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Abstract: We consider maximum likelihood estimation of the parameters of a finite

mixture model for independent order statistics data arising from ranked set sam-

pling, as well as classification of the observed data. We propose two ranked-based

sampling designs from a finite mixture density and explain how to estimate the

unknown parameters of the model for each design. To exploit the special structure

of the ranked set sampling, we develop a new expectation-maximization algorithm

that turns out to be different from its counterpart with simple random sample

data. Our findings are that estimators based on ranked set sampling are more effi-

cient than their counterparts based on the commonly used simple random sampling

technique. Theoretical results are augmented with simulation studies.
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1. Introduction

In many sampling situations, a small number of sampling units can be fairly

accurately ordered with respect to a variable of interest without actual measure-

ments on them and at little cost. On the other hand, exact measurements of

these units may be very expensive. For example, for environmental risks such

as radiation (soil contamination and disease clusters) or pollution (water con-

tamination and root disease of crops), exact measurements involve substantial

scientific processing of materials and consequently high cost, while the variable

of interest from a small number of experimental (sampling) units may easily be

ranked. Ranked set sampling (RSS), as proposed by McIntyre (1952) in esti-

mating the mean of pasture yields, provides an interesting alternative to simple

random sampling (SRS) in these situations. Compared to SRS, RSS has been

proven theoretically by Takahasi and Wakimoto (1986) and shown empirically

(see Kaur et al. (1995) and Chen, Bai, and Sinha (2004) for more details) to yield

a more precise estimator of the population mean. Wang, Ye and Milton (2009)

explained how RSS can be used as an efficient sampling design in fisheries sur-

veys where interest lies in either estimating the population age structure of fish

or describing the length distribution of an age or sex class of fish, especially in
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the case of short-lived species. These kind of studies are usually time consuming

and costly. RSS could be then considered as a more efficient sampling design; for

example, samples of the catch could be measured and weighed in the field and

only a subsample retained and later aged, with the sex of the fish determined by

more time consuming methods, to reduce the cost. The goal is to estimate the

proportion of males and females and the mean and variance of length of both

males and females for each age class. We can state this problem in terms of

inference based on ranked set sample data from a finite mixture model.

In the standard methods of modelling and inference for finite mixture mod-

els, it is assumed that the samples are drawn from the underlying population

using SRS technique, McLachlan and Peel (2004), and there are only a few re-

sults available when the sampling design is different, Wedel, Ter Hofstede and

Steenkamp (1998). However in some applications, such as the one explained in

Wang, Ye and Milton (2009), using RSS may be cheaper and result in better

and more informative samples from the underlying population. In this paper, we

study the problem of maximum likelihood estimation of unknown parameters for

finite mixture models based on two variations of RSS techniques and compare

the results with the corresponding ones with simple random sample data. We

show that using RSS leads to a better inference about the unknown features of

the underlying model, such as the estimation of the unknown parameters and

identification of unobserved classes and their weights. We also explore, both

theoretically and numerically, the problem of classification of the RSS data and

show how the extra information via the rank of each observation in RSS leads to

a more efficient classification of the data compared with the usual SRS data.

To this end, in Section 2 we explain RSS techniques and propose two ranked-

based sampling designs from a finite mixture model. We also discuss the differ-

ences between RSS and SRS techniques. Section 3 deals with the problem of max-

imum likelihood estimation of unknown parameters of the finite mixture model

(FMM) using RSS techniques. We also point out the link between inference

based on the RSS and SRS techniques. Suitable EM algorithms are developed

in Sections 4. We show that the underlying theory behind the EM algorithm

for RSS data is different from its counterpart under SRS data. In Section 5, we

consider the problem of classification of an RSS sample of size n and compare it

with the usual one based on SRS techniques. Section 6 is devoted to the study

of the performance of ML estimators of parameters of finite mixture of normal

distributions via extensive simulation studies.

2. RSS from a Finite Mixture Model

Suppose X is a random variable with distribution a mixture of M densities

in some unknown proportions π = (π1, . . . , πM ), with πj > 0, and
∑M

j=1 πj = 1.
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The probability density function (pdf) of X is written as

f(xi;Ψ) = π1f1(xi; θ1) + · · ·+ πMfM (xi; θM ), (2.1)

where fj(·; θj), j = 1, . . . ,M , refers to the pdf of the jth component of the model

that is specified up to a vector θi of unknown parameters, known a priori to be

distinct. Thus the data come from M different classes, C1, . . . , CM , and fj(·; θj)
is the pdf of the variable of interest in the jth class. The vector of all unknown

parameters is denoted by Ψ = (π1, . . . , πM−1, ξ)
⊤, where ξ = (θ⊤1 , . . . , θ

⊤
M )⊤ and

the superscript ⊤ refers to vector transpose.

To obtain a ranked set sample of size n = mk, we proceed as follows. If

X11, . . . , Xk1 is a simple random sample of size k taken from the population

then, using a ranking operator Or(·), it can be ranked as Or(X11, . . . , Xk1) =

(X(1)1, . . . , X(k)1); RSS uses only the lowest observation, X(1)1, from this sample

(called hereafter a set of size k). We take another independent SRS sample of

size k from the population and the second lowest observation, namely X(2)1, is

chosen from this set. Finally, for the kth independent SRS sample of size k,

the largest observation, X(k)1, is chosen from this set. This whole process is

referred to as a cycle; it is repeated m times resulting in a ranked set sample

of size mk, XRSS = {X(r)i, r = 1, . . . , k; i = 1, . . . ,m}. The RSS technique uses

inherent heterogeneity among the sampling units through a ranking process to

create artificial strata, it can be considered as an stratification of the units during

the sampling process based on their ranks in a sample. Although RSS requires

identification of mk2 units from the population only mk of them are actually

measured. In RSS, information and structure is provided through the ranking

process: X(1)i, . . . , X(k)i are independent order statistics and each provides in-

formation about some aspect of the distribution. It is this extra structure that

makes procedures based on RSS more efficient than their counterparts based on

SRS data with the same number of measurements.

In this paper, we assume that ranking is done perfectly; RSS with imperfect

ranking and its comparison with perfect RSS for mixture models will be discussed

in future work. We consider two variants of RSS designs, denoted by M1-RSS

and M2-RSS. In the M1-RSS design, the ranked set samples are obtained from

the whole model so that, within each set, individuals from different components

can possibly be involved in the ranking process. This design is more practical

and enables one to make better inference on classification of observations and

estimation of mixing proportions. It is useful in such applied fields as fisheries

research, health related studies, economics, and environmental and ecological

studies. For example, in the fisheries example in Section 1, to model the age

distribution of a specific type of fish (e.g., halibut) by a mixture of two normal

densities, we first note that there are two subpopulations consisting of male and
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female halibut. One can easily execute an M1-RSS design to obtain a ranked set

sample from this population. To this end, subsamples of halibut are obtained

and the rth shortest halibut (r = 1, . . . , k) is retained and the age and the sex of

the selected halibut is determined (using some time consuming methods) in the

lab. Here the subsamples consist of both male and female halibut.

