
Statistica Sinica 24 (2014), 601-624

doi:http://dx.doi.org/10.5705/ss.2012.097

FOCUSSED MODEL SELECTION IN QUANTILE

REGRESSION

Peter Behl1, Gerda Claeskens2 and Holger Dette1

1Ruhr-Universität Bochum and 2KU Leuven

Abstract: We consider the problem of model selection for quantile regression anal-

ysis when a particular purpose of the modeling procedure has to be taken into

account. Typical examples include estimation of the area under the curve in phar-

macokinetics or estimation of the minimum effective dose in phase II clinical trials.

A focused information criterion for quantile regression is developed, analyzed, and

investigated by means of a simulation study and data analysis.
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1. Introduction

Quantile regression was introduced by Koenker and Bassett (1978) as an

alternative to least squares estimation and yields a far-reaching extension of re-

gression analysis by estimating families of conditional quantile curves. Since its

introduction, quantile regression has found great attraction in statistics because

of its ease of interpretation, its robustness, and its numerous applications that

include such important areas as medicine, economics, environment modeling,

toxicology, and engineering (see Buchinsky (1994); Cade, Terrell, and Schroeder

(1999); Wei et al. (2006) among many others). For a detailed description of

quantile regression analysis we refer to the monograph of Koenker (2005), which

also provides a variety of additional examples. In a concrete application the

parametric specification of a quantile regression model might be difficult and

several authors have proposed nonparametric methods to investigate conditional

quantiles (see Yu and Jones (1998); Dette and Volgushev (2008); Chernozhukov,

Fernández-Val, and Galichon (2010) among many others). However, nonpara-

metric methods involve the choice of a regularization parameter and, for high

dimensional predictors, these methods are not feasible. Parametric models pro-

vide an attractive alternative, but a misspecification of the regression model may

lead to an invalid statistical analysis. Machado (1993) considered a modification

of the Schwarz (1978) criterion for generalM -estimates, Ronchetti (1985) studied

such a variant for the Akaike information criterion (see Akaike (1973)). Koenker
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(2005) proposed to use the Akaike criterion for quantile regression, which usu-

ally overestimates the dimension but has advantages with respect to prediction.

More recently, several authors have worked on penalized quantile regression in

the context of variable selection in sparse quantile regression models (see Zou

and Yuan (2008); Wu and Liu (2009); Shows, Lu, and Zhang (2010)).

The present paper is motivated by recent applications of nonlinear median

regression to the EMAX model in pharmacokinetics (see for example Callies et

al. (2004)). In studies of this type model identification is not the primary goal

of the statistical analysis, but quantities such as area under the curve (AUC) or

minimum effective dose (MED) are of main interest, and model selection should

take this into account. Example 1 is one in which a dose response relationship is

modeled by nonlinear quantile regression and a clear target is involved. Different

dose response models are considered with the specific purpose of using the se-

lected model to estimate the minimal effective dose, the minimal dose for which

a specified minimum effect is achieved.

Model selection methods such as the Akaike information criterion or the

Schwarz-Bayesian information criterion operate in an ‘overall’ mode. Indeed, it

is not required and even not possible to specify beforehand which purpose the

selected model should serve. This is convenient since, for prediction beyond the

last observation as well as for estimation of the variability and for estimation of

a 10% quantile, one and the same selected model could be used. This, however,

implies that in situations where there is a specific purpose in mind, there could

be better search methods that lead to more efficient models. An example is in

phase II dose finding studies where the sole purpose is to find the minimal effective

dose; there is usually no specific interest in other aspects such as predictions or

variability estimation.

The focussed information criterion (FIC, Claeskens and Hjort (2003, 2008b))

is designed for targeted model searches. It explicitly takes the purpose of the

modeling procedure into account. The underlying idea is to start by specifying

the focus and then to select a model for which the focus estimator has the small-

est estimated mean squared error (MSE). Other loss functions than squared error

can be used, e.g., linex loss (Claeskens and Hjort (2008a)) or ℓp loss (Claeskens,

Croux, and van Kerckhoven (2006)). The use of the FIC has been extended

from the parametric regression models with maximum likelihood estimation for

which it was first defined toward semiparametric models (Claeskens and Carroll

(2007)), generalized additive partial linear models (Zhang and Liang (2011)),

capture-recapture models (Bartolucci and Lupparelli (2008)), time series models

(Claeskens, Croux, and van Kerckhoven (2007)), Cox proportional hazard regres-

sion models (Hjort and Claeskens (2006)) and volatility forecasting (Brownlees

and Gallo (2008)), to name a few.
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The purpose of the present paper is to develop a methodology for focussed

model selection in quantile regression analysis. The basic terminology is intro-

duced in Section 2, along with a motivating example from a phase II dose finding

study. Section 3 provides some asymptotic properties of the quantile regression

estimate under local alternatives. A rigorous statement of these properties is –

to the best knowledge of the authors – not available in the literature. In Section

4 we use these results to define a focussed information criterion for quantile re-

gression models. The methodology is illustrated by a simulation study and the

analysis of a data example in Section 5. Some concluding remarks are given in

Section 6; the more technical arguments are deferred to an appendix in Section 7.

