censored data.
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Appendices

A. Proof of Theorem 1

Proof of Theorem 1. Take u, u1, . . . , un+q to be iid random variables with
common distribution function Gξ(·). Let u∗ = (τ1u1, τ2u2, . . . , τn+qun+q)

′, where
the τi’s are as defined in Section 3.1. Then by Fubini’s Theorem,∫ 1

−1

∫
Rk

f(y|β, ξ)dβdξ

≤
[ ∏
i∈I3

(
ni

yi

)]
E
{∫ 1

−1

∫
Rk

I
(
τiui ≥ −τix

′
iβ, 1 ≤ i ≤ n+ q

)
dβdξ

}
≤
[ ∏
i∈I3

(
ni

yi

)]∫ 1

−1

∫
Rn+q

∫
Rk

I
(
∥β∥ ≤ cmin

ℓ
max

mℓ−1<i≤mℓ

|ui|
)
dβdGξdξ

= c∗
∫ 1

−1

∫
Rn+q

(
min
ℓ

max
mℓ−1<i≤mℓ

|ui|
)k

dGξdξ

≤ c∗
∫ 1

−1

p∏
ℓ=1

( ∑
mℓ−1<i≤mℓ

Eξ|ui|k/p
)
dξ, (A.1)

where c and c∗ are two constants and dGξ = dGξ(u1) . . . dGξ(un+q).
Note that if we can show that Eξ(|u|a) is a continuous function of ξ when

0 < a < 1, then it will follow that (A.1) is finite. Since u ∼ Gξ(·), the pdf of u is

gξ(u) =

exp
[
− {1 + ξu}−1/ξ

]
1

{1+ξu}1/ξ+1 u > −1
ξ if ξ > 0 ;u < −1

ξ if ξ < 0,

exp(− exp(−u)) exp(−u) −∞ < u < ∞ if ξ = 0 .

For ξ ̸= 0, taking the transformation t = (1 + ξu)−1/ξ, it follows that

Eξ(|u|a) =
∫ ∞

0

∣∣∣1
ξ
(t−ξ − 1)

∣∣∣ae−tdt .

Similarly when ξ = 0, taking the transformation t = e−u, it follows that

Eξ(|u|a) =
∫ ∞

0
| − log t|ae−tdt .

For fixed t > 0 let

ht(ξ) =

{
t−ξ−1

ξ if ξ ̸= 0,

− log t if ξ = 0 .
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For ξ ̸= 0, h′t(ξ) = {−(ξ log t + 1)t−ξ + 1}/ξ2. Since x − x log x ≤ 1 for x > 0,

h′t(ξ) ≥ 0. So for fixed t > 0, we have

−(t− 1) ≤ ht(ξ) ≤
1

t
− 1 for− 1 ≤ ξ ≤ 1.

Then, if 0 < |ξ| ≤ 1, we have∣∣∣ t−ξ − 1

ξ

∣∣∣ ≤max
(1
t
+ 1, t+ 1

)
for t > 0,∣∣∣ log t∣∣∣ ≤max

(1
t
+ 1, t+ 1

)
for t > 0 .

Let

h(t) =


(
1
t + 1

)a
if 0 < t < 1,

(t+ 1)a if t ≥ 1 .

So that for 0 < |ξ| ≤ 1, ∣∣∣1
ξ
(t−ξ − 1)

∣∣∣a ≤ h(t) for t > 0,∣∣∣ log t∣∣∣a ≤ h(t) for t > 0.

As 0 < a < 1, ∫ ∞

0
h(t)e−tdt < ∞.

Since for any fixed t > 0, |1ξ (t
−ξ − 1)|a is a continuous function of ξ, by the

Dominated Convergence Theorem it follows that Eξ|u|a is a continuous function

of ξ, which completes the proof of Theorem 1.

B. Proof of Theorem 2

Proposition B.1. The family of distribution functions {Gξ(·)} is stochastically

increasing.