In the M2-RSS design, it is assumed that RSS is performed within each

component of the FMM separately and individuals in each set are obtained from

one and only one component of the model. In addition, we assume that the

component to which each measurement belongs is unknown. One advantage

associated with this kind of separate sampling is that it is appropriate for the

retrospective studies often needed in epidemiological investigations. They also

allow better inference about all components of the underlying population, even

components that are rarely observed (McLachlan and Peel (2004)). The M2-

RSS design can also be used when the component membership of each data

point is missing for some reason such as confidentiality, or simply because it is

not recorded. For example, statistical agencies could perform RSS separately

within different subpopulations, such as males and females or minority groups,

but where membership is unknown (perhaps due to confidentiality or sensitivity

of the questions). Here the observation X(r)i is known to be obtained from a set

consisting of units from one of the M subpopulations, but it is not known which

subpopulation.

3. Likelihood Functions for RSS Data

In this section, we study the problem of maximum likelihood (ML) estimation

of unknown parameters Ψ at (2.1) based on RSS data. We limit ourselves to the

case where the representation (2.1) is identifiable.

If F (x;Ψ) =
∑M

j=1 πjFj(x; θj) is the cumulative distribution function (cdf)

at (2.1), the pdf of X(r), the rth order statistic of a sample of size k from (2.1),

is

f (r)(x;Ψ) = k

(
k − 1

r − 1

)
f(x;Ψ){F (x;Ψ)}r−1{F̄ (x;Ψ)}k−r, (3.1)

where F̄ (x;Ψ) = 1− F (x;Ψ), and we have

f(x;Ψ) =
1

k

k∑
r=1

f (r)(x;Ψ). (3.2)

Similarly, for each component of (2.1),

fj(x; θj) =
1

k

k∑
r=1

f
(r)
j (x; θj), j = 1, . . . ,M,
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and so (2.1) can be written in terms of the pdf of the order statistics of each

component, f
(r)
j (·; θj), as

f(x;Ψ) =
1

k

k∑
r=1

M∑
j=1

πjf
(r)
j (x; θj). (3.3)

3.1. Likelihood function for M1-RSS data

Suppose XM1,RSS = {x(r)i, r = 1, . . . , k; i = 1, . . . ,m} is an M1-RSS data

of size mk from (2.1), where k is the set size and m is the cycle number. Since

for each i, x(r)i corresponds to the rth order statistic of a sample of size k from

(2.1), using (3.1), the likelihood function of Ψ for M1-RSS data is

LM1,RSS(Ψ) =

m∏
i=1

k∏
r=1

f (r)(x(r)i;Ψ). (3.4)

If lM1,RSS(Ψ) = logLM1,RSS(Ψ), the ML estimate of Ψ, denoted by Ψ̂M1,RSS ,

is an appropriate root of the likelihood equation,

∂lM1,RSS(Ψ)

∂Ψ
= 0. (3.5)

Remark 1. Suppose XSRS = {x1, . . . , xmk} is a simple random sample of size

mk from (2.1). One can represent XSRS in the form of the matrix D = [X(r)i]

of size k ×m. Here X(r)i is the (r, i)th element of D and the likelihood function

of the SRS data is

LSRS(Ψ) =

m∏
i=1

k∏
r=1

f(x(r)i;Ψ) =

m∏
i=1

k∏
r=1

{ M∑
j=1

πjfj(x(r)i; θj)

}
.

Using (3.4) we have

LM1,RSS(Ψ) = LSRS(Ψ)×
{ m∏

i=1

k∏
r=1

k

(
k − 1

r − 1

)
[F (x(r)i;Ψ)]r−1[F̄ (x(r)i;Ψ)]k−r

}
.

(3.6)

The extra term in LM1,RSS(Ψ) compared with LSRS(Ψ) can be interpreted as

the effect of the rank information provided to us using RSS as a more complex

sampling design.

3.2. Likelihood function for M2-RSS data

Suppose XM2,RSS = {x(r)i, r = 1, . . . , k; i = 1, . . . ,m} is a sample of size

mk from (2.1) obtained through M2-RSS design, k and m defined as before. For
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M2-RSS design, x(r)i corresponds to the rth order statistic of a sample of size k
from one of the components of (2.1), and the likelihood function of Ψ based on
M2-RSS data is

LM2,RSS(Ψ) =
m∏
i=1

k∏
r=1

{ M∑
j=1

πjf
(r)
j (x(r)i; θj)

}
, (3.7)

where f
(r)
j (·;Ψ) corresponds to the pdf of rth order statistic of component j.

Let lM2,RSS(Ψ) = logLM2,RSS(Ψ). Now the ML estimate of Ψ, denoted by
Ψ̂M2,RSS , is an appropriate root of the likelihood equation

∂lM2,RSS(Ψ)

∂Ψ
= 0. (3.8)

In Section 4, we develop new expectation-maximization (EM) algorithms to
obtain the solutions of (3.5) and (3.8) corresponding to local maximizers of the
likelihood functions (3.4) and (3.7), respectively.

4. EM Algorithms Based on Ranked Set Samples

The EM algorithm is a general approach that can be used for the ML esti-
mation of the parameters at (2.1), see Dempster, Laird, and Rubin (1977). RSS
data have a unique structure and, as a result, the standard EM algorithm is not
applicable in its standard form. In this section, we develop new EM-algorithms
for RSS data.

4.1. EM algorithm for M1-RSS data

To use the EM algorithm for estimating the parameters of the mixture den-
sity f(x(r)i;Ψ) based on the M1-RSS data XM1,RSS = {x(r)i, r = 1, . . . , k; i =
1, . . . ,m}, the problem is viewed as incomplete since the label-component vectors
associated with the feature variables x(r) are missing. What makes this problem
non-standard is the presence of the terms {F (x(r)i;Ψ)}r−1 and {F̄ (x(r)i,Ψ)}k−r

in (3.1).
We propose a missing mechanism that introduces three latent vectors for

each x(r)i. Let Z
(r)
i =

(
Z

(r)
i1 , . . . , Z

(r)
iM

)
denote the component membership of the

observation x(r)i. So, for j = 1, . . . ,M ,

Z
(r)
ij =

{
1 if x(r)i belongs to component j;

0 otherwise,

with
∑M

j=1 Z
(r)
ij = 1. Thus Z

(1)
1 , . . . ,Z

(k)
m

i.i.d.∼ Mult(1, π), with

P (Z
(r)
i = z

(r)
i ;π) =

M∏
j=1

π
z
(r)
ij

j .



FINITE MIXTURE MODELS UNDER RANKED SET SAMPLING 681

Let W
(r)
i =

(
W

(r)
i1 , . . . ,W

(r)
iM

)
, where W

(r)
ij is the number of observations less

than x(r)i that are selected from the component j,
∑M

j=1W
(r)
ij = r − 1. Thus

W
(1)
1 , . . . ,W

(k)
m

i.i.d.∼ Mult(r − 1, π), with

P (W
(r)
i = w

(r)
i ;π) =

(
r − 1

w
(r)
i1 , . . . , w

(r)
iM

) M∏
j=1

π
w

(r)
ij

j .

Likewise, let V
(r)
i =

(
V

(r)
i1 , . . . , V

(r)
iM

)
, where V

(r)
ij is the number of observa-

tions larger than x(r)i that are selected from the component j,
∑M

j=1 V
(r)
ij = k−r.

Here V
(1)
1 , . . . ,V

(k)
m

i.i.d.∼ Mult(k − r, π), with

P (V
(r)
i = v

(r)
i ;π) =

(
k − r

v
(r)
i1 , . . . , v

(r)
iM

) M∏
j=1

π
v
(r)
ij

j .

Since each set of RSS consists of independent samples from the population

and component memberships of those observations are independent of each other,

the latent variables Z
(i)
i ,W

(r)
i and V

(r)
i are independent.