2. Preliminaries

Let F (y|x) denote the conditional distribution function of a random variable

Y for a given predictor x. For a given τ ∈ (0, 1) we consider the nonlinear

quantile regression model

Qτ (x) = F−1(τ |x) = g(x;β),

where the regression function g(x;β) depends on a q-dimensional vector of pa-

rameters β := (β1, . . . , βp, βp+1, . . . , βq)
t ∈ Θ ⊂ Rq and an explanatory variable

x ∈ X . We follow Claeskens and Hjort (2003) and assume that the specification

of the parameter β generates several sub-models, where each of the sub-models

contains the first part of the vector β, β0 := (β1, . . . , βp)
t. Claeskens and Hjort

(2003) call this the narrow model and call these parameters “protected” param-

eters.

Example 1. Consider the Hill model

g(x;β) = β4 +
β1x

β3

ββ3
2 + xβ3

(2.1)

that is widely used in pharmacokinetics and dose response studies (for some

applications see Chien et al. (2005); Park et al. (2005); Blake et al. (2008)). The

“simplest” model to describe the velocity of a chemical reaction or a dose response

relationship is a sub-model of (2.1) with β3 = 1 and β4 = 0, the Michaelis Menten-

model

g(x;β1, β2, 1, 0) =
β1x

β2 + x
. (2.2)

Here (2.2) corresponds to the narrow model (note that we have p = 2, q = 4 in

the general terminology). Moreover, there are several other interesting models

that arise as special cases of the Hill model. A famous competitor is the EMAX

model with β3 = 1,
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g(x;β1, β2, 1, β4) = β4 +
β1x

β2 + x
. (2.3)

If no placebo effect is assumed, this can be addressed by the choice β4 = 0,

g(x;β1, β2, β3, 0) =
β1x

β3

ββ3
2 + xβ3

. (2.4)

The models (2.1)−(2.4) are frequently used for modeling dose response relation-

ships.

In dose finding studies, a typical problem is to estimate the minimal effective

dose (MED) so that a minimum effect, say ∆, is achieved. For the purpose of

model selection, the aim is to find the model which best estimates the MED.

‘Best’ is here understood in mean squared error sense. In more detail, the focus

of the model search procedure is the quantity µ(β) = g−1(∆, β). For the four

models in the current example, the focus is(ββ3
2 (∆− β4)

β1 + β4 −∆

)1/β3

,
β2∆

β1 −∆
,
β2(∆− β4)

β1 + β4 −∆
,
( ββ3

2 ∆

β1 −∆

)1/β3

, (2.5)

for (2.1), (2.2), (2.3), and (2.4), respectively. It is typically the case in phase

II clinical trials or in toxicological studies that the estimation of the minimum

effective dose is the main goal of the experiment.

We derive a focussed model choice criterion for quantile regression analysis

that addresses problems of this type in more generality. We propose to choose

a subset from (βp+1, . . . , βq) such that the MSE for estimating a certain focus

parameter
µ := µ(β1, . . . , βp, βp+1, . . . , βq) (2.6)

by the chosen quantile regression model is minimal. In order to find this “best”

model, we determine the MSE of the estimator µ̂S for each possible sub-model,

where S denotes any subset from (βp+1, . . . , βq)
t. Throughout the text, βS

denotes a parameter vector for the model that includes all parameters from

the narrow model plus the parameters contained in a set S ⊂ {p + 1, . . . , q},
βS = (β1, . . . , βp, (βj)j∈S)

t. Note that βS ∈ ΘS , where ΘS ⊂ Rp+|S| denotes the

canonical projection of Θ corresponding to the parameters from the sub-model

S. We use the notation g(x;βS) for the model g(x;β), obtained for the vector

β = (β1, . . . , βp, γ0,Sc , (βj)j∈S)
t, where for a given set S the vector γ0,S consists of

the parameters of a q − p-dimensional vector γ0 corresponding to the sub-model

S and Sc denotes the complement of S. Here, the values of γ0 are always chosen

such that g(x;β1, . . . , βp, γ0) gives the narrow model. For example, in a linear

regression model where γ corresponds to the regression coefficients, we choose
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γ0 = (0, . . . , 0)t, whereas in Example 1 where the narrow and full model are given

by (2.2) and (2.1), respectively, we have (γ0,1, γ0,2) = (1, 0). Other functions of

the parameter β are interpreted in the same way if their argument is βS . In

order to emphasize the case where all parameters are included in the quantile

regression model we use the notation g(x;βfull) and take

β0,full = (β1, . . . , βp, γ0)
t and β0,S = (β1, . . . , βp, γ0,S)

t.

Throughout, let n denote the sample size and δ be a vector of dimension q −
p. Following Claeskens and Hjort (2003), we assume that the unknown “true”

parameter βtrue is of the form

βtrue = (β1, . . . , βp, γ0 +
δ√
n
)t. (2.7)

If a particular quantile regression model has been specified (by the choice of

an appropriate set S), the quantile regression estimate β̂n,S on the basis of n

observations Y1, . . . , Yn at experimental conditions x1, . . . , xn is defined as the

minimizer of the function
n∑

i=1

ρτ (Yi − g(xi;βS)), (2.8)

where ρτ (z) := τI(z ≥ 0)z+(τ−1)I(z < 0)z denotes the check function (Koenker

(2005)).

3. Asymptotic Properties

In this section we study the asymptotic properties of quantile regression es-

timates under local alternatives of the form (2.7), required for the derivation of

a focussed information criterion for quantile regression. We make some assump-

tions.

(A0) The parameter space Θ is compact.