Proof of Proposition B.1. We are to show that for given x, Gξ(x) is a strictly

decreasing function in ξ. When ξ ̸= 0, Gξ(x) = exp[−{1 + ξx}−1/ξ
+ ]. Take

G̃x(ξ) := − log(Gξ(x)) = {1 + ξx}−1/ξ
+ , so log G̃x(ξ) = − log(1 + ξx)/ξ when

1 + ξx > 0. For fixed x we denote dG̃x(ξ)/dξ by G̃′
x(ξ), so

G̃′
x(ξ)

G̃x(ξ)
= −

ξ x
1+ξx − log(1 + ξx)

ξ2

=
1− (1 + ξx) + (1 + ξx) log(1 + ξx)

ξ2(1 + ξx)
.
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Then, since G̃x(ξ) = {1 + ξx}−1/ξ
+ > 0, from the inequality y − y log y ≤ 1 for

nonnegative y, it follows that for fixed x, G̃′
x(ξ) > 0 for ξ ̸= 0. Then by the Mean

Value Theorem, it follows that G̃ξ(x) is an increasing function in ξ on the entire

real line. Hence for fixed x, Gξ(x) is a decreasing function in ξ.

Proof of Theorem 2. If X is not a full rank matrix then
∫
Rk f(y|β, ξ)dβ = ∞

for all ξ. Note that 0 < Gξ(x) < 1 for all x ∈ [−1/2, 1/2] if ξ ∈ [−1, 1]. In

particular, for δ ∈ (0, 1/2), 0 < Gξ(−δ) ≤ Gξ(δ) < 1 for all ξ ∈ [−1/2, 1/2].

Since the yi’s are binary random variables, if there does not exist any positive

vector a ∈ Rn with a′X∗ = 0, by doing similar calculations as in the proof of

Chen and Shao’s (2000) Theorem 2.2, we have∫ 1

−1

∫
Rk

f(y|β, ξ)dβdξ

≥
∫ 1/2

−1/2

∫
Rk

f(y|β, ξ)dβdξ

≥ c1
∏

i:yi=0

{
1− sup

ξ∈[− 1
2
, 1
2
]

Gξ(δ)
} ∏

i:yi=1

{
inf

ξ∈[− 1
2
, 1
2
]
Gξ(−δ)

}∫
s1≥0,|sj |≤η,2≤j≤k

ds

= c1{1−G−0.5(δ)}p1{G0.5(−δ)}n−p1

∫
s1≥0,|sj |≤η,2≤j≤k

ds

=∞,

where c1 is a nonzero constant, η > 0 is chosen such that kη max
1≤i≤n

||xi|| ≤ δ, ds =

ds1 . . . dsk, and p1 = #{i : yi = 0}; the first equality follows from Proposition B.1.

C. Proof of Theorem 3

Proof of Theorem 3. Since the likelihood function f(y|β, ξ) is bounded, it

is enough to show that the prior π1(β, ξ) is proper. We know that the Fisher

information matrix I(β|ξ) can be written as I(β|ξ) = X ′Ω(β|ξ)X where Ω(β|ξ)
is an n×n diagonal matrix with ith diagonal element ωi = niviδ

2
i , vi = v(x′iβ) =

d2b(θi)/dθ
2
i , and δi = δ(x′iβ) = dθi/dηi is the so-called “link adjustments” (ηi =

x′iβ). Here we use the standard notation θi to denote the canonical parameter for

the binomial, and b(θi) = log(1+ eθi). Then following Ibrahim and Laud (1991),

we have∫ 1

−1

∫
Rk

π1(β, ξ)dβdξ ≤
∑
T

(c(xi1 , xi2 , . . . , xik))
1/2

∫ 1

−1

∫
Rk

k∏
j=1

n
1/2
ij

v
1/2
ij

δijdβdξ,

(C.1)

where T = {(i1, i2, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ n}, x′ij is the ijth row of X,

c(xi1 , xi2 , . . . , xik) = |X∗|2, and X∗ is a k × k matrix with jth column xij . Now,
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without loss of generality, we can assume that X∗ is non-singular since otherwise

c(xi1 , xi2 , . . . , xik) = 0. Then, as in Ibrahim and Laud (1991), considering the

transformation u = X∗β and letting rij = θ(uij ), it follows that a non-zero term

in the expression on the right hand side of (C.1) is proportional to

k∏
j=1

n
1/2
ij

∫ 1

−1

∫ ∞

−∞

(
d2b(rij )

dr2ij

)1/2

drijdξ.