Lemma 1. For fixed values i and r, i = 1, . . . ,m, r = 1, . . . , k; the joint distri-

bution of (X(r)i, Z
(r)
i ,W

(r)
i , V

(r)
i ) is

f(x(r)i, z
(r)
i , w

(r)
i , v

(r)
i ;Ψ)

= k

(
k − 1

r − 1

)(
r − 1

w
(r)
i1 , . . . , w

(r)
iM

)(
k − r

v
(r)
i1 , . . . , v

(r)
iM

)
×

M∏
j=1

π
{z(r)ij +w

(r)
ij +v

(r)
ij }

j {fj(x(r)i, θj)}z
(r)
ij {Fj(x(r)i, θj)}w

(r)
ij {F̄j(x(r)i, θj)}v

(r)
ij .

Proof. The proof is in Section A.1.

Lemma 2. For each x(r)i, i = 1, . . . ,m; r = 1, . . . , k,

f(x(r)i;Ψ) =
∑
z

∑
w

∑
v

f(x(r)i, z
(r)
i , w

(r)
i , v

(r)
i ;Ψ).

Proof. The proof is in Section A.2.

The complete M1-RSS data YM1 = {(X(r)i, Z
(r)
i ,W

(r)
i , V

(r)
i ), i = 1, . . . ,m;

r = 1, . . . , k} consist of the feature variables and their associated latent variables.

Using Lemma 1, the complete data likelihood function is

Lc(Ψ|yM1) =

m∏
i=1

k∏
r=1

f(x(r)i, z
(r)
i , w

(r)
i , v

(r)
i ;Ψ)
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= k

(
k − 1

r − 1

) m∏
i=1

k∏
r=1

(
r − 1

w
(r)
i1 , . . . , w

(r)
iM

)(
k − r

v
(r)
i1 , . . . , v

(r)
iM

)

×
M∏
j=1

π
{z(r)ij +w

(r)
ij +v

(r)
ij }

j {fj(x(r)i, θj)}z
(r)
ij {Fj(x(r)i, θj)}w

(r)
ij {F̄j(x(r)i, θj)}v

(r)
ij . (4.1)

Using (4.1) and Lemma 2, the incomplete-data likelihood function LM1,RSS(Ψ)

can be obtained by summing over Z,V and W of the complete-data likelihood,∑
Z

∑
W

∑
V

Lc(Ψ|yM1) =

m∏
i=1

k∏
r=1

f (r)(x(r)i;Ψ).

The complete-data log-likelihood function of Ψ is

lC,M1,RSS(Ψ) =

m∑
i=1

k∑
r=1

log

{
k

(
k − 1

r − 1

)(
r − 1

w
(r)
i1 , . . . , w

(r)
iM

)(
k − r

v
(r)
i1 , . . . , v

(r)
iM

)}

+
m∑
i=1

k∑
r=1

M∑
j=1

Z
(r)
ij {log πj + log(fj(x(r)i; θj))}

+W
(r)
ij {log πj + log(Fj(x(r)i; θj))}

+

m∑
i=1

k∑
r=1

M∑
j=1

V
(r)
ij {log πj + log(F̄j(x(r)i; θj))}. (4.2)

We formulate the EM algorithm for the M1-RSS data as follows (see McLachlan

and Peel (2004) for more details).

E-Step: Let Ψ(0) be the initial value specified for Ψ and take

QM1(Ψ,Ψ(0)) = EΨ(0) [lC,M1,RSS(Ψ)|yM1], (4.3)

with the expectation computed using Ψ(0) instead of Ψ in the conditional

distribution. At the (p + 1)th iteration, the calculation of QM1(Ψ,Ψ(p)),

where Ψ(p) is the value of Ψ after the pth iteration, involves the expectations

of Z
(r)
ij , W

(r)
ij and V

(r)
ij given the observation x(r)i. Since

Z
(r)
ij |X(r)i = x(r)i ∼ Bin

(
1,

πjfj(x(r)i; θj)

f(x(r)i;Ψ)

)
,

W
(r)
ij |X(r)i = x(r)i ∼ Bin

(
r − 1,

πjFj(x(r)i; θj)

F (x(r)i;Ψ)

)
,

V
(r)
ij |X(r)i = x(r)i ∼ Bin

(
k − r,

πjF̄j(x(r)i; θj)

F̄ (x(r)i;Ψ)

)
,
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where i = 1, . . . ,m; r = 1, . . . , k and j = 1, . . . ,M , one has

τj,M1,RSS(x(r)i;Ψ
(p)) = EΨ(p) [Z

(r)
ij |x(r)i] =

π
(p)
j fj(x(r)i; θ

(p)
j )∑M

h=1 π
(p)
h fh(x(r)i; θ

(p)
h )

, (4.4)

βj,M1,RSS(x(r)i;Ψ
(p)) = EΨ(p) [W

(r)
ij |x(r)i] =

(r − 1)π
(p)
j Fj(x(r)i; θ

(p)
j )∑M

h=1 π
(p)
h Fh(x(r)i; θ

(p)
h )

, (4.5)

γj,M1,RSS(x(r)i;Ψ
(p)) = EΨ(p) [V

(r)
ij |x(r)i] =

(k − r)π
(p)
j F̄j(x(r)i; θ

(p)
j )∑M

h=1 π
(p)
h F̄h(x(r)i; θ

(p)
h )

. (4.6)

Using (4.4), (4.5) and (4.6), we have

QM1(Ψ,Ψ(p))

= cst+

m∑
i=1

k∑
r=1

M∑
j=1

τj,M1,RSS(x(r)i;Ψ
(p)){log πj + log(fj(x(r)i; θj))}

+

m∑
i=1

k∑
r=1

M∑
j=1

βj,M1,RSS(x(r)i;Ψ
(p)){log πj + log(Fj(x(r)i; θj))}

+

m∑
i=1

k∑
r=1

M∑
j=1

γj,M1,RSS(x(r)i;Ψ
(p)){log πj + log(F̄j(x(r)i; θj))}. (4.7)

M-Step: In this step, the maximization of QM1(Ψ,Ψ(p)) with respect to Ψ

is done over the parameter space to obtain the updated estimates Ψ(p+1) =

(π
(p+1)
1 , . . . , π

(p+1)
M−1 , ξ

(p+1))⊤. According to (4.2) the updated estimates π
(p+1)
j

of the mixing proportions πj can be calculated independently of the updated

estimates ξ(p+1) of the parameters ξ inΨ. If Z
(r)
ij ,W

(r)
ij and V

(r)
ij were observed

as z
(r)
ij , w

(r)
ij and v

(r)
ij , the (complete data) ML estimate of πj would be

π̂j =
1

mk2

m∑
i=1

k∑
r=1

(
z
(r)
ij + w

(r)
ij + v

(r)
ij

)
. (4.8)

They are not observable and, as showed in the Appendix, the updated estimate

of πj , j = 1, . . . ,M , is

π
(p+1)
j,M1 =

1

mk2

m∑
i=1

k∑
r=1

{
τj,M1,RSS(x(r)i;Ψ

(p)) + βj,M1,RSS(x(r)i;Ψ
(p))

+γj,M1,RSS(x(r)i;Ψ
(p))
}
. (4.9)
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The updated value ξ(p+1) is obtained as the solution of
m∑
i=1

k∑
r=1

M∑
j=1

τj,M1,RSS(x(r)i;Ψ
(p))

fj(x(r)i; θj)

∂

∂ξ
fj(x(r)i; θj)

+

m∑
i=1

k∑
r=1

M∑
j=1

∂

∂ξ
Fj(x(r)i; θj)

(
βj,M1,RSS(x(r)i;Ψ

(p))

Fj(x(r)i; θj)
−

γj,M1,RSS(x(r)i;Ψ
(p))

F̄j(x(r)i; θj)

)
= 0, (4.10)

with respect to ξ.

