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Abstract: Conditional heteroscedasticity is prevalent in many time series. By view-

ing conditional heteroscedasticity as the consequence of a dynamic mixture of in-

dependent random variables, we develop a simple yet versatile observable mixing

function, leading to the conditionally heteroscedastic AR model with thresholds,

or a T-CHARM for short. We demonstrate its many attributes and provide com-

prehensive theoretical underpinnings with efficient computational procedures and

algorithms. We compare, via simulation, the performance of T-CHARM with the

GARCH model. We report some experiences using data from economics, biology,

and geoscience.
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1. Introduction

We can often model a time series as the sum of a conditional mean function,

the drift or trend, and a conditional variance function, the diffusion. See, e.g.,

Tong (1990). The drift attracted attention from very early days, although the

importance of the diffusion did not go entirely unnoticed, with an example in

ecological populations as early as Moran (1953); a systematic modelling of the

diffusion did not seem to attract serious attention before the 1980s.

For discrete-time cases, our focus, as far as we are aware it is in the econo-

metric and finance literature that the modelling of the conditional variance has

been treated seriously, although Tong and Lim (1980) did include conditional

heteroscedasticity. Specifically, Engle (1982) proposed the autoregressive condi-

tional heteroscedasticity (ARCH) model, which has attracted much attention.

(For a simple introduction see, e.g., Cryer and Chan (2008).)

If we view conditional heteroscedasticity as a consequence of a dynamic

mixture of independent random variables, then the ARCH model is just one
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form of mixture among many. For the ARCH model, in order to preserve non-

negativity of the conditional variance as well as stationarity, constraints on its

parameters are necessary, which can sometimes be rather restrictive. To cope

with different applications, it has been found necessary to extend the basic

ARCH mixing function to ones of increasing complexity, associated with the

acronyms GARCH, EGARCH, IGARCH, NGARCH, GARCH-M, QGARCH,

GJR-GARCH, TGARCH, fGARCH, and others. These extensions carry with

them additional parameter constraints. We would argue that there is no a priori

reason why the mixing function should be wedded to the form initiated in Engle

(1982).

Unobservable/hidden mixing functions have been studied. For example,

Schwert (1989) used the two-state regime-switching hidden Markov model to

study monthly stock returns. Cai (1994) proposed the switching-AR-Markov-

ARCH model and used it to study three-month T-Bill excess return, and Gray

(1996) tried to model the conditional distribution of interest rates by a regime-

switching model. Some general regime-switching Markov GARCH models were

proposed by Hamilton and Susmel (1994) and Haas, Mittnik, and Paolella (2004)

However, Schwert (1989) has argued that the extension of the two-state regime-

switching hidden Markov model involves more complicated computational pro-

cedures and suspected that the benefits from such extensions would not exceed

the costs. However, as far as we know, no asymptotic theory is available for the

statistical inference of regime-switching Markov GARCH models, perhaps due to

its complex nature.

The simple idea of a piecewise constant mixing function was already buried

in Moran (1953) and made its debut in Tong and Lim (1980). Later, Tong (1982)

discussed how a discontinuous decision process could result in a smooth dynami-

cal system becoming a piecewise smooth one. We pursue the idea systematically

in this paper.

Clearly, thresholds are the key to the piecewise-constant approach to mod-

elling the conditional variance function, just as they are to the piecewise-linear

approach to modelling the conditional mean function. Recent references of the

latter, since its introduction by Tong (1978), are rather extensive. As represen-

tatives, we refer to Chan and Li (2007), Chan (2009), Hansen (2011), and Tong

(2011). Still, many challenges remain.

Focusing on the conditional variance, sometimes called volatility, this paper

studies the threshold model for conditional heteroscedasticity, or T-CHARM for

short. A T-CHARM has appealing features: it is always strictly stationary

and ergodic essentially without any restriction on the parameters; its mixing

function is flexible enough that asymmetric heteroscedasticity is not a problem;

strong consistency is enjoyed by the quasi-maximum likelihood estimators of the
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parameters, and convergence rates are available. In fact, the limiting distribution

of the estimated threshold is the same as that of the smallest minimizer of a two-

sided compound Poisson process.

Despite an apparent resemblance of T-CHARM to the QGARCH model

(Gourieroux and Monfort (1992)) and the Threshold ARCH model (Rabemanan-

jara and Zaköıan (1993); Zaköıan (1994)), in that they all have a non-parametric

flavor, the latter two assume fixed and known thresholds over which the condi-

tional variance function jumps, while the former infers the unknown number and

unknown locations of the thresholds from the data.

This paper is organized as follows. Section 2 presents the model and its struc-

ture. Section 3 studies the estimation of the model parameters. Section 4 gives

the limiting distribution of the estimated threshold including a useful approx-

imation. Section 5 considers various statistical tools pertinent to T-CHARM.

Section 6 compares the T-CHARM and the GARCH model via simulation. Sec-

tion 7 illustrates the methodology with sets of data, from finance, the biological

and environmental sciences. We conclude the paper with some discussion in

Section 8. Proofs of key results are given as Supplementary Materials.

2. T-CHARM and Its Probabilistic Structure

A T-CHARM is a threshold autoregressive (TAR) model. In its simplest

form

Xt = σ(Xt−1)ηt, (2.1)

where {ηt} are independent and identically (but not necessarily normally) dis-

tributed (i.i.d.) random variables each with zero mean and unit variance, ηt is

independent of {Xs : s < t}, and σ(x) is a piecewise constant function of x.

Assume that σ takes m distinct values. Specifically, let σ(x) = σi for x ∈ Ri,

where σi’s are distinct positive numbers, and {Ri, i = 1, . . . ,m} defines a par-

tition of the real line R, R = ∪m
i=1Ri and the Ri’s are pairwise disjoint. The

Ri’s are referred to as regimes. Thus, the conditional variance of Xt+1 given

current and past X’s depends only on the regime into which Xt falls. It is clear

that E(Xt|Xs, s < t) ≡ 0, so {Xt} is a martingale difference sequence of random

variables. Consequently, the X’s are uncorrelated forming a sequence of white

noise. A T-CHARM can be generalized in many ways, just as a TAR model can;

see Tong (1978). Thus the argument of the function σ can be replaced by a more

general ‘state’ variable, that can be a function of either an observable or a hidden

time series, or both. One could also smooth the piecewise constant function σ,

in several ways, e.g. similar to those described in Tong (1978).

We show that the dependence structure of the X’s is generally revealed by

the autocorrelation structure of some instantaneously nonlinear transformation
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of the X’s. Thus, for any instantaneous transformation Yt = h(Xt) with finite

second moments and E(h(ηt)) ̸= 0, the autocorrelation function (ACF) of the

transformed process is generally the same as that of some stationary ARMA(m−
1,m − 1) process. Here the AR and MA orders are generally one less than the

number of regimes.

The regime process {St} is to have St = i if and only if Xt ∈ Ri, i = 1, . . . ,m.

It is a Markov chain. Let P = (pij) be its 1-step transition probability matrix

pij = P(Xt+1 ∈ Rj |Xt ∈ Ri). It is well-known that if 1 denotes an m-dimensional

vector of unit elements, it is a right eigenvector of P . Consequently, there exists

an m-dimensional non-zero left eigenvector u,

uτP = uτ , (2.2)

where τ denotes the transpose of a vector or matrix. If u is non-negative, it

can be normalized to sum to 1. Then if the regime process has u as its initial

probability distribution, the regime process is stationary. The irreducibility of

P is a necessary and sufficient condition for the existence of a unique stationary

distribution for the Markov chain, and it is irreducible if and only if
∑∞

t=1 P
t is

a positive matrix. P is irreducible under very mild conditions, for example, if ηt
has a positive probability density function. Henceforth, we assume that P is an

irreducible matrix.