The proof follows from the fact that
∫ 1
−1

∫∞
−∞

(
d2b(rij )/dr

2
ij

)1/2
drijdξ = 2π.

D. Proof of Theorem 4

Proof of Theorem 4. Let r1, r2, . . . , rn be iid random variables with common

distribution Gξ(·). So
Gξ(γyi − x′iβ)−Gξ(γyi−1 − x′iβ)

=

∫
I
(
γyi−1 − x′iβ < ri ≤ γyi − x′iβ

)
dGξ(ri) .

By Fubini’s Theorem,

c1(y) :=

∫ 1

−1

∫
· · ·
∫

γ1<···<γJ−1

∫
Rk

{ n∏
i=1

[
Gξ(γyi − x′iβ)−Gξ(γyi−1 − x′iβ)

]}
dβdγdξ

=

∫ 1

−1

∫
Rn

∫
· · ·
∫

γ1<···<γJ−1

∫
Rk

I
{
γyi−1 − x′iβ < ri < γyi − x′iβ; 1 ≤ i ≤ n

}
dβdγdGξ(r̃)dξ,

where dGξ(r̃) = dGξ(r1) · · · dGξ(rn). With

h(r̃) =

∫
· · ·
∫

γ1<···<γJ−1

∫
Rk

I
{
γyi−1 − x′iβ < ri < γyi − x′iβ; 1 ≤ i ≤ n

}
dβdγ,

c1(y) =

∫ 1

−1

∫
Rn

h(r̃)dGξ(r̃)dξ.

We show that

h(r̃) ≤ C min
1≤i≤p

max
j∈Qi

|rj |k+J−1, (D.1)

where Qi = Ui∪Li∪Mi, and C is a constant depending on X and y only. Then,

c1(y) ≤ C

∫ 1

−1

∫
Rn

min
1≤i≤p

max
j∈Qi

|rj |k+J−1dGξ(r̃)dξ

≤ C

∫ 1

−1

p∏
i=1

( ∑
j∈Qi

Eξ|rj |(k+J−1)/p

)
dξ .
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Since from the proof of Theorem 1 we know that Eξ|rj |(k+J−1)/p is a continuous

function of ξ, it follows that c1(y) < ∞. Now, we show that (D.1) holds.

Consider the transformation γ = (γ1, γ2, . . . , γJ−1) → θ = (θ1, θ2, . . . , θJ−1)

with θ1 = γ1, θi = γi − γi−1 for 2 ≤ i ≤ J − 1. The Jacobian can be shown to be

1. With θ̃ = (θ2, θ3, . . . , θJ−1),

h(r̃) =

∫
(R+)J−2

∫
Rk

∫ ∞

−∞
I
(
θ1 ≥ ri + x′iβ; i ∈ L

)
× I

( J−1∑
ℓ=1

θℓ < ri + x′iβ, i ∈ U

)

×I

( yi−1∑
ℓ=1

θℓ < ri + x′iβ, i ∈ M

)
× I

( yi∑
ℓ=1

θℓ ≥ ri + x′iβ, i ∈ M

)
dθ1dβdθ̃

=

∫
(R+)J−2

∫
Rk

(
min
1≤i≤p

{
min

j∈Ui∪Mi

[
rj + x′jβ −

yj−1∑
ℓ=2

θℓ

]}

− max
1≤i≤p

{
max

j∈Li∪Mi

[
rj + x′jβ −

yj∑
ℓ=2

θℓ

]})

×I

(
min
1≤i≤p

{
min

j∈Ui∪Mi

[
rj + x′jβ −

yj−1∑
ℓ=2

θℓ

]}

≥ max
1≤i≤p

{
max

j∈Li∪Mi

[
rj + x′jβ −

yj∑
ℓ=2

θℓ

]})
dβdθ̃

≤
∫
(R+)J−2

∫
Rk

min
1≤i≤p

{f(i)− g(i)} I
(

min
1≤i≤p

{f(i)− g(i)} ≥ 0
)
dβdθ̃, (D.2)

where

f(i) = min
j∈Ui∪Mi

(
rj + x′jβ −

yj−1∑
ℓ=2

θℓ

)
,

g(i) = max
j∈Li∪Mi

(
rj + x′jβ −

yj∑
ℓ=2

θℓ

)
.