(A1) (i) The random variables Y1, . . . , Yn are independent random variables

with densities f1n(·|x1), . . . , fnn(·|xn) such that for each x ∈ X , fin(·|x)
is continuous. Fin denotes the corresponding distribution function,

while f̃in(u) = fin(u + g(xi;β0,S)|xi) is the density of the regression

error ui,S := Yi − g(xi;β0,S) with corresponding distribution function

F̃in.

(ii) There exists a constant w > 0 such that for i = 1, 2, . . . , n ; n ∈ N the

densities fin(·|xi) are uniformly bounded away from 0 by a constant

0 < K0 <∞ in a neighbourhoodW := [g(xi, βtrue)−w, g(xi, βtrue)+w]
of g(xi, βtrue).
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(iii)The densities f̃in are uniformly bounded from above by a constant

0 < K1 <∞.

(iv) The densities f̃in(u) are differentiable with respect to u and |f̃ ′in(u)| ≤
K2 in a neighborhood of zero, where the constant K2 does not depend

on n.

(A2) g(x;βfull) is twice continuously differentiable with respect to the parameter

vector βfull for all x ∈ X . For a given sub-model S and β′S ∈ ΘS , the

corresponding derivatives are

m(xi, β
′
S) =

∂g(xi;βS)

∂βt
S

∣∣∣
βS=β′

S

, M(xi, β
′
S) =

(∂2g(xi;βS)
∂βS∂βtS

)∣∣∣
βS=β′

S

.

(A3) (i) There exists a positive definite matrix V such that

lim
n→∞

1

n

n∑
i=1

m(xi, β0,full)m(xi, β0,full)
t = V.

(ii) There exists a positive definite matrix Q such that

lim
n→∞

1

n

n∑
i=1

fin(g(xi;βtrue))m(xi, β0,full)m(xi, β0,full)
t=Q :=

(
Q00 Q01

Q10 Q11

)
,

where Q00 is a p×p-matrix which corresponds to the narrow model and

Q11 denotes a (q− p)× (q− p)-matrix corresponding to the additional

parameters of the full model.

(iii)There exist constants 0 < C1, C2 <∞ and u > 0 such that

max
i=1,...,n

∥m(xi, β̃)∥ < C1 , max
i=1,...,n

∥M(xi, β̃)∥ < C2

for all β̃ in the neighbourhood U := {β ∈ Θ | ∥β − β0,full∥ ≤ u} of

β0,full.

(A4) Fin(g(xi;βtrue)) = τ for all i = 1, . . . , n.

(A5) (i) There exists a constant 0 < k1 < ∞ such that, for all β ∈ Θ and for

n > n0,

k1∥β − β0,full∥2 ≤
1

n

n∑
i=1

[g(xi;β)− g(xi;β0,full)]
2.

(ii) There exists a constant 0 < k2 <∞ such that, for all β, β′ ∈ Θ and for

n > n0,
1

n

n∑
i=1

[g(xi;β
′)− g(xi;β)]

2 ≤ k2∥β′ − β∥2.
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Note that the second subscript n is used here for the distribution functions Fin

(and corresponding densities fin) in order to emphasize that we are working
under (2.7). A similar assumption as (A5) was used by Jureckova and Prochazka
(1994) in order to ensure identifiability of the parameter β0,

k1∥β′ − β∥2 ≤ 1

n

n∑
i=1

[g(xi;β
′)− g(xi;β)]

2 ≤ k2∥β′ − β∥2, (3.1)

for all β, β′ ∈ Θ. For some important nonlinear models, the left inequality may
not be fulfilled. A typical example is model (2.1), where we have g(x; 0, β2, β3, β4)
= β4 independent of the values of β2 and β3. However, for the derivation of the
asymptotic results it is actually enough to assume that (3.1) holds only for the
“pseudo-true” parameter β0,full, which corresponds to (A5)(i).

3.1. Consistency of the quantile regression estimator

In this section, we prove that under (2.7) the estimated regression quantile
β̂n,S in a given submodel S converges in probability to β0,S .

Theorem 1. Assume that (A0)−(A5) and (2.7) are satisfied. For any submodel
S, β̂n,S − β0,S = oP (1) as n→ ∞.

Proof. Let
∆i(βS) = g(xi;βS)− g(xi;β0,S), (3.2)

and note that under the local alternatives (2.7), ∆i(βtrue) tends to zero as n→ ∞.
Let rn,τ (xi) := F̃in(∆i(βtrue)) − F̃in(0). Using (A1), (A3)(iii), and (2.7), we
obtain, for some α satisfying |α| ≤ |∆i(βtrue)|

|rn,τ (xi)| = |F̃in(∆i(βtrue))− F̃in(0)| = |f̃in(α)∆i(βtrue)|

≤K1 max
i=1,...,n

∥m(xi, β0,full)∥√
n

∥δ̃∥+ o
( 1√

n

)
= o(1), (3.3)

where δ̃ := (0, . . . , 0, δ)t denotes a vector of length q that is zero in the first p
components and takes the value δ from (2.7) in the last q− p components. With
the ui,S in (A1), β̂n,S minimizes the objective function

Zn(βS) :=
1

n

n∑
i=1

[ρτ (Yi − g(xi;βS))− ρτ (ui,S)]

=
1

n

n∑
i=1

[ρτ (ui,S −∆i(βS))− ρτ (ui,S)] . (3.4)