We show that the stationary distribution of Xt is a mixture of distributions

of the σjη, where η has the same distribution as the common distribution of the

innovations {ηt}, with uj as the probability weights, where uτ = (u1, u2, . . . , um).

Conditional on X0 = x0 ∈ Ri, St−1 = j with probability P t−1
ij , in which case Xt

is distributed as σjηt. Because P t−1
ij → uj , the conditional distribution of Xt

converges in distribution to the mixture of distributions of σjη with probability

uj . It is readily seen that this limiting mixture distribution is the stationary

distribution of {Xt}. Then the ℓ-step ahead predictive distribution of Xt+ℓ given

Xt in the ith regime is a mixture of distributions of σjη with probability weight

P ℓ
ij . In practice, if the X’s are returns, it is of interest to predict the uncertainty

in the ℓ-step-ahead cumulative returns to explore the predictive distribution of∑ℓ
k=1Xt+k. It can be seen that the latter distribution is identical to that of a

mixture of distributions corresponding to
∑ℓ

k=1 σjkηt+k, with probability weights

Pi,j1

∏ℓ
k=2 Pjk−1,jk , for jk ∈ {1, . . . ,m}, k = 1, . . . , ℓ.

It follows from the Cayley-Hamilton Theorem that if d(x) = det(xI − P ) is

the characteristic polynomial of P , then d(P ) = 0. Simply let d(x) = xm −∑m
j=1 djx

m−j , d(P ) = Pm −
∑m

j=1 djP
m−j , where the superscript denotes a

matrix power and the zeroth power is I, the identity matrix. Since 1 is the

unique eigenvalue of P that is of unit magnitude, d(x) = (x − 1)c(x), where

c(x) = xm−1 −
∑m−1

j=1 cjx
m−j−1 has all its root of magnitude strictly less than 1.
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Theorem 1. Let {Xt} be as in Eqn. (2.1) and the transition probability matrix

P of the associated regime process {St} be an irreducible m × m matrix. Let

Yt = h(Xt), where h is a continuous function. Assume that {Yt} admits finite

second moments and E(h(ηt)) ̸= 0. Let γk = γk,Y be the kth lag auto-covariance

of {Yt}. Then {γk} satisfies the Yule-Walker equation

γk = c1γk−1 + . . .+ cm−1γk−m+1 for k ≥ m. (2.3)

The fact that {γk} satisfies (2.3) means that the ACF of {Yt} is exactly the

same as that of some ARMA(m− 1,m− 1) process. For, let B be the backshift

operator defined by BYt = Yt−1 and observe that because of the Yule-Walker

equation, Wt = c(B)Yt is a process of memory not more than m− 1 lags, and so

{Wt} must be an MA(m−1) process by Proposition 3.2.1 of Brockwell and Davis

(1991). Thus, in terms of the second order structure, {Yt} is an ARMA(m−1,m−
1) process. However, it can be seen from the proof of Theorem 1 that if the vector

ντ = (E(h(σ1ηt)), . . . ,E(h(σmηt))) is orthogonal to some eigenvectors of P whose

corresponding eigenvalues are less than 1 in magnitude, then the ARMA orders

may be lowered; the latter happens only if ν lies in a set of zero Lebesgue measure.

This exceptional case occurs, for example, if h is a linear function, in which case

ν = 0 and is orthogonal to all eigenvectors of P . Actually, in this case, {Yt} is an

ARMA(0, 0) process. However, for a nonlinear transformation h, it is unlikely

that ν is orthogonal to any eigenvector of P whose corresponding eigenvalue is

less than 1 in magnitude. Thus, we have the generic result that any instantaneous

nonlinear transformation of {Xt} is an ARMA(m−1,m−1) process. This result

forms a basis for tentatively identifying the number of regimes of the T-CHARM.

For example, we can consider the square of the X process and tentatively identify

its ARMA orders by using existing methodologies such as the Extended ACF

(EACF, see Tsay and Tiao (1984)) and others; see, e.g., Cryer and Chan (2008).

The number of regimes m can be estimated by adding 1 to the estimated AR

order. The identification can be verified by repeating the procedure after taking

the absolute value of the original process. This discussion subsumes an earlier

result of Gourieroux and Monfort (1992), who derived the ARMA representation

for the special case h(x) = x2.

The definition of regimes is likely to be application-specific. Empirically, a

simple partition scheme consists of defining Rj = {x ∈ R : rj < g(x) ≤ rj+1},
where −∞ = r0 < r1 < r2 < · · · < rm−1 < rm = ∞, and g is some function, for

example, the identity function or the absolute value function.

Let It = (I2t, . . . , Imt)
τ , where Iit = I{Xt ∈ Ri}, i = 2, . . . ,m, and I{·}

is the indictor function. Let at = (I{σ1ηt ∈ R2}, . . . , I{σ1ηt ∈ Rm})τ be an

(m− 1)-dimensional vector and At be an (m− 1)× (m− 1) matrix whose (i, j)
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entry is I{σj+1ηt ∈ Ri+1}− I{σ1ηt ∈ Ri+1}. Then, we have It = at+AtIt−1 and

after iterating k times, it follows that

It =
k∑

j=0

( j−1∏
i=0

At−i

)
at−j +

( k∏
i=0

At−i

)
It−k−1,

with the convention
∏−1

i=0 = I and
∏j

i=0At−i = AtAt−1 · · ·At−j . Assume that

ηt has a positive density on R and the Lebesgue measure of each Ri is positive.

Since the matrices in the sequence {At} are i.i.d. and E|I{σjηt ∈ Ri}− I{σ1ηt ∈
Ri}| < 1, using the technique in the proof of Theorem 2.1 in Li, Ling, and Tong

(2012), the first term converges to
∑∞

j=1

(∏j−1
i=0 At−i

)
at−j almost surely (a.s.),

while the second term converges to zero a.s. Then the infinite series is strictly

stationary and ergodic since it is a function of i.i.d. {ηt}.

Theorem 2. If the density of ηt, f(·), is positive on R and the Lebesgue measure

of each Ri is positive, then (i)

It =
∞∑
j=0

( j−1∏
i=0

At−i

)
at−j

and σ(Xt) = σ1+(σ2−σ1, . . . , σm−σ1)It−1; (ii) model (2.1) is strictly stationary

and uniformly ergodic.

The uniform ergodicity of the process follows from Corollary 6.12 of Num-

melin (1984) and the fact that p(x, y), the transition probability density function

of {Xt} (w.r.t. the Lebesgue measure), is bounded below by K × f(y) for all

x, y ∈ R, where 0 < K < ∞ is the minimum of σ(·). We do not impose any

condition on σi > 0 in Theorem 2 and the results hold even when E|ηt| = ∞. The-

orem 2 significantly improves Proposition 1 of Gourieroux and Monfort (1992),

who obtained the strict stationarity of the process under similar regularity con-

ditions.

We further study the autocorrelation structure of the volatilities {σ2(Xt)}
in model (2.1). For k ≥ 0, simple calculations have

cov(σ2(Xt), σ
2(Xt−k)) =

m∑
i=1

m∑
j=1

σ2
i σ

2
j δ

(k)
ij ,

where δ
(k)
ij satisfies the iterative equations

δ
(k)
ij =

m∑
s=1

P(σsηt ∈ Ri)δ
(k−1)
sj ,

δ
(0)
ij = P(Xt ∈ Ri ∩Rj)− P(Xt ∈ Ri)P(Xt ∈ Rj).
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For k = 0, we get

var(σ2(Xt)) =
∑

1≤i<j≤m

(σ2
j − σ2

i )
2P(Xt ∈ Rj)P(Xt ∈ Ri).