The E- and M-steps are alternated until |lC,M1,RSS(Ψ
(p+1))−lC,M1,RSS(Ψ

(p))|
is negligible.

4.2. EM algorithm for M2-RSS data

To formalize the EM algorithm based on M2-RSS, we only need to define

one latent variable. Let Z
(r)
i =

(
Z

(r)
i1 , . . . , Z

(r)
iM

)
be such that Z

(r)
ij is one or zero,

according to whether or not X(r)i corresponds to the rth order statistic of the

jth component of the finite mixture model, j = 1, . . . ,M . The conditional pdf

of X(1)1, . . . , X(k)m given Z
(1)
1 , . . . ,Z

(k)
m is

f(x(1)1, . . . , x(k)m|z(1)1 , . . . , z(k)m ; ξ) =

m∏
i=1

k∏
r=1

f (r)(x(r)i|z
(r)
i ; ξ),

with

f (r)(x(r)i|z
(r)
i ; ξ) =

M∏
j=1

{
f
(r)
j (x(r)i; θj)

}z
(r)
ij

.

The likelihood function of Ψ based on the complete M2-RSS data, denoted by

YM2 = {(X(r)i,Z
(r)
i ), i = 1, . . . ,m ; r = 1, . . . , k}, can be expressed as

LC,M2,RSS(Ψ)

=

m∏
i=1

k∏
r=1

M∏
j=1

{
πjf

(r)
j (x(r)i; θj)

}Z
(r)
ij

(4.11)

=
m∏
i=1

k∏
r=1

M∏
j=1

{
k

(
k−1

r−1

)
πjfj(x(r)i; θj)[Fj(x(r)i; θj)]

r−1[1−Fj(x(r)i; θj)]
k−r
}Z

(r)
ij

.

The incomplete M2-RSS likelihood function (3.7) can be obtained by summing

Z
(r)
i out of the complete M2-RSS likelihood function LC,M2,RSS(Ψ), and then

the complete data log-likelihood function of Ψ is

lC,M2,RSS(Ψ)
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=

m∑
i=1

k∑
r=1

M∑
j=1

Z
(r)
ij

{
log πj + log f

(r)
j (x(r)i; θj)

}

=m
k∑

r=1

log k

(
k − 1

r − 1

)
+

m∑
i=1

k∑
r=1

M∑
j=1

Z
(r)
ij

{
log πj + log fj(x(r)i; θj)

}
+

m∑
i=1

k∑
r=1

M∑
j=1

Z
(r)
ij

{
(r − 1) logFj(x(r)i; θj) + (k − r) log(F̄j(x(r)i; θj))

}
. (4.12)

The EM algorithm can be applied to obtain estimates of Ψ. First,

τj,M2,RSS(x(r)i;Ψ
(p)) = EΨ(p) [Z

(r)
ij |x(r)i]

=
π
(p)
j fj(x(r)i; θ

(p)
j )[Fj(x(r)i; θ

(p)
j )]r−1[F̄j(x(r)i; θ

(p)
j )]k−r∑M

h=1 π
(p)
h fh(x(r)i; θ

(p)
h )[Fh(x(r)i; θ

(p)
h )]r−1[F̄h(x(r)i; θ

(p)
h )]k−r

, (4.13)

where j = 1, . . . , k and i = 1, . . . ,m andΨ(0) denotes an initial value forΨ. Using

(4.13), the conditional expectation of the complete M2-RSS data log-likelihood

function (4.12) given the observed data XRSS = xRSS (at the pth iteration of

the EM algorithm) is

QM2(Ψ,Ψ(p))

=m

k∑
r=1

log k

(
k−1

r−1

)
+

m∑
i=1

k∑
r=1

M∑
j=1

τj,M2,RSS(x(r)i;Ψ
(p))

{
log πj+log fj(x(r)i; θj)

}
+

m∑
i=1

k∑
r=1

M∑
j=1

τj,M2,RSS(x(r)i;Ψ
(p)){(r − 1) logFj(x(r)i; θj)

+(k − r) log F̄j(x(r)i; θj)}. (4.14)

In the M-step, mixing proportions are updated by (4.13) independently of the

other parameters of model through

π
(p+1)
j =

1

mk

m∑
i=1

k∑
r=1

τj,M2,RSS(x(r)i;Ψ
(p)), j = 1, . . . ,M − 1. (4.15)

As well, ξ(p+1) is updated by an appropriate root of

m∑
i=1

k∑
r=1

M∑
j=1

τj,M2,RSS(x(r)i;Ψ
(p))

fj(x(r)i; θj)

∂

∂ξ
fj(x(r)i; θj)

+

m∑
i=1

k∑
r=1

M∑
j=1

τj,M2,RSS(x(r)i;Ψ
(p))

∂

∂ξ
Fj(x(r)i; θj)

(
r − 1

Fj(x(r)i; θj)
− k − r

F̄j(x(r)i; θj)

)
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= 0. (4.16)

The E- and M- steps are alternated repeatedly until |lC,M2,RSS(Ψ
(p+1)) −

lC,M2,RSS(Ψ
(p))| is negligible.

Remark 2. The complete data log-likelihood function of Ψ for the SRS sample
can be written as

lC,SRS(Ψ) =
m∑
i=1

k∑
r=1

M∑
j=1

Z
(r)
ij

{
log πj + log fj(x(r)i; θj)

}
, (4.17)

where x(r)i refers to the (r, i)th element of the matrix of observations D and Z
(r)
ij

is its component indicator function. Then lC,SRS(Ψ) = lC,M2,RSS(Ψ)− ΛM2(ξ),
with

ΛM2(ξ) =m
k∑

r=1

log k

(
k − 1

r − 1

)

+

m∑
i=1

k∑
r=1

M∑
j=1

Z
(r)
ij

{
(r − 1) logFj(x(r)i; θj) + (k − r) log F̄j(x(r)i; θj)

}
.

In addition, lC,SRS(Ψ) = lC,M1,RSS(Ψ)− ΛM1(ξ), and

ΛM1(ξ) =

m∑
i=1

k∑
r=1

log

{
k

(
k − 1

r − 1

)(
r − 1

w
(r)
i1 , . . . , w

(r)
iM

)(
k − r

v
(r)
i1 , . . . , v

(r)
iM

)}

+
m∑
i=1

k∑
r=1

M∑
j=1

W
(r)
ij {log πj + logFj(x(r)i; θj)}

+

m∑
i=1

k∑
r=1

M∑
j=1

V
(r)
ij {log πj + log F̄j(x(r)i; θj)}.