Then with a similar calculation as in Chen and Shao (1999), we get

f(i)− g(i) = min
j∈Ui∪Mi

(
rj + x′jβ −

yj−1∑
ℓ=2

θℓ

)
− max

j∈Li∪Mi

(
rj + x′jβ −

yj∑
ℓ=2

θℓ

)

= min
j∈Li∪Mi

(
− rj − x′jβ +

yj∑
ℓ=2

θℓ

)
− max

j∈Ui∪Mi

(
− rj − x′jβ +

yj−1∑
ℓ=2

θℓ

)

≤ 2max
j∈Qi

|rj | − M̃

{
max

j∈Ui∪Mi

( yj−1∑
ℓ=2

θℓ

M̃
−

k∑
ℓ=1

xjℓ
βℓ

M̃

)
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− min
j∈Li∪Mi

( yj∑
ℓ=2

θℓ

M̃
−

k∑
ℓ=1

xjℓ
βℓ

M̃

)}
,

where M̃ = max(|βℓ|, θℓ) > 0. Take

di = inf
0≤aℓ≤1; 2≤ℓ≤J−1
−1≤br≤1,1≤r≤k

{
max

j∈Ui∪Mi

( yj−1∑
ℓ=2

aℓ+

k∑
r=1

xjrbr

)
− min
j∈Li∪Mi

( yj∑
ℓ=2

aℓ+

k∑
r=1

xjrbr

)}
,

and d = min
1≤i≤p

di. So,

f(i)− g(i) ≤ 2max
j∈Qi

|rj | − M̃d.

From (D.2), we need only consider the case

0 ≤ min
1≤i≤p

(
f(i)− g(i)

)
.

Thus if d > 0 then

M̃ ≤ 2

d
min
1≤i≤p

max
j∈Qi

|rj | ,

which implies that

h(r̃) ≤ 2

∫ ∫
{max(|βℓ|,θℓ)≤ 2

d
min1≤i≤p maxj∈Qi

|rj |;θℓ≥0}

min
1≤i≤p

max
j∈Qi

|rj |dβdθ̃

≤ C min
1≤i≤p

max
j∈Qi

|rj |k+J−1 ,

where C is a constant. Thus (D.1) is proved if we can show that d > 0.

If di > 0 for all i, then d > 0. We show that (A2)′ implies that di > 0 for all

i = 1, . . . , p. With calculations as in Chen and Shao (1999), we can show that

(A2)′ implies that, ∀ 0 ≤ av ≤ 1, 2 ≤ v ≤ J − 1, and ∀ − 1 ≤ br ≤ 1, 1 ≤ r ≤ k,

Σ|br| > 0,

min
j∈Li∪Mi

( yj∑
v=2

av +

k∑
r=1

xjrbr

)
≤ max

j∈Ui∪Mi

( yj−1∑
v=2

av +

k∑
r=1

xjrbr

)
, (D.3)

and the equality in (D.3) holds only if

k∑
r=1

xjrbr = c,

for some constant c and for all j ∈ Qi. That is, the equality in (D.3) holds only

if

X1i

(
−c

b̃

)
= 0,
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where b̃ = (b1, . . . , bk)
′. But this contradicts the fact that X1i is assumed to be

of full column rank. Since the av’s and br’s are defined on compact intervals, it
follows that di > 0 for all i = 1, . . . , p, which completes the proof.