Here, P(Xt ∈ Ri)’s can be uniquely determined from

P(Xt ∈ Ri) =
m∑
j=1

P(σjηt ∈ Ri)P(Xt ∈ Rj) and
m∑
i=1

P(Xt ∈ Ri) = 1.

Thus, it is not hard to obtain the ACF {ρk} of σ2(Xt) in principle, although the

general expression can be complicated. However, for the case m = 2, we have

simple expressions.

Theorem 3. Suppose that m = 2 and the assumptions in Theorem 2 hold. Then,

for k ≥ 0

1. cov(σ2(Xt), σ
2(Xt−k)) = (σ2

2 − σ2
1)

2δ(1 − δ){P(σ2ηt ∈ R2) − P(σ1ηt ∈ R2)}k,
where δ = P(σ1ηt ∈ R2)/{1− P(σ2ηt ∈ R2) + P(σ1ηt ∈ R2)};

2. ρk = {P(σ2ηt ∈ R2)− P(σ1ηt ∈ R2)}k.

We compare the ACFs of T-CHARM with those of GARCH models. For

simplicity we consider GARCH (1,1) model σ2
t = α0 + (αη2t + β)σ2

t−1, where

α > 0 and β > 0. The corresponding ACF {ρgk} is ρgk = (α + β)k, where

α + β < 1. It is well-known that the estimation of ρgk requires a finite fourth

moment condition, 2α2 + (α + β)2 < 1, and this condition is rarely satisfied by

the estimated parameters. In contrast, we do not restrict the parameters for the

ρk of T-CHARM. We suggest that model (2.1) can offer a reliable alternative for

modelling volatilities. Additionally, it can capture the heavy-tailed property of

financial time series because

EX4
t

(EX2
t )

2
= (Eη4t )

∑m
i=1 σ

4
i P(Xt−1 ∈ Ri)

{
∑m

i=1 σ
2
i P(Xt−1 ∈ Ri)}2

≥ Eη4t ,

by Jensen’s inequality.

The inequality is strict for m ≥ 2 if the innovations have infinite support and

{σi, i = 1, . . . ,m} is not a singleton, implying that the T-CHARM(1) generally

has a heavier tail than the innovations. For illustration, consider the models

yt = [2I{yt−1 ≤ 0}+ σI{yt−1 > 0}]ηt, (2.4)

yt = [I{yt−1 ≤ r}+ 2I{yt−1 > r}]ηt, (2.5)

with i.i.d. standard normal ηt. The left diagram in Figure 1 plots the theoretical

kurtosis of the stationary T-CHARM(1) process as a function of σ for the model
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(a) (b)

Figure 1. The kurtosis of models (2.4) and (2.5).

at (2.4) while the right figure plots that of the model at (2.5). For both models,
the kurtosis exceeds that of the innovations.

In addition to conditional heteroscedasticity, the data (Yt) may also admit
a nonlinear conditional mean structure. Thus, it is of interest to consider a
nonlinear autoregressive model with stochastic inputs:

Yt = H(Yt−1, . . . , Yt−p) +Xt, (2.6)

where (Xt) is some stochastic process, e.g., a T-CHARM. The autoregressive
function H then accounts for the conditional mean structure while the stochastic
input {Xt} is generally a white noise that models the conditional heteroscedas-
ticity. In the applications here, we employ linear autoregressive functions with
T-CHARM inputs.

It is instructive to examine the case p = 1. Backward iteration of (2.6) yields

Yt =Xt +H(Yt−1)

=Xt +H(Xt−1 +H(Xt−2 +H(. . .+Xt−k +H(Yt−k−1) . . .))).

Suppose Yt−k−1 = y0 and take Yt,k(y0) = Xt+H(Xt−1+H(Xt−2+. . .+H(Xt−k+
y0) . . .)). It is plausible that, under some regularity conditions, Yk,t converges to
Yt in some sense, which then provides the latter an expansion in terms of the
stochastic inputs. These arguments can be extended to the higher order case by
vectorizing (2.6):

Yt = H(Yt−1) +Xt,
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where Yt=(Yt, Yt−1, . . . , Yt−p+1)
τ , H(u1, . . . , up)=(H(u1, . . . , up), u1, . . . , up−1)

τ

and Xt = (Xt, 0, . . . , 0)
τ . Similarly, Yt,k(y0) is defined.

Theorem 4. Let {Yt} satisfy (2.6). Suppose that (i) there exist y0, positive

constants α,C, and ζ < 1 such that for all positive integer k, for all vectors y0

and y,

E{|Yt,k(y0)−Yt,k(y)|α|Ft−k−1} ≤ Cζk|y0 − y|α, (2.7)

where |·| is the Euclidean norm and Ft is the σ-algebra generated by {Xt−ℓ, ℓ ≥ 0},
and (ii)

D = sup
t

E|Xt +H(y0)− y0|α < ∞. (2.8)

Then there exist random vectors Wt that are Ft-measurable and do not depend on

y0 such that, for any y, Yt,k(y) converges to Wt as k → ∞ a.s. and E|Yt,k(y)−
Wt|α = O(ζk). Moreover, if {Xt} is stationary ergodic and Y0 = W0, then

{Yt, t ≥ 0} is stationary and ergodic.

See the Supplementary Materials for a proof. The preceding theorem general-

izes Theorem 2 in Wu and Shao (2004) who considered the problem of iterating

i.i.d. random maps; this subsumes the case of i.i.d. {Xt} in (2.6). We note

that condition (i) holds if there exist a positive constant κ < 1 and a vector

norm | · | such that for any two vectors u = (u1, . . . , up)
τ and v = (v1, . . . , vp)

τ ,

|H(u) − H(v)| ≤ κ|u − v|. Such a Lipschitz condition holds for any stationary

linear autoregressive function with none of its characteristic roots on the unit cir-

cle. It also holds for some nonlinear autoregressive function, e.g. exponentially

stable, continuous threshold autoregressive functions. For instance, the latter

condition holds if p = 1 and H(u) = ϕ0+ϕ1(u− r)−+ϕ2(u− r)+, where the pa-

rameters ϕi, i = 0, 1, 2, and r satisfy ϕ1 < 1, ϕ2 < 1 and ϕ1ϕ2 < 1, and we use the

convention that for any real number x, x− = min(x, 0) and x+ = max(x, 0). For

results with p > 1, see Tong (1990). Condition (ii) is a mild moment condition

on the stochastic inputs; indeed, it trivially holds for T-CHARM inputs.

3. Quasi-maximum Likelihood Estimation

A simple way to implement (2.1) is to adopt the form Ri = (ri−1, ri]. Here,

we consider a slightly more general model in which the threshold variable is

allowed to be a functional of the past information. Take

Xt = σ(Wt−1)ηt,

σ(Wt−1) =
m∑
i=1

σiI{ri−1 < Wt−1 ≤ ri},
(3.1)
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where Wt−1 is a known functional of {Xt−1, . . . , Xt−p}, m is the number of

regimes, the σi’s are positive numbers, and −∞ = r0 < r1 < · · · < rm−1 <

rm = ∞, {r1, . . . , rm−1} the threshold parameters. We take m to be known.

Let θ = (σ2
1, . . . , σ

2
m)τ and r = (r1, . . . , rm−1)

τ with θ0 = (σ2
10, . . . , σ

2
m0)

τ and

r0 = (r10, . . . , rm−1,0)
τ as the true values of θ and r. We do not assume that ηt is

normally distributed. To estimate the parameters from data {X1, . . . , Xn} given

the initial values {X−p, . . . , X0}, we adopt the objective function

Ln(θ, r) = −1

2

n∑
t=1

m∑
i=1

(
log σ2

i +
X2

t

σ2
i

)
Iit = Iit(r), (3.2)

where Iit = Iit(r) = I{ri−1 < Wt−1 ≤ ri}. For each r, it is easy to maximize

Ln(θ, r) with respect to θ, say θ̂n(r) ≡ (σ̂2
1n(r), . . . , σ̂

2
mn(r))

τ with

σ̂2
in(r) =

∑n
t=1X

2
t Iit∑n

t=1 Iit
, i = 1, . . . ,m.