We have

E[Zn(βS)] =
1

n

n∑
i=1

∫
R

[
(τ − 1{s≤∆i(βS)})(s−∆i(βS)) + (1{s≤0} − τ)s

]
dF̃in(s)
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=
1

n

n∑
i=1

{
−

∫ ∆i(βS)

−∞
s dF̃in(s) +

∫ 0

−∞
s dF̃in(s)

+∆i(βS)F̃in(∆i(βS))− τ∆i(βS)
}

=
1

n

n∑
i=1

{∫ 0

∆i(βS)
s dF̃in(s) + ∆i(βS)(F̃in(∆i(βS))− F̃in(0))

+∆i(βS)(F̃in(0)− F̃in(∆i(βtrue)))
}

=
1

n

n∑
i=1

∫ 0

∆i(βS)
(s−∆i(βS)) dF̃in(s) + o(1), (3.5)

where the last identity follows from (3.3) and the fact that (1/n)
∑n

i=1∆i(βS) is

bounded due to (A5) and (A0). The integral in the last line is always positive,

except in the case ∆i(βS) = 0, which corresponds to the choice βS = β0,S .

Furthermore, (A5)(i) guarantees that, for sufficiently large n and any parameter

βS ∈ ΘS different from β0,S , we have

1

n

n∑
i=1

(∫ 0

∆i(βS)
(s−∆i(βS)) dF̃in(s)

)
> 0. (3.6)

This implies that, for sufficiently large n, the sum in (3.5) is only zero for βS =

β0,S and is strictly positive otherwise. We show in the Appendix that

sup
βS∈ΘS

|Zn(βS)− E[Zn(βS)]|
P→ 0. (3.7)

Because Zn is minimized at β̂n,S , we have

Zn(β̂n,S) ≤ Zn(β0,S) = 0. (3.8)

Then from (3.6), (3.7), and (3.8) one has ∥β̂n,S − β0,S∥ = oP (1).

3.2. Weak convergence under local alternatives

Here we derive the asymptotic distribution of β̂n,S for each sub-model S

under (2.7).

Theorem 2. Under (A0)−(A5) and (2.7) we have

√
n(β̂n,S − β0,S)

D→ NS ∼ N
(
Q−1

S

(
Q01

πSQ11

)
δ, τ(1− τ)Q−1

S VSQ
−1
S

)
,

where N (µ,Σ) denotes a normal distribution with mean µ and covariance matrix

Σ,
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QS = lim
n→∞

1

n

n∑
i=1

fin(g(xi;β0,S))m(xi, β0,S)m(xi, β0,S)
t,

VS = lim
n→∞

1

n

n∑
i=1

m(xi, β0,S)m(xi, β0,S)
t,

and πS is a |S| × (q − p)-projection matrix consisting of ones and zeros that

extracts from Q11 the rows corresponding to the sub-model S.

Proof. The estimator β̂n,S minimizes the objective function Gn(βS) :=
∑n

i=1

[ρτ (Yi − g(xi;βS)) − ρτ (ui,S)]. We use a Taylor expansion at the point β0,S to

write Gn in the slightly modified form

Gn(βS) =

n∑
i=1

[
1{ui,S<0}(1− τ)∆i(βS)− 1{ui,S≥0}τ∆i(βS)

+1{0≤ui,S≤∆i(βS)}(∆i(βS)− ui,S) + 1{∆i(βS)≤ui,S<0}(ui,S−∆i(βS))

]
= −

√
n(βS − β0,S)

t(Γn,S +Rn,S(βS)) +

n∑
i=1

bi(βS), (3.9)

where

Γn,S :=
n∑

i=1

ψτ (ui,S)
1√
n
m(xi, β0,S), (3.10)

Rn,S(βS) :=

n∑
i=1

ψτ (ui,S)
1√
n

[
m(xi, β̃i,S)−m(xi, β0,S)

]
,

bi(βS) := 1{0≤ui,S≤∆i(βS)}(∆i(βS)− ui,S) + 1{∆i(βS)≤ui,S<0}(ui,S −∆i(βS))

and β̃i,S in the definition of Rn,S denotes a suitable value between βS and β0,S .

Here
ψτ (ui,S) := τ1{ui,S≥0} + (τ − 1)1{ui,S<0}

denotes the “derivative” of the check function ρτ . In the Appendix we derive the

following asymptotic properties of Gn.

• For Γn,S as in (3.10) we have

Γn,S
D→WS , (3.11)

where

WS ∼ N
(( Q01

πSQ11

)
δ, τ(1− τ)VS

)
.
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• For every βS ∈ U ,

Gn(βS) = −vtΓn,S +
1

2
vtQn,Sv +OP (n

−1/2∥v∥2) +O(n−1/2∥v∥3)

+O(n−1∥v∥4) +OP (n
−1/6∥v∥3/2), (3.12)

where U denotes the neighbourhood of β0,full in A3(iii) and

v :=
√
n(βS − β0,S), Qn,S :=

1

n

n∑
i=1

f̃in(0)m(xi, β0,S)m(xi, β0,S)
t.