For the EM algorithm’s E-step, let Ψ(0) be an initial value and Q(Ψ,Ψ(0)) =
EΨ(0) [lC,SRS(Ψ)|xSRS ]. In the (p+ 1)th iteration we compute

Q(Ψ,Ψ(p)) =
m∑
i=1

k∑
r=1

M∑
j=1

τj,SRS(x(r)i;Ψ
(p))

{
log πj + log fj(x(r)i; θj)

}
, (4.18)

where

τj,SRS(x(r)i;Ψ
(p)) =

π
(p)
j fj(x(r)i; θ

(p)
j )∑M

h=1 π
(p)
h fh(x(r)i; θ

(p)
h )

. (4.19)

For the M-step, at its (p + 1)th iteration, a local maximization of Q(Ψ,Ψ(p))
with respect to Ψ is done to obtain the updated estimate Ψ(p+1). The updated
estimate of πj is
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π
(p+1)
j =

1

mk

m∑
i=1

k∑
r=1

τj,SRS(x(r)i;Ψ
(p)), j = 1, . . . ,M − 1, (4.20)

while the updated estimate of ξ is obtained as an appropriate root of

m∑
i=1

k∑
r=1

M∑
j=1

τj,SRS(x(r)i;Ψ
(p))

fj(x(r)i; θj)

∂

∂ξ
fj(x(r)i; θj) = 0. (4.21)

Comparing (4.10) and (4.16) with (4.21) shows the contribution of the ranks

provided via the RSS technique in obtaining the ML estimates of Ψ.

5. Classification of an RSS Sample

Once Ψ̂ is obtained (based on either M1-RSS or M2-RSS data), estimates

of the posterior probabilities of the population membership can be formed for

each observation to give a probabilistic classification of the data. Suppose i ∈
{1, . . . ,m} is fixed and yr = x(r)i is observed. For M2-RSS design, classification

of yr is based on the posterior probability that yr belongs to the jth component

of the mixture model, that is τj,M2,RSS(yr;Ψ), as in (4.13). For M1-RSS design

classification of yr is done using

αj,M1,RSS =
1

k
{τj,M1,RSS(yr,Ψ) + βj,M1,RSS(yr,Ψ) + γj,M1,RSS(yr,Ψ)} . (5.1)

We classify yr into the component j if

τj,M2,RSS(yr; Ψ̂) > τt,M2,RSS(yr; Ψ̂) or αj,M1,RSS(yr; Ψ̂) > αt,M1,RSS(yr; Ψ̂),

for all t ̸= j, t = 1, . . . ,M . Here we focus on this approach to classification to

demonstrate the effect of the extra information through ranks in RSS designs

compared with SRS. However, as explained by Celeux and Govaert (1993) or

McLachlan and Peel (2004), one can do better by using other approaches to

classification.

For an SRS sample of size mk the posterior probability that yr = x(r)i
belongs to the jth component of the mixture model is given by

τj,SRS(yr;Ψ) =
πjfj(yr; θj)∑M

h=1 πhfh(yr; θh)
. (5.2)

It can be seen that

αj,M1,RSS(yr;Ψ) =
1

k
{τj,SRS(yr;Ψ) +Aj,M1,RSS(yr;Ψ)} , (5.3)
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where

Aj,M1,RSS(yr;Ψ) = (r− 1)

(
πjFj(x(r)i; θj)

F (x(r)i;Ψ)

)
+ (k− r)

(
πjF̄j(x(r)i; θj)

F̄ (x(r)i;Ψ)

)
. (5.4)

For M2-RSS, we get

τj,M2,RSS(yr;Ψ) = τj,SRS(yr;Ψ)Aj,M2,RSS(yr;Ψ), (5.5)

where

Aj,M2,RSS(yr;Ψ) =

(
M∑
h=1

πhfh(yr; θh)

)
[Fj(yr; θj)]

r−1[1− Fj(yr; θj)]
k−r

M∑
h=1

πhfh(yr; θh)[Fh(yr; θh)]r−1[1− Fh(yr; θh)]k−r

. (5.6)

An example demonstrates the effect of the rank information on classification.

Suppose x = 0 is observed from a population. Assume that the underlying

population has components C1 and C2 with a pdf

0.5ϕ(x;−2, 1) + 0.5ϕ(x; 1, 1) or 0.6ϕ(x;−2, 1) + 0.4ϕ(x; 1, 3),

where ϕ(x;µ, σ) is the pdf of a normal distribution with mean µ and variance

σ2. Assume that x = 0 is observed through an RSS with set size k = 3. As

shown in Table 1, by treating x = 0 as an observation obtained from a SRS

and since τ2,SRS(0;Ψ) = 0.8176 ≥ τ1,SRS(0;Ψ) = 0.1824, then x = 0 should be

classified into the second component, C2, of the population. Now, if x = 0 is the

observation of the third order statistic via the M1-RSS technique with k = 3,

then α1,M1,RSS(0;Ψ) = 0.6344 ≥ α2,M1,RSS(0;Ψ) = 0.3656 and x = 0 should

be classified into C1. Similarly, from Table 2, if x = 0 is the observation of the

third order statistic in an M2-RSS design with k = 3, we have τ1,M2,RSS(0;Ψ) =

0.8944 ≥ τ2,M2,RSS(0;Ψ) = 0.1056, and x = 0 should be classified into C1.

Tables 1 and 2 provide the values of the posterior probabilities for classification

of x = 0 under SRS, M1-RSS, and M2-RSS designs for two different mixtures of

normal distributions.

Numerical evaluations through different simulation studies show that with

increasing set size k, the RSS technique results in better classification of the ob-

servations than the SRS method based on its misclassification error rate. Observe

also that if Tj ∼ Bin(k − 1, Fj(yr; θj)), (5.6) can be written as

Aj,M2,RSS(yr,Ψ) =

(∑M
h=1 πhfh(yr; θh)

)
P (Tj = r − 1)∑M

h=1 πhfh(yr; θh)P (Th = r − 1)
, (5.7)
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Table 1. Posterior probabilities for classification of x = 0 under SRS and
M1-RSS techniques.

Mixture SRS M1-RSS with k = 3
Mixture Model

Component x = 0 y1 = 0 y2 = 0 y3 = 0
C1 0.1824 0.0783 0.3563 0.6344

0.5ϕ(x;−2, 1) + 0.5ϕ(x; 1, 1)
C2 0.8176 0.9217 0.6437 0.3656

C1 0.3917 0.1647 0.4138 0.6631
0.6ϕ(x;−2, 1) + 0.4ϕ(x; 1, 3)

C2 0.6083 0.8353 0.5862 0.3369

Table 2. Posterior probabilities for classification of x = 0 under SRS and
M2-RSS techniques.

Mixture SRS M2-RSS with k = 3
Mixture Model

Component x = 0 y1 = 0 y2 = 0 y3 = 0
C1 0.1824 0.0002 0.0358 0.8944

0.5ϕ(x;−2, 1) + 0.5ϕ(x; 1, 1)
C2 0.8176 0.9998 0.9642 0.1056

C1 0.3917 0.0008 0.0578 0.8184
0.6ϕ(x;−2, 1) + 0.4ϕ(x; 1, 3)

C2 0.6083 0.9992 0.9422 0.1816

and if P (Tj = r−1) ≥ P (Th = r−1) for all h ̸= j ∈ {1, . . . ,M} then RSS results

in a bigger value than its SRS counterpart for the posterior probability that yr
belongs to the jth component of the mixture model.

6. Simulation Studies for Mixture of Normal Densities

In this section, using simulation studies the performance of ML estimators of

the unknown parameters of the finite mixture of normal distributions based on

M1-RSS and M2-RSS is investigated. In the first simulation study, the emphasis

is placed on the comparison between M1-RSS, M2-RSS and SRS designs for

estimating the mixing proportions of the model. In our second simulation study,

the performance of the ML estimators of all parameters of the model based on

M1-RSS and M2-RSS are compared with their corresponding one under SRS.