There are at most finitely many different values of Ln(θ̂n(r), r). By the enumer-

ation approach, we estimate r0 by

r̂n = argmax
r

Ln(θ̂n(r), r).

Using the plug-in method, the estimator of θ0 is θ̂n = θ̂n(r̂n). We call (θ̂n, r̂n)

the quasi-maximum likelihood estimator (QMLE) of (θ0, r0).

Generally, r̂n takes the form (W(i1), . . . ,W(im−1))
τ , where i1 < · · · < im−1 and

{W(1), . . . ,W(n)} are the order statistics of {W1, . . . ,Wn}. If (W(j1), . . . ,W(jm−1))
τ

is an estimator of r0, then Ln(θ̂n(r), r) is constant over the (m− 1)-dimensional

cube R̃, where

R̃ = {r = (r1, . . . , rm−1)
τ : ri ∈ [W(ji),W(ji+1)), i = 1, . . . ,m− 1}.

Thus, there exist infinitely many r such that Ln(·) can achieve its global maxi-

mum and any r ∈ R̃ can be taken as an estimator of r0. In this case, we choose

(W(j1), . . . ,W(jm−1))
τ as a representative of R̃ and denote it as the estimator of

r0. With this, it is not hard to show that (θ̂n, r̂n) is the QMLE of (θn, rn), so

(θ̂n, r̂n) = argmax
Θ×R

Ln(θ, r),

where Θ × R is the parameter space and Θ = Rm
+ with R+ ≡ (0,∞) and R =

{r : −∞ < r1 < · · · < rm−1 < ∞}.

Assumption 1. The density f(x) of ηt is continuous and positive on R, Eηt = 0

and Eη2t = 1.
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Assumption 2. The density fw(·) of Wt is continuous and fw(rj0) > 0 for

j = 1, . . . ,m− 1.

The proof of the strong consistency of (θ̂n, r̂n) is similar to that of Theorem

1 in Chan (1993) and is therefore omitted.

Theorem 5. If (i) Assumptions 1 and 2 hold, and (ii) σ2
i0 ̸= σ2

i+1,0 for i =

1, . . . ,m− 1, then (θ̂n, r̂n) → (θ0, r0) a.s. as n → ∞.

Condition (ii) in Theorem 5 is required to ensure the identifiability of r0. By

a technique similar to that used in the proof of Proposition 1 in Chan (1993), we

establish the convergence rate of r̂n and the asymptotic normality of θ̂n.

Theorem 6. Under the conditions of Theorem 5, if supx∈R{(1+ |x|)f(x)} < ∞
and κ4 ≡ Eη4t < ∞, then

(a) n(r̂n − r0) = Op(1);

(b)
√
n sup

|r−r0|≤B/n
|σ̂2

in(r)− σ̂2
in(r0)| = op(1) for any fixed B ∈ (0,∞).

Furthermore,

√
n(σ̂2

in(r0)− σ2
i0) =⇒ N

(
0,

(κ4 − 1)σ4
i0

Fw(ri0)− Fw(ri−1,0)

)
, i = 1, . . . ,m,

and all the normalized estimators are asymptotically independent, where Fw(x)

is the cumulative distribution function of Wt, and henceforth the symbol =⇒
indicates weak convergence.

A proof is given in the Supplementary Materials. These results are similar

to those of Chan (1993). See also Li and Ling (2012).

4. Inference for the Threshold Parameter r0

To study the limiting distribution of n(r̂n − r0), we consider the profile log-

likelihood process

L̃n(s) = −2
{
Ln

(
θ̂n(r0 +

s

n
), r0 +

s

n

)
− Ln

(
θ̂n(r0), r0

)}
, (4.1)

where s = (s1, . . . , sm−1)
τ ∈ Rm−1.

Let D(Rm−1) denote the function space consisting of uniform limits of se-

quences of simple functions defined on Rm−1 that is equipped with the Skorokhod

metric (see Seijo and Sen (2011); Li and Ling (2012)). By Theorem 6 and Taylor’s
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expansion, L̃n(s) can be approximated in D(Rm−1) by

℘n(s) = Ln(θ0, r0 +
s

n
)− Ln(θ0, r0)

=
m−1∑
i=1

n∑
t=1

[
ξ
(i+1,i)
t I

{
ri0 +

si
n

< Wt−1 ≤ ri0
}
I{si < 0}

+ξ
(i,i+1)
t I

{
ri0 < Wt−1 ≤ ri0 +

si
n

}
I{si ≥ 0}

]
,

where

ξ
(i,j)
t = log

σ2
i0

σ2
j0

+
(σ2

j0

σ2
i0

− 1
)
η2t , i, j = 1, . . . ,m. (4.2)

We define m− 1 independent one-dimensional two-sided compound Poisson

processes {Pj(z), z ∈ R} as

Pj(z) = I{z < 0}
N

(j)
1 (|z|)∑
k=1

U
(j+1,j)
k + I{z ≥ 0}

N
(j)
2 (z)∑
k=1

V
(j,j+1)
k , (4.3)

for j = 1, . . . ,m−1, where {N (j)
1 (z), z ≥ 0} and {N (j)

2 (z), z ≥ 0} are independent

Poisson processes with N
(j)
1 (0) = N

(j)
2 (0) = 0 a.s. and with the same jump

rate fw(rj0). Here {U (i,j)
k }∞k=1 and {V (i,j)

k }∞k=1 are mutually independent copies

of ξ
(i,j)
1 . We work with the left continuous version of N

(j)
1 (z) and the right

continuous version of N
(j)
2 (z).

Consider the spatial compound Poisson process

℘(s) =
m−1∑
j=1

Pj(sj), s = (s1, . . . , sm−1)
τ ∈ Rm−1. (4.4)

Clearly, ℘(s) → ∞ a.s. as |s| → ∞ since EU (i+1,i)
t > 0 and EV (i,i+1)

t > 0.

Therefore, there exists a unique random (m− 1)-dimensional cube [M−,M+) ≡
[M

(1)
− ,M

(1)
+ ) × · · · × [M

(m−1)
− ,M

(m−1)
+ ) at which the process {℘(s), s ∈ Rm−1}

attains its global minimum a.s.,

[M−,M+) = arg min
s∈Rm−1

℘(s).

From (4.4), the minimization is equivalent to

[M
(j)
− ,M

(j)
+ ) = argmin

z∈R
Pj(z), j = 1, . . . ,m− 1.

Note that the processes {Pj(z)} are independent, and so are {M (j)
− }, j = 1, . . .,

m − 1. Modifying slightly the proof of Theorem 3.3 in Li and Ling (2012), we

can prove the following
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Theorem 7. If the conditions in Theorem 6 hold, then n(r̂n − r0) converges

weakly to M− and its components are asymptotically independent as n → ∞.

Furthermore, n(r̂n − r0) is asymptotically independent of
√
n(θ̂n − θ0) which is

asymptotically normal.

We describe how to implement M
(j)
− or M−. From (4.2) and (4.3), we know

that the density of M
(j)
− is determined by the jump rate and the jump distribu-

tions. We can simulate M
(j)
− by simulating the compound Poisson process Pj(z)

in (4.3) on the interval [−T, T ] for any given T > 0 large enough since the expec-

tations of the jumps U
(j+1,j)
k and V

(j,j+1)
k are positive. Modifying Algorithm 6.2

of Cont and Tankov (2004, p.174) for a one-sided compound Poisson process, we

have an algorithm for a two-sided compound Poisson process.