The approximation (3.12) is used to establish a Bahadur-type representation

for the statistic T̂n :=
√
n(β̂n,S − β0,S). More precisely, we show in the appendix

that

∥T̂n∥ = OP (1). (3.13)

Theorem 1 implies that P (β̂n,S ∈ U) → 1 for n → ∞, and therefore, by (3.12)

and (3.13),

Gn(β̂n,S) = −T̂ t
nΓn,S +

1

2
T̂ t
nQn,ST̂n + oP (1). (3.14)

Take β∗n,S := β0,S+Un/
√
n with Un := Q−1

n,SΓn,S . By (3.11), Un is asymptotically

normal distributed and, in particular, ∥Un∥ is also stochastically bounded. It

follows that P (β∗n,S ∈ U) → 1 for n → ∞. Moreover, Un satisfies U t
nΓn,S =

U t
nQn,SUn and consequently (3.12) yields

Gn(β
∗
n,S) = −1

2
U t
nQn,SUn + oP (1). (3.15)

From (3.14) and (3.15),

Gn(β̂n,S)−Gn(β
∗
n,S) = −T̂ t

nΓn,S +
1

2
T̂ t
nQn,ST̂n +

1

2
U t
nQn,SUn + oP (1)

=
1

2
(T̂n − Un)

tQn,S(T̂n − Un) + oP (1). (3.16)

By the definition of β̂n,S the left-hand-side of (3.16) is always non-positive, while

the dominating term on the right-hand-side is always positive due to the positive

definiteness of Qn,S . Consequently,

T̂n =
√
n(β̂n,S − β0,S) = Un + oP (1) = Q−1

n,SΓn,S + oP (1).

The asymptotic normality of T̂n follows directly from (3.11).
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4. The FIC for Quantile Regression

From Theorem 2, an expression for the FIC can be derived by similar argu-

ments to those in Claeskens and Hjort (2003). By applying the Delta method we

get

√
n(µ̂S−µtrue) =

√
n(µ(β̂n,S)−µ(β0,S))+

√
n(µ(β0,S)−µ(βtrue))

D→ NS−
∂µ

∂βfull

t

δ̃

(4.1)
with

NS ∼N
( ∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ,
∂µ

∂βS

t

τ(1− τ)Q−1
S VSQ

−1
S

∂µ

∂βS

)
(4.2)

and δ̃ = (0, . . . , 0, δ)t. Here as well as in the following steps, all partial derivatives
∂µ

∂βfull
and ∂µ

∂βS
are evaluated at β = β0,full and β = β0,S , respectively. This yields

for the MSE of (4.1)

MSES =
∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δδt

(
Q01

πSQ11

)t

(Q−1
S )t

∂µ

∂βS

−2
∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ
∂µ

∂βfull

t

δ̃ +

(
∂µ

∂βfull

t

δ̃

)2

+
∂µ

∂βS

t

τ(1− τ)Q−1
S VSQ

−1
S

∂µ

∂βS
.

Because the third term in this expression does not depend on the particular

sub-model we define the FIC for the quantile regression estimator as

FICS =
∂µ

∂βS

t[
Q−1

S

(
Q01

πSQ11

)
δδt

(
Q01

πSQ11

)t

(Q−1
S )t + τ(1− τ)Q−1

S VSQ
−1
S

] ∂µ
∂βS

−2
∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ
∂µ

∂βfull

t

δ̃. (4.3)

It remains to estimate the unknown quantities in this expression so that the

FIC can be calculated from the data. The key step is to find an estimator of

the matrices QS that is consistent under local alternatives. Using the regression

“errors” ϵ̂i = Yi − g(xi; β̂full), similarly as in Kim and White (2003), the matrix

QS may be estimated by

Q̂S =
1

2ĉnn

n∑
i=1

1{−ĉn≤ϵ̂i≤ĉn}m(xi, β̂0,S)m(xi, β̂0,S)
t,

where β̂0,S is calculated by taking estimates β̂1, . . . , β̂p from the full model, and

ĉn denotes the bandwidth of the estimator which is in some way (e.g., by cross-

validation) determined from the data. The other terms in (4.3) can be estimated

as in Claeskens and Hjort (2003), e.g.,
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V̂S =
1

n

n∑
i=1

m(xi, β̂0,S)m(xi, β̂0,S)
t.

Finally, we have to estimate the term δδt. By Theorem 2,

Dn :=
√
n((β̂p+1 − γ0,1), . . . , (β̂q − γ0,q−p))

t D→ D ∼ N (δ,K),

where K denotes the (q − p) × (q − p)-matrix obtained by taking the last q −
p rows and columns from the matrix τ(1 − τ)Q−1V Q−1. Therefore DDt has

mean δδt +K and, following Claeskens and Hjort (2003), we propose to use the

estimator ˆδδt = DnD
t
n − K̂, truncated to zero if the result is negative definite.

An estimator K̂ can be obtained directly by taking the corresponding rows and

columns of τ(1−τ)Q̂−1V̂ Q̂−1, the estimated covariance matrix of the full model.

The derivatives of µ can be estimated by plug-in-estimators, using estimates for

β0,full from the full model. Summarizing these calculations, we obtain for every

submodel S an expression for the estimated FIC that can be calculated from the

data:

F̂ ICS =
∂µ(β)

∂βS

t∣∣∣
β=β̂0,full

Q̂−1
S

(
Q̂01

πSQ̂11

)
ˆδδt

(
Q̂01

πSQ̂11

)t

(Q̂−1
S )t

∂µ(β)

∂βS

∣∣∣
β=β̂0,full

+
∂µ(β)

∂βS

t∣∣∣
β=β̂0,full

τ(1− τ)Q̂−1
S V̂SQ̂

−1
S

∂µ(β)

∂βS

∣∣∣
β=β̂0,full

−2
∂µ(β)

∂βS

t∣∣∣
β=β̂0,full

Q̂−1
S

(
Q̂01

πSQ̂11

)
ˆδδt
∂µ(β)

∂γ

∣∣∣
β=β̂0,full

, (4.4)

where γ := (βp+1, . . . , βq)
t denotes the last (q − p) components of the parameter

vector β.