6.1. Simulation study 1

In the first simulation, our goal was to compare the performance of the

estimators of the mixing proportion π using M1-RSS, M2-RSS, and SRS data for

the mixture

f(x,Ψ) = πϕ(x;µ1, σ) + (1− π)ϕ(x;µ2, σ). (6.1)

We first compared the performance of π̂ under M1-RSS and SRS designs. We

generated two data sets each of size mk = 120 from the model (6.1) with
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Table 3. π̂k,MLE based on SRS (k = 1) and M1-RSS designs (k ≥ 2), their
(standard error), [MSE] and RE for model (6.1).

d = 1 d = 3
π̂k,MLE RE iterations π̂k,MLE RE iterations
0.8175 1 50 0.8056 1 10

k = 1 (0.0901) (0.0418)
[0.0084] [0.0017]
0.8233 1.235 70 0.8052 1.416 14

k = 2 (0.0756) (0.0340)
[0.0068] (0.0012)
0.8103 1.448 72 0.8036 1.889 17

k = 3 (0.0747) (0.0299)
[0.0058] [0.0009]
0.8026 1.527 79 0.8083 2.213 20

k = 4 (0.0754) (0.0287)
[0.0055] [0.0008]
0.8072 1.909 88 0.8095 2.213 21

k = 5 (0.0661) (0.0279)
[0.0044] [0.0008]

(π, µ1, σ) = (0.8,−1, 1). To study the effect of the set size as design parameter of

RSS on performance, we let k ∈ {1, 2, 3, 4, 5}. Note that k = 1 corresponds to the

usual SRS method. To investigate the effect of the distance between the compo-

nents of the model on the performance of π̂, we let d = µ2 − µ1 with d ∈ {1, 3}.
The EM algorithm was performed, assuming equal initial values for mixing pro-

portions of two components and stopping criteria |Ψ̂(k+1)−Ψ̂(k)| < 10−5. Table 3

provides ML estimates with their standard errors and mean square errors (MSE)

under SRS and M1-RSS with different set sizes. The estimates of standard errors

and biases (used for MSE’s) were obtained via a bootstrap with l = 100 repeats.

We followed Basford et al. (1997) to find the approximations.

We also calculated the observed relative efficiency of ML estimators π̂k,MLE

of π under SRS and RSS-based designs using

RE(π̂k,MLE , π̂1,MLE) =
1/MSE(π̂k,MLE)

1/MSE(π̂1,MLE)
=

MSE(π̂1,MLE)

MSE(π̂k,MLE)
.

Table 3 presents the values of the relative efficiencies for different set sizes,

d ∈ {1, 3}. The results indicate that ML estimates of π under the M1-RSS

design are more efficient than their corresponding estimators under SRS and

that relative efficiency is an increasing function of k. In addition, when d = 3,

the performance of M1-RSS design for estimating π was much better than that

of SRS. We obtained similar results under the M2-RSS design. However, the
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Table 4. π̂k,MLE based on SRS (k = 1) and M2-RSS designs (k ≥ 2), their
(standard error), [MSE] and RE for model (6.1).

d = 1 d = 3
π̂k,MLE RE iterations π̂k,MLE RE iterations
0.8175 1 50 0.8056 1 10

k = 1 (0.0901) (0.0418)
[0.0084] [0.0017]
0.8287 1.333 43 0.8234 1 7

k = 2 (0.0746) (0.0374)
[0.0063] [0.0017]
0.8016 1.423 27 0.8044 1.133 5

k = 3 (0.0754) (0.0375)
[0.0059] [0.0015]
0.8069 1.75 25 0.8189 1.214 5

k = 4 (0.0663) (0.0370)
[0.0048] [0.0014]
0.8111 2.1 23 0.8061 1.214 4

k = 5 (0.0629) (0.0367)
[0.0040] [0.0014]

efficiency of ML estimators under the M2-RSS design, when components were

separated, was slightly reduced compared to the non-separated case.

6.2. Simulation study 2

In the second simulation study, the performance of ML estimates of all pa-

rameters of the mixture model using M1-RSS, M2-RSS and SRS designs was in-

vestigated. The underlying distribution was chosen to be a homosedastic mixture

of two univariate normal distributions. To investigate the effect of the distance

between two components of the model on parameter estimation, we generated

samples of size mk = 300 from two mixture of normal densities of the form (6.1)

with Ψ1 = (π, µ1, µ2, σ) = (0.4,−2, 1, 1), Model 1, and Ψ2 = (0.4,−1, 1, 1.5),

Model 2, using SRS, M1-RSS, and M2-RSS techniques with k = 5.

We examined three methods for setting the initial values of Ψ: fixed ini-

tial values; Finch’s method; and the method of moments (see Finch, Mendell,

and Thode (1989) and Karlis and Xekalaki (2003)). The stopping criteria was

∥Ψ̂(k+1)− Ψ̂(k)∥∞ < 10−5. The bias, standard error, and MSE were used as per-

formance measures for each estimator. These were obtained via the bootstrap,

Basford et al. (1997), with b = 100 and 10 repetition. The mean and standard er-

rors of these measures under fixed initial values, Finch’s method, and the method

of moments are reported in Tables 5, 6, and 7, respectively. We also calculated

the observed relative efficiency of the estimators based on RSS design compared

with their SRS competitors using the ratio of the average of their MSE’s.
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Table 5. The (average) and [standard error] of the Bias, standard error (SE)
and MSE of ML estimators of Ψ1 and Ψ2, based on Fixed’s initial values
method.

Model 1 Model 2

Techniques π µ1 µ2 σ π µ1 µ2 σ

SRS

Bias
(0.0058) (-0.0114) (-0.0153) (-0.0348) (0.0300) (-0.1301) (0.1900) (-0.1527)

[0.0323] [0.0489] [0.0426] [0.0508] [0.0757] [0.2262] [0.2351] [0.1116]

SE
(0.0344) (0.1148) (0.0928) (0.0502) (0.1168) (0.5224) (0.3337) (0.1265)

[0.0027] [0.0195] [0.0102] [0.0053] [0.04371] [0.3280] [0.1247] [0.03087]

MSE
(0.0021) (0.0158) (0.0105) (0.0060) (0.0214) (0.4328) (0.2112) (0.0514)

[0.0008] [0.0060] [0.0021] [0.0034] [0.0123] [0.4451] [0.1092] [0.0277]

M1-RSS

Bias
(-0.0136) (-0.0455) (-0.0051) (-0.0217) (0.0035) (-0.1933) (0.1024) (-0.1223)

[0.0104] [0.0914] [0.0402] [0.0299] [0.0642] [0.2788] [0.1940] [0.1150]

SE
(0.0251) (0.1021) (0.0715) (0.0468) (0.0952) (0.4770) (0.3053) (0.1335)

[0.0022] [0.0078] [0.0067] [0.0052] [0.0234] [0.2249] [0.1048] [0.0356]

MSE
(0.0009) (0.0200) (0.0066) (0.0035) (0.0132) (0.3804) (0.1475) (0.0458)

[0.00002] [0.0106] [0.0023] [0.0007] [0.0086] [0.4347] [0.1382] [0.0214]

M2-RSS

Bias
(0.0058) (-0.0332) (0.0011) (-0.0035) (-0.0003) (0.0448) (-0.0214) (-0.0051)

[0.0303] [0.0391] [0.0447] [0.0348] [0.0224] [0.1098] [0.0812] [0.1036]

SE
(0.0273) (0.0534) (0.0434) (0.0343) (0.0578) (0.1452) (0.1052) (0.0690)

[0.0019] [0.0047] [0.0033] [0.0029] [0.0097] [0.0217] [0.0143] [0.0076]

MSE
(0.0016) (0.0053) (0.0037) (0.0022) (0.0038) (0.0344) (0.0176) (0.0145)

[0.0013] [0.0024] [0.0019] [0.0017] [0.0014] [0.0153] [0.0070] [0.0114]

We used Ψ
(0)
1 = (π(0), µ

(0)
1 , µ

(0)
2 , σ(0)) = (0.3,−1.95, 0.95, 0.95), and Ψ

(0)
2 =

(0.3,−0.95, 0.95, 1.40) as initial values for the fixed initial values method; the

initial values for the Finch’s method corresponded to the case (v) in Karlis and

Xekalaki (2003); for the method of moments the initial values were obtained via

the formula developed by Furman and Lindsay (1994).