Algorithm

Step 1. Sample N
(j)
1 and N

(j)
2 from Poisson distributions with the same param-

eter fw(rj0)T as the total number of jumps on the intervals [−T, 0] and

[0, T ], respectively.

Step 2. Sample independent jump time sequences {U1, . . . , UN
(j)
1

} and {V1, . . .,

V
N

(j)
2

}, where {Ui}
i.i.d.∼ U [−T, 0] and {Vi}

i.i.d.∼ U [0, T ]. Here U [a, b]

denotes the uniform distribution on the interval [a, b].

Step 3. Sample mutually independent sequences {η1, . . . , ηN(j)
1

} and {η1, . . . , ηN(j)
2

}
from f(x). Use them to produce mutually independent jump-size se-

quences {Y1, . . . , YN(j)
1

} and {Z1, . . . , ZN
(j)
2

} by (4.2), respectively.

For z ∈ [−T, T ], the trajectory of (4.3) is given by

Pj(z) = I{z < 0}
N

(j)
1∑

i=1

I{Ui > z}Yi + I{z ≥ 0}
N

(j)
2∑

j=1

I{Vj < z}Zj . (4.5)

Then we take the smallest minimizer of Pj(z) in (4.5) on [−T, T ] as an observation

of M
(j)
− . By repeating the algorithm, we can get a sequence of observations of

M
(j)
− , from which we can infer the distribution of n(r̂jn − rj0).

In practice, however, since only one sample Xn = {X1, . . . , Xn} is available,

we can use it to estimate θ0 and fw(rj0) by θ̂n and f̂w(r̂jn), where f̂w(·) is a kernel

density estimator of fw(·). Then we can calculate the residuals {η̂1, . . . , η̂n} and

use them to construct a kernel density estimator f̂(·) of f(·).
When θ0, fw(rj0), and f(x) are all unknown, we substitute their consistent

estimators θ̂n, f̂w(r̂jn), and f̂(x) in the Algorithm and denote the corresponding

compound Poisson processes as {P̂j(z)}. Then we can get an approximation M̂
(j)
−
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of M
(j)
− . By Theorem 16 in Pollard (1984, p.134), P̂j(z) =⇒ Pj(z) conditionally

on Xn in D(R), in probability. By Theorem 3.1 (on the continuity of the smallest

argmax functional) in Seijo and Sen (2011), M̂
(j)
− =⇒ M− conditionally on Xn,

in probability.

Theorem 8. If the conditions in Theorem 6 hold then, in probability,

lim
n→∞

|P(M̂ (j)
− ≤ x|Xn)− P(M (j)

− ≤ x)| = 0

at each x for which P(M (j)
− = x) = 0. That is, M̂

(j)
− |Xn =⇒ M

(j)
− , in probability.

To illustrate the efficacy of the Algorithm, we consider the simple example

Xt = [2I{Xt−1 ≤ 0}+ 0.5I{Xt−1 > 0}]ηt, (4.6)

where ηt is i.i.d. standard normal and the sample size is 400. In Figure 8 in
the Supplementary Materials, (a) gives the density of n(r̂n − r0), obtained by
10,000 replications; (b) shows the density of M− when θ0, fw(r0), and f(x) are
all known. When a sample X = {x1, . . . , x400} is given and fixed, (c) and (d)
display the density of M̂−. Here, 1,000 replications were used for (c) and 10,000
replications for (d). Comparing (c) with (d) there, we find that the more the
number of the replications, the more precise the density of M̂−.

5. Test of T-CHARM (m) Against T-CHARM (m+ 1)

We denote a T-CHARM with m regimes by T-CHARM (m). In applications
one needs to determine the number of regimes. This is a non-standard inferential
problem and it is not obvious how to count the number of independently adjusted
parameters. Here we consider testing T-CHARM(m) against T-CHARM(m+1).
Our experience suggests that m is unlikely to be much larger than 2 or 3 in
applications. Specifically, under the null H0, the T-CHARM is as in (3.1). Under
the alternative H1, there is an additional threshold, denoted by r, which lies in
the k-regime (rk−1, rk], such that σ(Wt−1) in the T-CHARM(m + 1) can be
written as

σ(Wt−1) =
m∑
i=1
i ̸=k

σ2
i Iit + σ2

1kI{rk−1 < Wt−1 ≤ r}+ σ2
2kI{r < Wt−1 ≤ rk}.

Under H1, the log quasi-likelihood function (ignoring a constant) is

Ln(θ̃, r, σ1k, σ2k, r) = −1

2

n∑
t=1

{
m∑
i=1
i̸=k

(
log σ2

i +
X2

t

σ2
i

)
Iit +

(
log σ2

1k +
X2

t

σ2
1k

)
I1kt

+
(
log σ2

2k +
X2

t

σ2
2k

)
I2kt

}
,
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where θ̃ = (σ2
1, · · ·σ2

k−1, σ
2
k+1, . . . , σ

2
m)τ , I1kt = I1kt(rk−1, r) = I{rk−1 < Wt−1 ≤

r} and I2kt = I2kt(r, rk) = I{r < Wt−1 ≤ rk}. For each r, the profile log-

likelihood ratio test statistic is

Lkn(r) = Ln(
ˆ̃
θ, r̂, σ̂1k(r), σ̂2k(r), r)− Ln(θ̂, r̂)

= −1

2

n∑
t=1

[{
log σ̂2

k(r̂) +
X2

t

σ̂2
k(r̂)

}
Ikt(r̂)+

{
log σ̂2

1k(r)+
X2

t

σ̂2
1k(r)

}
I1kt(r̂k−1, r)

+
{
log σ̂2

2k(r) +
X2

t

σ̂2
2k(r)

}
I2kt(r, r̂k)

]
,

where

σ̂2
1k(r) =

∑n
t=1X

2
t I1kt∑n

t=1 I1kt
and σ̂2

2k(r) =

∑n
t=1X

2
t I2kt∑n

t=1 I2kt
.

Routine analysis then yields

2Lkn(r) = Ak(r)
{ 1√

n

n∑
t=1

(η2t − 1)I1kt −
Fw(r)− Fw(rk)

Fw(rk+1)− Fw(rk)

1√
n

n∑
t=1

(η2t − 1)Ikt

}2

+op(1)

= Ak(r){Dkn(r)}2 + op(1),

where

Ak(r) =
Fw(rk)− Fw(rk−1)

{Fw(r)− Fw(rk−1)}{Fw(rk)− Fw(r)}
,

and op(1) holds uniformly in r ∈ [ri−1, ri]. By Theorem 3.1 in Ling and Tong

(2011), {Dkn(r) : r∈ [ri−1, ri]} converges weakly to a centered Gaussian process

Gk(r) : r∈ [ri−1, ri]} with covariance kernel K(r, s)=cov(Gk(r), Gk(s)) given by

(κ4 − 1)
[
min{Fw(r)− Fw(rk−1), Fw(s)− Fw(rk−1)}

− {Fw(r)− Fw(rk−1)}{Fw(s)− Fw(rk−1)}
Fw(rk)− Fw(rk−1)

]
.

Thus, {Fw(rk)−Fw(rk−1)}−1/2Dkn(r) converges weakly to a scalar multiple of the

standard Brownian bridge Bk(s)−sBk(1), where s = (Fw(r)−Fw(rk))/(Fw(rk+1)

−Fw(rk)) ∈ [0, 1]. Since maxr∈(rk−1,rk] Lkn(r) = ∞, we have to restrict the range

of r to [c1,k, c2,k] so that the corresponding s lies in [a1,k, a2,k], a proper subset

of (0, 1), say (0.05, 0.95), in each regime. In this way, we obtain a useful limiting

distribution, similar to those in Bai and Perron (1998) for testing multiple change-

point problems and Chan (1990) for testing a threshold AR model. Since we

have m regimes under the null hypothesis, the LR test can be applied regime

by regime, with an adjustment for multiple testing via the Bonferroni inequality.
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Specifically, the LR test statistic for an additional threshold in the k-th regime

equals
Tk,n = 2(κ4 − 1)−1 sup

r∈[c1,k, c2,k]
Lkn(r),

where κ4 ≡ Eη4t assumed finite.