The largest difficulty in specifying a focussed information criterion is the

derivation of the mean squared error expressions under local misspecification.

Once these expressions are obtained, the MSE values of several models may be

compared in order to decide on a best model. Such comparisons give rise to

inequalities in terms of the local misspecification neighborhood defined by δ,

the chosen focus µ and K, related to the lower-right part of the inverse Fisher

information matrix. The result of Theorem 5.3 of Claeskens and Hjort (2008b)

where the MSE values of two models are compared, is applicable to this setting.

It previously has been obtained that some averaged versions of the FIC

behave asymptotically similar to the AIC, see Claeskens and Hjort (2008a). We

do not repeat these calculations.

5. Finite Sample Properties

Different model selection methods lead to different models. Theoretical prop-

erties, such as efficiency, might provide other reasons for practitioners to prefer



FOCUSSED MODEL SELECTION IN QUANTILE REGRESSION 613

one criterion over another. It can be shown that no model selection method

can be universally best, a criterion that is efficient cannot at the same time be

strongly consistent (Yang (2005)).

With the construction of the FIC, we start from a focus that is to be es-

timated and we seek the best model for this purpose. Dose finding studies are

ideally suited for the use of the FIC since the focus, the MED, plays the promi-

nent role in the modeling process. More generally, any focus µ that is expressible

in terms of the model parameters β and is differentiable with respect to these

parameters can be taken as the starting point for the FIC; one proceeds to (4.4)

and the model with the smallest such value gets selected.

5.1. Linear quantile regression

We report on a simulation study of model selection by the FIC criterion in

a linear quantile regression model. We illustrate the practical application of the

FIC for quantile regression in a detailed way, and compare the performance of

the FIC for estimation of the focus parameter to such model selection criteria as

AIC and BIC. We consider the model

g(x;β0, β1, γ1, γ2, γ3, γ4) = β0 + β1x1 + γ1z1 + γ2z2 + γ3z3 + γ4z4. (5.1)

Here, β0 and β1 denote the “protected” parameters that are included in every

candidate model, while γ1 to γ4 may be included or not. Consequently, there

are 16 candidate models to choose from which all contain β0 and β1, but differ

with respect to the γ-parameters. For example, the narrow model only contains

β0 and β1 while the γs are set to zero. The procedure starts by specifying

the focus parameter, for which we chose the prediction of Y at covariate value

(x1, z1, z2, z3, z4) = (10, 10, 10, 10, 10). The focus is written in terms of the model

notation as

µ1(β0, β1, γ1, γ2, γ3, γ4) = β0 + 10β1 + 10γ1 + 10γ2 + 10γ3 + 10γ4.

Each candidate model is fitted to the data and the resulting parameter estimates

are used to estimate the MSE of the focus estimator in the considered models.

This yields an FIC value defined by (4.4) for every candidate model. The model

with the lowest FIC value gets selected and an estimator of the focus parameter

is obtained by taking the estimated focus from the chosen model.

For our simulation study, data were generated from (5.1) with parameter

values β0 = 1, β1 = 1, and γ1 = γ2 = γ3 = γ4 = 1/
√
n. A set of covariate values

of size n was generated as

X1 ∼N(20, 25), Z1 ∼ N(20, 6.25), Z2 ∼ N(−10, 6.25),

Z3 ∼N(10, 1), Z4 ∼ N(5, 2.25).
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Table 1. Median and median absolute deviation (MAD) of the absolute
errors of the estimates of the focus µ1 obtained from the FIC, AIC and BIC.

Median MAD
FIC AIC BIC FIC AIC BIC

n = 50, ϵ ∼ N(0, 4) 1.90 2.11 2.09 0.94 1.12 1.17
n = 50, ϵ ∼ C(0, 2) 2.36 2.64 2.62 1.37 1.53 1.53
n = 100, ϵ ∼ N(0, 4) 1.45 1.74 1.79 0.70 0.94 1.02
n = 100, ϵ ∼ C(0, 2) 1.65 2.01 2.05 0.87 1.18 1.20

Those values were then considered as fixed and used in all simulation runs. For

the distribution of the “error” ϵ = Y − g(x, βtrue) we took two scenarios: A

normal distribution with mean 0 and variance σ2 = 4, and a Cauchy distribu-

tion with location parameter a = 0 and scale parameter b = 2. We considered

sample sizes n = 50 and n = 100. The parameters were estimated using me-

dian regression. We conducted 2,000 simulation runs where in each run model

selection was performed using the FIC. From the chosen model, we obtained a

post-selection-estimator µ̂1,F IC for the focus parameter µ1.