E. Proof of Theorem 5

Proof of Theorem 5. Doing similar calculations as in Chen and Shao (1999),
we can show that

c1(y) ≤ c1
∑

ηℓ=±1
1≤ℓ≤k

∫ 1

−1
E
[

min
(i,j)∈T (η)

(|ri|+ |rj |)k+J−1
]
dξ

≤ 2k+J−1c2
∑

ηℓ=±1
1≤ℓ≤k

∫ 1

−1

[ ∏
i∈U(η)

Eξ

(
|ri|(k+J−1)/#U(η)

)
+
∏

j∈L(η)

Eξ

(
|rj |(k+J−1)/#L(η)

)]
dξ , (E.1)

where c1 and c2 are two finite constants. Since M∗ > k + J − 1, from the proof
of Theorem 1 it follows that the integrand in (E.1) is a continuous function of ξ,
and hence c1(y) < ∞.

F. Proof of Theorem 6

Proof of Theorem 6. Since f0(t) = exp{−1/t}/t2,

f ′
0(t) =

e−1/t(1− 2t)

t4
.

So we obtain

η(t) := −f ′
0(t)

f0(t)
=

2t− 1

t2
, η′(t) =

2(1− t)

t3
.

Hence from Glaser (1980) it follows that λ0(t) is either upside-down or a decreas-
ing function of t. Then the proof follows from the fact that limt→0 λ0(t) = 0.

G. Proof of Theorem 7

Proof of Theorem 7. In (5.1), note that if νi = 0, then{
1− exp

[
−
(
1 + ξ

yi − x′iβ

σ

)−1/ξ

+

]}1−νi

≤ 1. (G.1)

On the other hand when νi = 1, we show that there exists a finite constant M
such that{

1

σti

(
1 + ξ(yi − x′iβ)/σ

)1/ξ+1

+

exp

[
−
(
1 + ξ

yi − x′iβ

σ

)−1/ξ

+

]}νi

≤ M

σti
. (G.2)
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For a fixed ξ ≥ −1, let fξ(v) = vξ+1e−v, v > 0. It can be shown that fξ(v) ≤
(ξ + 1)ξ+1e−(ξ+1) for all v > 0. Let M := sup

ξ∈[−1,1]
(ξ + 1)ξ+1e−(ξ+1). Then (G.2)

follows since

1(
1 + ξ(yi − x′iβ)/σ

)1/ξ+1

+

exp

[
−
(
1 + ξ

yi − x′iβ

σ

)−1/ξ

+

]

=

{(
1 + ξ

yi − x′iβ

σ

)−1/ξ

+

}ξ+1

exp

[
−
(
1 + ξ

yi − x′iβ

σ

)−1/ξ

+

]
.

As X̆ is of full rank, there must exist k linearly independent covariate vectors

xi1 , . . . , xik such that νi1 = · · · = νik = 1. Without loss of generality, we assume

that i1 = 1, . . . , ik = k.

The posterior density π(β, σ, ξ|t, ν) in (5.2) is proper if∫ 1

−1

∫ ∞

0

∫
Rk

L(β, σ, ξ|t, ν)π(σ)π(ξ)dβdσdξ < ∞.

As before let Nk = {1, . . . , k}. From (G.1) and (G.2) we have∫ 1

−1

∫ ∞

0

∫
Rk

L(β, σ, ξ|t, ν)π(σ)π(ξ)dβdσdξ

≤
∫ 1

−1

∫ ∞

0

∫
Rk

( ∏
i:νi=0

1

)( ∏
i:νi=1,i/∈Nk

M

σti

)

×
( k∏

i=1

1

σti

(
1 + ξ

yi−x′
iβ

σ

)1/ξ+1

+

exp

[
−
(
1 + ξ

yi − x′iβ

σ

)−1/ξ

+

])
π(σ)π(ξ)dβdσdξ. (G.3)

Consider the one-to-one, linear transformation wi = x′iβ, i = 1, 2, . . . , k. The

right hand side of (G.3) is proportional to∫ 1

−1

∫ ∞

0

1

σm−k

( k∏
i=1

∫
R

1

σ
(
1+ξ(yi−wi)/σ

)1/ξ+1
+

exp

[
−
(
1+ξ

yi−wi

σ

)−1/ξ

+

]
dwi

)
π(σ)π(ξ)dσdξ

=

∫ 1

−1
π(ξ)dξ

∫ ∞

0

1

σm−k
π(σ)dσ < ∞,

completing the proof.
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