Theorem 9. Under H0, if the density function of ηt is bounded and positive,

then it follows that

Tk,n =⇒ sup
s∈[a1,k, a2,k]

(Bk(s)− sBk(1))
2

s(1− s)
,

where the Bk(s), k = 1, . . . ,m, are independent standard Brownian motions.

Since the test is applied regime by regime, consider the case m = 1 and the

range of s be [a, 1−a] for some 0 < a < 1/2. Asymptotically, the null distribution

of the square root of likelihood ratio test (after some further normalization)

is equivalent to the distribution of the maximum of the normalized absolute

Brownian bridge over the interval [a, 1−a]. Dirkse (1975) showed that the latter

is the distribution of the maximum of the absolute value of a stationary Ornstein-

Uhlenbeck process over the interval [−α, α], where α = 0.5 log(1/a−1), and that

P
(

sup
−α≤t≤α

|U(t)| > c
)
∼

√
2

π
exp

(
− c2

2

)(
αc− α

c
+

2

c

)
(5.1)

for c large. (Here, we replace the typographical error of 1/c in Dirkse (1975) by

2/c, thanks to Professor D. O. Siegmund.) Thus, we can compute the approxi-

mate p-value of the LRT using

p0(c̃) =

√
2

π
exp

(
− c̃2

2

)(
αc̃− α

c̃
+

2

c̃

)
, (5.2)

where c̃ is the square root of the (normalized) LRT statistic. Thus the p-value

p0 is asymptotically uniformly distributed over [0, 1] in the sense that P(p0 <

p|H0) ∼ p for p → 0.

We consider two modified LRTs that make use of the location of the quasi-

likelihood estimator of the threshold. The first is based on the observation that,

were the threshold value under the alternative known to be r0, we could use a

more powerful likelihood ratio test with the threshold fixed at r0, whose asymp-

totic null distribution is χ2
1. In practice, the threshold is unknown and we consider

the likelihood ratio test with a wide range of possible threshold values, which re-

duces the power of the test. For the case of a Brownian bridge, it is known that

its global maximum value is independent of the location where the maximum

is attained, with the latter having a uniform distribution. This independence
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property also holds, at least asymptotically, for the Ornstein-Uhlenbeck process

restricted to a fixed finite interval, say [h1, h2], and that the marginal distribution

of the location of the global maximum has a uniform distribution over [h1, h2]; we

sketch a proof in the Supplementary Materials. Hence, we can modify the cali-

bration of the LRT as follows. Consider the LRT implemented with the threshold

searched over the a × 100 to (1 − a) × 100 percentiles of the threshold variable,

and that the square root of the LRT attains its maximum value, say, c̃ at the

β percentile. We then compute the p-value by (5.2) with α there replaced by

βM = log(1/min(β, 1− β)− 1). If p1 is the p-value so computed,

p1(c̃, β) =

√
2

π
exp

(
− c̃2

2

)(
βM c̃− βM

c̃
+

2

c̃

)
.

We claim that p1 is asymptotically uniformly distributed over [0, 1], so

it provides a valid calibration of the LRT under the null hypothesis. To see

this, recall that under our conjecture β is asymptotically independent of c̃,

and log((1 − β)/β)/2 is uniformly distributed over [−α, α]. Thus, βM is uni-

formly distributed over [0, 2α]. The independence of c̃ and β then implies that

E(p1|c̃) =
√

2/π exp(−c̃2/2)(αc̃ − α/c̃ + 2/c̃), and hence p1 shares the same

asymptotic behavior of p0. For alternatives with the threshold parameter close

to the 50th percentile, β is close to one half, rendering the calculation of p1 to

one based on a narrow interval around the 50th percentile, which then increases

the power of the LRT in discerning threshold structure. On the other hand,

if the threshold parameter is close to the data extremes, then p1 is now cali-

brated on a very wide interval, thereby decreasing the power of detecting the

alternative. A third approach is to compute the p-value as if the search was over

the union of the intervals from a × 100 to min(β, 1 − β) × 100 percentiles and

from max(β, 1− β)× 100 to (1− a)× 100 percentiles. Effectively, this approach

computes the p-value as

p2(c̃, β) =

√
2

π
exp

(
− c̃2

2

)(
βT c̃−

βT
c̃

+
2

c̃

)
,

where βT = log(min(β, 1 − β)/(1 − min(β, 1 − β))) − log(a/(1 − a)). We can

similarly show that E(p2|c̃) = p0.

We used simulation to examine the empirical properties of the three ap-

proaches for calibrating the p-value of the LRT. We simulated the threshold

martingale difference process

Xt = σ(Xt−1)ηt,

where σ(Xt−1) = {1 + γI(Xt−1 > r0)}σ2 and {ηt} are independent standard

normal random variables. The noise variance ratio ranged from 0.5 to 2, with
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Table 1. Empirical size of the nominal 5% LRT with p-values computed by
the proposed methods.

sample size p0 p1 p2
100 0.075 0.089 0.096
200 0.057 0.070 0.077
500 0.048 0.061 0.067

1,000 0.052 0.064 0.068

(a) (b)

Figure 2. Empirical rejection rate of the LRT; all approaches for calculating
the p-values are corrected to have exactly 5% empirical size by appropriately
shifting the p-values. The threshold is 0 (−0.8) for the left (right) subfigure.
Solid lines are the power curves for the LRT with the p-value computed by
p0; dashed lines are those for p1 and dotted lines those for p2. The four lines
of each type, from bottom to top, correspond to sample size n =100, 200,
500 and 1,000, respectively.

increment 0.1. We tried r0 = −0.8 and 0. The threshold value −0.8 corresponds

to the 6.6 percentile with γ = 0.5 but increases to the 30.7 percentile at γ = 2.

On the other hand, the threshold value 0 ranges within the 49–50 percentiles

as the noise variance ratio increases from 0.5 to 2. We considered sample sizes

100, 200, 400, and 1,000. All experiments were replicated 10,000 times. Table 1

displays the empirical sizes of the LRT with the p-values computed by the three

proposed methods. For sample size 100, all result in higher rejection rates than

the nominal 5% level, especially for p1 and p2. However, for sample sizes at

least 200, the empirical sizes of the tests are increasingly closer to the nominal

5%. Figure 2 displays the empirical power curves of the LRT corresponding to

the three methods of calibrating the p-values; in comparing the powers of the

methods, we have corrected for slight size differences by shifting the p-values

so that they all have 5% empirical size. All methods enjoy good power for
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detecting threshold martingale differences but, as expected, p1 has the highest

power when the threshold is close to the median of the threshold variable, whereas

p2 dominates the other two approaches when the threshold is close to the extremes

of the data.

6. Simulation Studies

Given the popularity of the GARCH model, it is pertinent to compare T-

CHARM with GARCH on their empirical performances. We do this via a simu-

lation study using three data generating mechanisms: a GARCH(1,1) model, a

T-CHARM(2) model, and a stochastic volatility model.

The performance of a fitted model in predicting the 1-step ahead condi-

tional variance can be measured by the sum of the absolute value of its (relative)

volatility prediction errors,

dmodel =

n∑
t=1

∣∣∣∣∣X
2
t − σ̂2

t|t−1

σ̂2
t|t−1

∣∣∣∣∣ . (6.1)

We use

Ratio =
dGARCH

dTCHARM

for comparing the two models. All numerical results in this section are based on

1,000 replications, with sample size n = 400.