In Tables 5, 6 and 7, for all initial values, RSS-based estimators perform sig-

nificantly better than their SRS-based competitors in estimating the parameters

of the model (in terms of both the bias and the standard error). It is evident

that the M2-RSS technique is more efficient than M1-RSS; an M2-RSS design

has the more informative assumption that x(r)i is indeed the rth order statistic

of one of the components of the model.

7. Conclusion

In this paper, we studied maximum likelihood estimation of the unknown

parameters of a finite mixture model using RSS. We proposed two ranked-based

sampling designs and developed new EM algorithms to calculate the ML esti-

mates of the parameters of the model for each design. According to our simu-

lation studies, RSS-based designs resulted in more efficient estimates than did

SRS-based design. The validity of the developed methods under RSS designs rely
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Table 6. The (average) and [standard error] of the Bias, standard error (SE)
and MSE of ML estimators of Ψ1 and Ψ2, based on Finch’s method for
initial values.

Model 1 Model 2

Techniques π µ1 µ2 σ π µ1 µ2 σ

SRS

Bias
(0.0039) (0.0797) (-0.0053) (0.0104) (-0.0037) (-0.3310) (0.1118) (-0.0659)

[0.0301] [0.0823] [0.0593] [0.0458] [0.1352] [0.5036] [0.3206] [0.0833]

SE
(0.0369) (0.1242) (0.1005) (0.0547) (0.1483) (0.5718) (0.4828) (0.1316)

[0.0037] [0.0160] [0.0133] [0.0032] [0.0482] [0.1438] [0.2187] [0.0165]

MSE
(0.0022) (0.0281) (0.0134) (0.0050) (0.0405) (0.6836) (0.3812) (0.0281)

[0.0015] [0.0182] [0.0055] [0.0024] [0.0184] [0.5274] [0.3646] [0.0150]

M1-RSS

Bias
(0.0023) (-0.0250) (-0.0200) (-0.0196) (0.0503) (-0.0575) (0.2318) (-0.1047)

[0.0314] [0.1768] [0.0802] [0.0634] [0.0176] [0.1057] [0.0795] [0.0785]

SE
(0.0266) (0.1027) (0.0734) (0.0480) (0.1230) (0.4006) (0.3557) (0.1230)

[0.0039] [0.0192] [0.0079] [0.0051] [0.0368] [0.1401] [0.1404] [0.0150]

MSE
(0.0016) (0.0396) (0.0116) (0.0063) (0.0191) (0.1916) (0.2037) (0.0318)

[0.0016] [0.0327] [0.0062] [0.0033] [0.0093] [0.0995] [0.1157] [0.0129]

M2-RSS

Bias
(-0.0097) (-0.0095) (-0.0230) (0.0014) (0.0185) (0.0551) (0.0154) (-0.0257)

[0.0222] [0.0424] [0.0446] [0.0284] [0.0698] [0.1714] [0.1477] [0.0826]

SE
(0.0277) (0.0586) (0.0449) (0.0343) (0.0535) (0.1312) (0.1087) (0.0744)

[0.0018] [0.0055] [0.0021] [0.0021] [0.0108] [0.0334] [0.0130] [0.0070]

MSE
(0.0013) (0.0051) (0.0043) (0.0019) (0.0077) (0.0477) (0.0318) (0.0124)

[0.0005] [0.0026] [0.0023] [0.0009] [0.0047] [0.0240] [0.0273] [0.0054]

on the assumption of perfect ranking; when RSS is imperfect, it is understood
that the efficiency of ML estimators of the parameters of the model decreases.
However, a numerical study, not presented here, found the basic behaviour pre-
sented in this article did not change under imperfect ranking. We think that
using a suitably unbalanced RSS can lead to a better inference about the param-
eters of the FMM over the balanced RSS. To this end, we considered the problem
of estimating the mixing proportion of the densities, studied in Subsection 6.1,
using unbalanced ranked set samples consisting of only minimums, only maxi-
mums, and both minimums and maximums. The results for a small simulation
study are presented in Table 8. The performance of the unbalanced RSS de-
signs compared with their SRS counterpart was calculated using the ratio of the
MSEs of the maximum likelihood estimators of π based on unbalanced RSS and
SRS samples of size 120. We also investigated relative efficiency as a function
of the set size k ∈ {2, 3, 4, 5}. Comparing the results in Table 8 with Tables 3
and 4 shows that the performance of the unbalanced RSS design could be better
than the balanced RSS. For large d = µ2 − µ1, the SRS performs better than an
unbalanced M1-RSS consisting of only the minimums. A comprehensive study
of the problem of finite mixture modelling based on unbalanced RSS, as well as
the effect of imperfect ranking, is under investigation and results will appear in
another paper.
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Table 7. The (average) and [standard error] of the Bias, standard error(SE)
and MSE of ML estimators of Ψ1 and Ψ2, based on the method of moments
for initial values.

Model 1 Model 2

Techniques π µ1 µ2 σ π µ1 µ2 σ

SRS

Bias
(-0.0089) (-0.0515) (-0.0303) (-0.0202) (0.0642) (-0.1611) (0.3664) (-0.1502)

[0.0258] [0.1249] [0.1387] [0.0369] [0.1157] [0.3031] [0.3117] [0.0699]

SE
(0.0351) (0.1238) (0.0899) (0.0526) (0.1140) (0.4131) (0.3906) (0.1190)

[0.0024] [0.0113] [0.0097] [0.0054] [0.0315] [0.1550] [0.2160] [0.0204]

MSE
(0.0019) (0.0321) (0.0264) (0.0044) (0.0300) (0.3010) (0.4163) (0.0415)

[0.0006] [0.0195] [0.0173] [0.0016] [0.0187] [0.2482] [0.4602] [0.0204]

M1-RSS

Bias
(0.0111) (-0.0272) (0.0017) (0.0107) (-0.0193) (-0.3288) (0.1430) (-0.1248)

[0.0218] [0.1009] [0.0630] [0.0535] [0.0725] [0.2830] [0.1574] [0.0847]

SE
(0.0267) (0.1040) (0.0832) (0.0503) (0.1110) (0.4102) (0.4044) (0.1171)

[0.0031] [0.0125] [0.0090] [0.0047] [0.0408] [0.1605] [0.2503] [0.0191]

MSE
(0.0012) (0.0208) (0.0105) (0.0052) (0.0189) (0.3717) (0.2627) (0.0361)

[0.0003] [0.0203] [0.0050] [0.0032] [0.0117] [0.1965] [0.2704] [0.0183]