For comparison we also estimated µ1 using the model selected by AIC and

BIC. In the median regression case, the AIC and BIC for the candidate model S

are obtained as

AICS = n log(σ̂) + p, BICS = n log(σ̂) +
1

2
p log(n),

where σ̂ = (1/n)
∑n

i=1 |yi − g(xi; β̂n,S)|, p denotes the number of parameters in

the model S, and n the number of observations; for details see Hurvich and Tsai

(1990). We computed the absolute errors of the post-selection-estimators for µ1,

|µ̂1,F IC − µtrue| , |µ̂1,AIC − µtrue| , |µ̂1,BIC − µtrue| . (5.2)

We calculated the median absolute error and the median absolute deviation

(MAD) from the 2,000 replications separately for FIC, AIC, and BIC. The results

are in Table 1.

In a second setting, data were again generated from (5.1) with β0 = β1 = 1

and γ1 = γ2 = γ3 = γ4 = 0.3. The corresponding results are shown in Table

2. From Tables 1 and 2 it can be seen that in most considered scenarios FIC

performs best in terms of median absolute error and MAD, or at least as well as

AIC and BIC.

5.2. Nonlinear quantile regression: application of the FIC for dose-

response-modeling

Here we consider the class of quantile regression models introduced in Exam-

ple 1. All results are again based on 2,000 simulation runs and we consider three
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Table 2. Median and median absolute deviation of the absolute errors of the
estimates of the focus µ1 obtained from the FIC, AIC and BIC.

Median MAD
FIC AIC BIC FIC AIC BIC

n = 50, ϵ ∼ N(0, 4) 2.60 2.72 3.34 1.24 1.47 1.47
n = 50, ϵ ∼ C(0, 2) 3.42 3.96 3.83 1.59 1.98 2.12
n = 100, ϵ ∼ N(0, 4) 2.39 1.87 2.76 1.19 1.16 1.55
n = 100, ϵ ∼ C(0, 2) 2.90 4.05 4.01 1.38 2.04 2.38

Table 3. Median and median absolute deviation of the absolute errors of the
estimates of the focus µ2 obtained from the FIC, AIC and BIC.

Median MAD
FIC AIC BIC FIC AIC BIC

N (0, 0.01) 3.98 5.07 5.71 2.10 1.68 1.07
N (0, σ2(xi)) 3.69 4.46 5.18 2.04 1.80 1.39
C(0, 0.07) 4.33 5.62 5.69 2.35 1.06 1.00

scenarios for the error distribution: errors are normal with mean 0 and variance

σ2 = 0.01, Cauchy with location parameter a = 0 and scale parameter b = 0.07,

or normal with a heteroscedastic variance structure. In the heteroscedastic case

the errors are normal with mean 0 and standard deviation, depending on the

explanatory variable x,

σ(x) = τ0 +
τ1

1 + e−τ2x
, (5.3)

where τ0 = −0.1, τ1 = 0.24, and τ2 = 0.15. This variance function was proposed

by Lim, Sen, and Peddada (2010) for dose-response-modeling. We consider two

competing models, the Michaelis-Menten-model (2.2) and the Hill model without

intercept (2.4). We generated data from (2.4) with parameter values β1 = 0.417,

β2 = 25, and β3 = 1.75. As experimental design we chose six dose levels equidis-

tantly over the dose range [1mg, 150mg] and assigned 32 observations to each

dose level. The parameters were estimated using median regression. From these

results we obtained a robust estimate for the focus parameter µ2, the minimal

effective dose (MED) defined in (2.5) with ∆ = 0.1. We investigated the perfor-

mance of the FIC for choosing between (2.2) and (2.4). As before, we compared

FIC to AIC and BIC. In Table 3 we display the median and median absolute

deviation of the absolute errors (5.2) of estimators obtained from the different

model selection procedures.

The median absolute error of FIC is clearly the smallest in all cases, while the

BIC yields the lowest MAD values, but also the largest median of the absolute

errors.

For this nonlinear example, we also compared FIC to AIC and BIC by count-

ing how many times in 2,000 simulation runs the FIC obtained a better estimator
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Table 4. Comparison of the absolute error of the estimate of the MED,
where the model is chosen by FIC and AIC (left part) and FIC and BIC
(right part).

εi FIC<AIC FIC=AIC AIC<FIC FIC<BIC FIC=BIC BIC<FIC
N (0, 0.01) 637 1083 280 1148 487 365
N (0, σ2(xi)) 618 1192 190 1143 496 361
C(0, 0.07) 1064 511 425 1202 268 530

(in terms of absolute deviation) than AIC (FIC<AIC) and BIC (FIC<BIC), and

vice-versa. See Table 4.

Here in the majority of cases the FIC selected a model which is better than

the model chosen by AIC and BIC.

5.3. Application of the FIC in a clinical dose response study

We consider a data example from a dose response study that has recently

been investigated by Callies et al. (2004). Zosuquidar is an inhibitor of P-

glycoprotein which is administered in combination with chemotherapeutic agents

in order to increase tumor cell exposure to chemotherapy. In this study median

regression is used to estimate the relationship between the plasma concentration

of Zosuquidar and the percentage of P-glycoprotein inhibition, for details see

Callies et al. (2004). The intercept β4 in (2.1) is assumed to be zero, so that

the Michaelis Menten model (2.2) and the Hill model with no intercept (2.4) are

candidates to describe the dose response relationship. The focus parameter in

question is the IC90, the dose where 90% of maximum P-glycoprotein inhibition

are realized, here ∆ = 90. Figure 1 shows the data, the fitted median regression

curves and the location of the IC90 for both models. We observe substantial

differences between the estimates of the IC90 obtained from them, so model se-

lection is of importance in this study. We used the FIC to decide whether the Hill

slope β3 is included in the model or not. The resulting FIC values are 1.29 · 107
for (2.2) and 3.17 ·106 for (2.4). Thus, the IC90 is estimated using the Hill model

with no intercept, which gives a value of ˆIC90 = 183.19. Finally we note that

the AIC also selects the Hill model with no intercept in this example, while BIC

favors the Michaelis Menten model with only two parameters.