Data were generated from the GARCH(1, 1) model

Xt = σtηt,

σ2
t = α0 + α1X

2
t−1 + β1σ

2
t−1,

where {ηt} is standard Gaussian white noise. Letting α0 = 0.1, β1 = 0.5, and

varying α1 from 0 to 1, Figure 3(a) exhibits the empirical performance of the

(fitted) GARCH (1, 1) relative to the (fitted) T-CHARM(m), for m = 1, 2. It

shows that GARCH(1, 1) is inferior to T-CHARM over the range 0 ≤ α1 ≤ 0.2,

otherwise GARCH(1, 1) is superior.

Next, we generated data from the T-CHARM(2) model

yt = [2I{yt−1 ≤ 0}+ σI{yt−1 > 0}]ηt

with σ varying from 1 to 3. Figure 3(b) displays the ratio of the absolute pre-

dictive volatility error of GARCH(p, p) to that of T-CHARM(2), as a function

of σ, for p = 1, 2. Here GARCH(2, 2) had similar or slightly better performance

than GARCH(1, 1), and both are consistently outperformed by T-CHARM, al-

though GARCH improves its performance as σ approaches 2. (RATIO ≈ 1.005

at σ = 2.)



644 KUNG-SIK CHAN, DONG LI, SHIQING LING AND HOWELL TONG

(a) (b)

(c)

Figure 3. The ratio of the absolute volatility prediction error dmodel of the
GARCH model relative to the TCHARM.

Finally, we generated data from the stochastic volatility model

Xt = ηt exp
(ht
2

)
, ht = ϕht−1 + et,

where both {ηt} and {et} are independent, standard Gaussian white noise, and
the parameter ϕ varies from −0.9 to 0.9 with increment 0.1. Figure 3(c) shows,
as a function of ϕ, the performance of GARCH(p, p) relative to T-CHARM(2)
with threshold variable X2

t−1. GARCH(2, 2) only slightly improves GARCH(1,
1) in terms of approximating the underlying stochastic volatility model. Except
for ϕ close to 0.9, T-CHARM(2) consistently outperforms both GARCH(1, 1)
and GARCH(2, 2).

The simulation study had GARCH (T-CHARM) performing better than the
other model when GARCH (T-CHARM) was the true data mechanism, as ex-
pected. T-CHARM(3), however, provided better approximation than GARCH
in the stochastic volatility model examined in our simulation study. Increasing
the GARCH order only slightly enhanced its approximation capability, while ap-
proximation by T-CHARM was significantly improved by increasing the number
of regimes.



THRESHOLD HETEROSCEDASTICITY 645

(a) (b)

Figure 4. Left subfigure: CREF daily returns, black solid line; the threshold
variables are plotted as vertical gray lines on the bottom with the heights of
the lines proportional to theW ’s. The horizontal line indicates the estimated
threshold. Right subfigure: Scatter diagram of the squared CREF daily
returns versus the threshold variable. Vertical line separates the the two
regimes and the horizontal lines indicate the estimated variances of the two
regimes.

7. T-CHARM of Some Time Series

We illustrate the application of the T-CHARM with some time series.

The first example is a financial time series – the daily values of a unit of

the CREF stock fund over the period from August 26, 2004 to August 15, 2006.

The CREF stock fund comprises several thousand stocks. Since stocks are traded

only on so-called trading days, the data do not change over the non-trading days.

For simplicity, we analyze returns, namely the first differences of the logarithmic

transformed daily values, as if they were equally spaced. The returns, denoted

{Xt}, have been studied by Cryer and Chan (2008), who fitted a GARCH(1,

1) model in order to capture the conditional variance structure of the data.

See Figure 4(a). Changes in the conditional variance of the innovations may be

signified by substantial fluctuations in past returns. This suggests the potential of

using a more complex threshold variable, for example a function of finitely many

past returns, than some lag of X. We therefore consider threshold variables of

the form Wt−1 =
∑k

j=1 |Xt−j −Xt−j−1|, (The choice of k = 3 will be justified as

being sufficient for the CREF example.) Specifically, we consider

Xt =

m∑
i=1

σiI{ri−1 < Wt−1 ≤ ri}ηt. (7.1)



646 KUNG-SIK CHAN, DONG LI, SHIQING LING AND HOWELL TONG

Figure 5. Fitted conditional variance process from T-CHARM (solid line)
and that of the GARCH(1, 1) model (dashed line), with the squared CREF
returns plotted as gray background.

We fit a two-regime T-CHARM with the threshold searched between the 5 and

95 percentiles of the threshold variable Wt where k = 3; by quasi-likelihood

estimation, σ̂2
1 = 0.3765(0.0272), σ̂2

2 = 0.7420(0.147), and r̂ = 3.333, where

the standard errors are enclosed in parentheses; see Figure 4(b). Based on the

method of Section 4, and using the empirical standardized residual distribution,

we obtain (2.256, 4.024) as a 95% confidence interval of the threshold parameter,

which is asymmetric about the threshold estimate. Model diagnostics suggest

the normality of the residuals. Assuming normality, the 95% confidence interval

of the threshold parameter is (2.321, 4.144), which is close to the preceding con-

fidence interval. Confidence intervals for σ2
i , i = 1, 2, can be readily constructed

by making use of Theorem 6, on the logarithmic scale with the aid of the delta

method, then followed by back-transformation in order to ensure positivity. The

presence of a threshold is justified by the LR test whose p-value is p0 = 0.018.

The other approaches for calculating the conditional p-values yield p1 = 0.025

and p2 = 0.012. The threshold is approximately the 88th percentile of the thresh-

old variable with the number of data falling in the two regimes being 438 and 58.

No further thresholds are needed based on LR tests for the presence of further

thresholds in each of the two regimes. The choice of k = 3 is justified by treating

k as a parameter and estimating it by profile quasi log-likelihood; upon fitting

the model with k ranging from 1 to 5 and identical effective sample size yields the

profile likelihood -25.54, -29.32, -25.00, -28.01 and -26.29, respectively, and max-

imized at k = 3. Model diagnostics (Figure 9 in the Supplementary Materials)

show that the model provides a good fit to the data.

Figure 5 shows the conditional variance processes from the fitted T-CHARM
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(a) (b)

Figure 6. Left subfigure: Time plot of the annual tree ring width. Right
subfigure: Scatter diagram of the squared tree ring residuals versus the lag
1 of the residuals, threshold variable. Vertical line separates the two regimes
and the horizontal lines indicate the estimated variances of the two regimes.

and the GARCH(1, 1) model reported by Cryer and Chan (2008). They appear to

complement each other on a global scale. On a finer scale, it appears that the T-

CHARM captures some of the troughs during periods of high conditional variance

whereas the GARCH(1, 1) model tends to smooth them. On the other hand,

as three-parameter models, both models have log-likelihoods of similar order of

magnitude, bearing in mind their approximate nature. See the Supplementary

Materials for further discussion on the out-of-sample predictive performance of

the fitted T-CHARM model versus the GARCH(1, 1) model.

The next two examples lie outside economics and finance. Each time se-

ries has a non-trivial conditional mean structure that can be modelled by an

ARIMA model with possibly additive outliers, but the errors are conditionally

heteroscedastic white noise that we model by some T-CHARM. The parame-

ters in the mean function are generally distinct from those parametrizing the

conditional variance function. Consequently, the mean structure may be esti-

mated first, by making use of the white-noise nature of the errors and ignoring

the conditional variance structure. Then the parameters of the conditional vari-

ance function can be subsequently estimated through a quasi-likelihood with the

ARIMA residuals treated as if they were the true innovations. It can be readily

checked that, under some mild regularity conditions, the mean parameters and

the variance parameters are asymptotically independent of each other, so that

the their standard errors can be obtained separately from each of the two steps.