M2-RSS

Bias
(-0.0067) (-0.0004) (0.0229) (-0.0160) (0.0192) (0.0090) (0.0819) (-0.0591)

[0.0394] [0.0548] [0.0521] [0.0186] [0.0415] [0.1760] [0.1070] [0.0425]

SE
(0.0297) (0.0535) (0.0444) (0.0338) (0.0547) (0.1353) (0.3003) (0.0719)

[0.0014] [0.0055] [0.0055] [0.0028] [0.0163] [0.0284] [0.4115] [0.0125]

MSE
(0.0023) (0.0056) (0.0049) (0.0017) (0.0051) (0.0470) (0.2596) (0.0104)

[0.0017] [0.0038] [0.0045] [0.0008] [0.0021] [0.0338] [0.5060] [0.0051]

Table 8. The relative efficiency of the maximum likelihood estimators of π
using unbalanced M1-RSS and M2-RSS samples consisting of the minimums,
the maximums and both minimums and maximums for model (6.1), when
π = 0.8, µ1 = −1, µ2 = µ1 + d, and σ = 1.

d design RSS k = 2 k = 3 k = 4 k = 5
Min M1 0.980 1.079 1.219 1.282

M2 1.250 1.704 1.704 1.704
1 Max M1 1.562 2.027 2.586 2.830

M2 1.162 1.339 1.648 1.829
Both M1 1.327 1.851 1.578 1.764

M2 1.200 1.648 1.875 1.898
Min M1 0.666 0.615 0.524 0.500

M2 1.032 1.333 1.230 1.142
3 Max M1 1.777 1.777 2.666 4.000

M2 1.032 1.066 1.333 1.103
Both M1 1.142 1.523 1.882 2.461

M2 1.142 1.103 1.454 1.230
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Appendices

Throughout this section, we let c1 = k
(
k−1
r−1

)
, c2 =

( r−1

w
(r)
i1 ,...,w

(r)
iM

)
and c3 =( k−r

v
(r)
i1 ,...,v

(r)
iM

)
.

A.1. Proof of Lemma 1

The conditional pdf of latent variables Z
(r)
ij ,W

(r)
ij , V

(r)
ij given X(r)i are

f(z
(r)
ij |x(r)i,Ψ) =

f(x(r)i|z
(r)
ij ,Ψ)f(z

(r)
ij )

f (r)(x(r)i;Ψ)

=
c1
∏M

j=1{fj(x(r)i; θj)}
z
(r)
ij {F (x(r)i;Ψ)}r−1{F̄ (x(r)i;Ψ)}k−r

∏M
j=1 π

z
(r)
ij

j

c1f(x(r)i;Ψ){F (x(r)i;Ψ)}r−1{F̄ (x(r)i;Ψ)}k−r

=

M∏
j=1

(
πjfj(x(r)i; θj)

f(x(r)i;Ψ)

)z
(r)
ij

,

f(w
(r)
ij |x(r)i,Ψ) =

f(x(r)i|w
(r)
ij ,Ψ)f(w

(r)
ij )

f (r)(x(r)i;Ψ)

=
c1c2f(x(r)i;Ψ)

∏M
j=1{Fj(x(r)i; θj)}w

(r)
ij {F̄ (x(r)i;Ψ)}k−r

∏M
j=1 π

w
(r)
ij

j

c1f(x(r)i;Ψ){F (x(r)i;Ψ)}r−1{F̄ (x(r)i;Ψ)}k−r

= c2

M∏
j=1

(
πjFj(x(r)i; θj)

F (x(r)i;Ψ)

)w
(r)
ij

,

f(v
(r)
ij |x(r)i,Ψ) =

f(x(r)i|v
(r)
ij ,Ψ)f(v

(r)
ij )

f (r)(x(r)i;Ψ)

=
c1c3f(x(r)i;Ψ){F (x(r)i;Ψ)}r−1

∏M
j=1{F̄j(x(r)i; θj)}v

(r)
ij
∏M

j=1 π
v
(r)
ij

j

c1f(x(r)i;Ψ){F (x(r)i;Ψ)}r−1{F̄ (x(r)i;Ψ)}k−r

= c3

M∏
j=1

(
πjF̄j(x(r)i; θj))

F̄ (x(r)i;Ψ)

)v
(r)
ij

.
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From the independence of latent variables, we have

f(x(r)i, z
(r)
ij , w

(r)
ij , v

(r)
ij ;Ψ)

= f(z
(r)
ij , w

(r)
ij , v

(r)
ij |x(r)i,Ψ)f (r)(x(r)i;Ψ)

= f(z
(r)
ij |x(r)i,Ψ)f(w

(r)
ij |x(r)i,Ψ)f(v

(r)
ij |x(r)i,Ψ)f (r)(x(r)i;Ψ)

= c1c2c3

M∏
j=1

π
{z(r)ij +w

(r)
ij +v

(r)
ij }

j {fj(x(r)i; θj)}z
(r)
ij {Fj(x(r)i; θj)}w

(r)
ij {F̄j(x(r)i; θj)}v

(r)
ij .

A.2. Proof of Lemma 2

We have∑
Z

(r)
i

∑
W

(r)
i

∑
V

(r)
i

f(x(r)i, z
(r)
ij , w

(r)
ij , v

(r)
ij ;Ψ)

= c1

{ ∑
z
(r)
i1 +···+z

(r)
iM=1

M∏
j=1

{πjfj(x(r)i; θj)}z
(r)
ij

}

×
{ ∑

w
(r)
i1 +···+w

(r)
iM=r−1

c2

M∏
j=1

{πjFj(x(r)i; θj)}w
(r)
ij

}

×
{ ∑

v
(r)
i1 +···+v

(r)
iM=k−r

c3

M∏
j=1

{πjF̄j(x(r)i; θj)}v
(r)
ij

}

= c1

{ M∑
j=1

πjfj(x(r)i; θj)

}{ M∑
j=1

πjFj(x(r)i; θj)

}r−1

×
{ M∑

j=1

πjF̄j(x(r)i; θj)

}k−r

= c1f(x(r)i;Ψ){F (x(r)i;Ψ)}r−1{F̄ (x(r)i;Ψ)}k−r

= f (r)(x(r)i;Ψ).

A.3. Proof of (4.9)

The maximization of QM1(Ψ,Ψ(p)) over πj is done under the constraint∑M
j=1 πj = 1. We use the Lagrangian multiplier method, taking

L(Ψ, λ) = QM1(Ψ,Ψ(p))− λ
( M∑

j=1

πj − 1
)
.
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Differentiating L(Ψ, λ) with respect to πj leads to

π
(p+1)
j,M1 =

1

λ

m∑
i=1

k∑
r=1

{
τj,M1,RSS(x(r)i;Ψ

(p)) + βj,M1,RSS(x(r)i;Ψ
(p))

+γj,M1,RSS(x(r)i;Ψ
(p))
}
,

where

λ =
M∑
j=1

m∑
i=1

k∑
r=1

{
τj,M1,RSS(x(r)i;Ψ

(p)) + βj,M1,RSS(x(r)i;Ψ
(p))

+γj,M1,RSS(x(r)i;Ψ
(p))
}
.

Using (4.4), (4.5) and (4.6),

M∑
j=1

{
τj,M1,RSS(x(r)i;Ψ

(p)) + βj,M1,RSS(x(r)i;Ψ
(p)) + γj,M1,RSS(x(r)i;Ψ

(p))
}
= k,

and so λ =
∑m

i=1

∑k
r=1 k = mk2. This completes the proof.
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