The second example is a long time series of annual tree ring width (Figure

6(a)), with the measurements taken from a tree in a location at high altitude in
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Argentina. The time series spans the years 441 to 1974, and it was contributed

by J. Boninsegna to the NOAA Paleoclimatology database

http://www.ncdc.noaa.gov/paleo/metadata/noaa-tree-2782.html.

An IMA(1, 1) model was initially identified and fitted to the data with the

MA coefficient given by −0.6110 with standard error 0.0216. The residuals of

the fitted IMA(1, 1) model appeared to be white noise in the sense that the

residual ACF was only marginally significant at lag 11 and five higher lags out

of the 100 lags examined. This observation was corroborated by the Ljung-

Box test based on the first k lags of the residual ACF with k ranging from

3 to 100. On the other hand, the absolute residuals appear to be correlated;

see Figure 12 in the Supplementary Materials. We fit a two-regime T-CHARM

to the residuals to account for the conditional heteroscedasticity, with lag 1 of

the IMA(1, 1) error as the threshold variable. The parameter estimates were

σ̂2
1 = 0.03205(0.00153), σ̂2

2 = 0.05729(0.00893), and r̂ = 0.2366 (95% confidence

interval: (0.1619, 0.3049)), approximately the 91th percentile; see Figure 6(b).

The threshold structure was supported by the LR test for T-CHARM with p-

value p0 = 0.005. The other two methods of calculating the conditional p-values

yielded p1 = 0.008 and p2 = 0.002. The first regime contained 1402 observa-

tions while the second 131 observations. No further thresholds were needed by

reference to the LR test for the presence of further thresholds in each of the

two regimes. The fitted T-CHARM successfully captured the conditional het-

eroscedasticity in the data as there were no residual ARCH effects in the stan-

dardized residuals from the fitted T-CHARM, by reference to the McLeod-Li test

up to 100 lags. The fitted T-CHARM suggests that during fast-growing years,

tree growth is much more variable, with a variance that almost doubles that

during non-fast-growing years. What caused the observed variations is unclear,

but it may be related to the fact that over non-fast-growing regime the tree ring

width is bounded whereas this is not so in the fast-growing regime.

Next, we tried a GARCH model. The sample EACF of the absolute residuals

of the IMA(1, 1) model tentatively suggested GARCH(1, 2) and GARCH(2, 2)

models, but only the ARCH(1) coefficient was found to be significant, at 5%

level. Eventually we chose the GARCH(1, 1) model, whose conditional variance

is ht = βht−1 + α0 + α1X
2
t−1 where Xt stands for the IMA(1, 1) errors, as

this model passed the McLeod-Li test but the simpler ARCH(1) model did not.

The GARCH estimates, with their standard errors enclosed in parentheses, were

α̂0 = 0.0284(0.00656), α̂1 = 0.0987(0.0288), and β̂ = 0.0747(0.198). While the

T-CHARM shed some light on the tree-growing process, it is unclear to us as

to how to interpret the fitted GARCH(1, 1) model. Finally, both fitted models

involved three parameters with comparable quasi-likelihoods, again bearing in

mind their approximate nature.

http://www.ncdc.noaa.gov/paleo/metadata/noaa-tree-2782.html
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Figure 7. Squared AR(1) residual waiting time plotted against the lag-1 of
the log waiting time; vertical line separates the two regimes and horizontal
lines indicate the estimated variances of the two regimes.

The third example concerns the time series of waiting times between the

starts of consecutive eruptions of the Old Faithful geyser. The data have been

extensively studied in the literature. We used the version of the data collected

from August 1–15, 1985; see Azzalini and Bowman (1990), Härdle (1991), the

recent review by Zucchini and MacDonald (2009, Chap. 10), and the references

therein. Figure 13 in the Supplementary Materials plots the scatter diagrams

of the log waiting time against its lag k, for k = 1, . . . , 6. The plot highlights

the main features of the data: the waiting time is strongly associated with lag

1 values but much less so with values at higher lags; the presence of conditional

heteroscedasticity; a number of outliers. The last two features seem to be largely

ignored in the literature.

Preliminary statistical analysis suggested the possibility of an AR(1) model

plus additive outliers for the mean structure, which we then fit to the data

yielding the AR(1) coefficient estimate -0.571 (0.0497) and mean 4.248 (0.0065),

and adjusted for five outliers at epochs 22, 37, 172, 237 and 266. The residuals

appeared to be white, based on the Ljung-Box test up to lag 50. However, the

residuals were highly conditionally heteroscedastic: if the previous waiting time

is under-predicted, then the subsequent waiting time is subject to much larger

uncertainty; see Figure 7. We then fit a two-regime T-CHARM with the lag 1 of

the AR(1) errors as the threshold variable, giving the parameter estimates σ̂2
1 =

0.0093(0.0011), σ̂2
2 = 0.037(0.0031) (almost four times larger than the variance of

the lower regime), and r̂ = −0.072 (95% confidence interval: (−0.088,−0.058)),

which is about the 34th percentile. The existence of the threshold was supported

by the LR test with p-value < 10−5, for all three methods of calculation, and
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there is no need for more thresholds, based on the LR test. The standardized

residuals from the T-CHARM were no longer conditionally heteroscedastic, based

on the McLeod-Li test up to lag 50. However, the standardized residuals appear

to be somewhat heavy tailed based on the quantile-quantile normal score plot

(not shown). It seems that the GARCH formulation is unsuited for the AR(1)

residuals; we tried to fit a GARCH(1, 1) model to the AR(1) errors as suggested

by the sample EACF of the absolute residuals, but the quasi-likelihood estimation

failed to converge.

8. Discussion

We have presented a viable alternative to the ARCH-type models. This

provides a simple and versatile approach to conditional heteroscedasticity, based

on an observable mixture of independent random variables. The model requires

minimal conditions for statistical inference and often offers interpretable results.

Computation is quite straightforward.

Asymptotic results can provide a basis for calculating the approximate con-

fidence intervals of threshold parameters. Preliminary investigation of the two-

regime case suggests that tabulation of the relevant quantiles, based on Monte

Carlo, is precise if the variances of the two regimes are quite different. An

interesting research problem is to augment this approach with the asymptotic

framework for the case of nearly equal variances (Yao (1987)), with the ultimate

goal of providing confidence statements for the threshold parameters; see also

Hansen (1997, 2000, 2011).

See Chan et al. (2012) for a discussion of a spatial generalization of the

proposed threshold approach.
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Zaköıan, J. M. (1994). Threshold heteroscedastic models. J. Econom. Dynam. Control 18, 931-

955.

Zucchini, W. and MacDonald, I. (2009). Hidden Markov Models for Time Series: An Introduc-

tion Using R. Chapman & Hall/CRC, London.

Department of Statistics & Actuarial Science, University of Iowa, IA, 52242, USA.

E-mail: kung-sik-chan@uiowa.edu

Mathematical Sciences Center, Tsinghua University, Beijing, China.

E-mail: li20072010@gmail.com

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water

Bay, Hong Kong.

E-mail: maling@ust.hk

Department of Statistics, London School of Economics and Political Science, London WC2A

2AE, United Kingdom.

E-mail: howell.tong@gmail.com

(Received June 2012; accepted March 2013)

kung-sik-chan@uiowa.edu
li20072010@gmail.com
maling@ust.hk
howell.tong@gmail.com

	1. Introduction
	2. T-CHARM and Its Probabilistic Structure
	3. Quasi-maximum Likelihood Estimation
	4. Inference for the Threshold Parameter r0
	5. Test of T-CHARM (m) Against T-CHARM (m+1)
	6. Simulation Studies
	7. T-CHARM of Some Time Series
	8. Discussion