6. Discussion

Our work was motivated by the problem of selecting a model to determine

the minimal effective dose in a dose response study on the basis of median re-

gression analysis. We have extended the available theory for estimation under

local misspecification from a likelihood setting towards quantile regression mod-

els and developed a focussed information criterion (FIC) that takes the specific
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Figure 1. Zosuquidar data with estimated median regression curves from
the Hill (solid line) and Michaelis Menten model (dashed line).

target of the statistical analysis into account for the process of model selection.

Simulation studies demonstrate that this way of selection indeed often results in

estimators of the effective dose with smaller error than those obtained by such

standard selection methods as AIC and BIC.

The presented FIC is applicable in nonlinear quantile regression models in

general. The procedure is to specify the focus and write it in terms of the model

parameters. The MSE of the focus estimator is then estimated in each considered

model under a local misspecification assumption. This yields a value of the FIC

for every model, and the model with the smallest FIC gets selected.

In general the focus might depend also on the particular covariate informa-

tion x, hence µ = µ(β;x). In such cases, the derived FIC expression is specific

to the given value of x, and ‘subject-specific’ model searches could be performed.

When this level of detail is not wanted, we can average the risk function over a

wanted domain of values for the covariate x.

An interesting topic for future research is a study of asymptotic properties

of the estimators under a different local misspecification setting than (2.7), no

longer assuming misspecification at the coefficient level, but rather at the level

of the density functions. This line of thought is explained for likelihood re-

gression models in Claeskens and Hjort (2003, Sec. 8) where it is assumed that
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ftrue(y) = f(y; θ0, γ0){1 + r(y)/
√
n} + o(1/

√
n), for some function r(·) that sat-

isfies
∫
f(y; θ0, γ0)|r(y)|dy < ∞ and

∫
f(y; θ0, γ0)r(y)dy = 0. It is expected that

theoretical properties similar to those in the present paper can be developed for

such a situation.
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Appendix: Proof of technical results

Proof of (3.7). The proof of the uniform convergence property can be estab-

lished using results of Liese and Vajda (1994). However, we have to keep in mind

that we work under (2.7). For convenience, take δn(βS) := Zn(βS)− E[Zn(βS)],

where Zn is defined by (3.4). We begin with a proof of the following properties.

(B1) The class of functions {δn(βS)|n ∈ N, n > n0} is equicontinuous on ΘS .

(B2) |Zn(βS)− E[Zn(βS)]|
P→ 0 for any βS ∈ ΘS .

Observe that, for βS,1, βS,2 ∈ ΘS ,

|δn(βS,1)− δn(βS,2)| ≤
2c

n

n∑
i=1

|g(xi;βS,1)− g(xi;βS,2)| ,

by the Lipschitz continuity of the check function; (B1) is then implied by (A5)

and (A0). For (B2) let

zi(βS) = ρτ (Yi − g(xi;βS))− ρτ (ui,S)

= 1{ui,S≤0}(1− τ)∆i(βS)− 1{ui,S>0}τ∆i(βS)

+1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S)

+1{∆i(βS)≤ui,S≤0}(ui,S −∆i(βS)) (A.1)

which gives

1

n

n∑
i=1

zi(βS)
2 =

1

n

n∑
i=1

[
1{ui,S≤0}(1− τ)2∆2

i (βS) + 1{ui,S>0}τ
2∆2

i (βS)
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+1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S)
2

+1{∆i(βS)≤ui,S≤0}(ui,S −∆i(βS))
2

−21{0<ui,S≤∆i(βS)}τ∆i(βS)(∆i(βS)− ui,S)

+21{∆i(βS)≤ui,S≤0}(1− τ)∆i(βS)(ui,S −∆i(βS))

]
. (A.2)

Taking e.g., the expectation of (1/n)
∑n

i=1 1{0<ui,S≤∆i(βS)}(∆i(βS) − ui,S)
2, the

third term in (A.2) is

E

[
1

n

n∑
i=1

1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S)
2

]

=
1

n

n∑
i=1

∫ ∆i(βS)

0
(∆i(βS)− s)2f̃in(s)ds ≤

1

n

n∑
i=1

∆2
i (βS)

which is bounded due to (A0) and (A5). Since the expectations of the other

terms in (A.2) can be similarly bounded, we obtain that (1/n)
∑n

i=1E[zi(βS)
2]

is bounded. It follows from Chebychev’s inequality that

P (|Zn(βS)− E[Zn(βS)]| > ϵ) ≤
(1/n)

∑n
i=1E[zi(βS)

2]

nϵ2
= o(1),

which establishes (B2). The uniform convergence in (3.7) can be derived from

(B1) and (B2) using similar arguments as presented in Liese and Vajda (1994).

(B1) yields for any ϵ > 0 the existence of a δ > 0 such that, for every β∗ ∈ ΘS ,

sup
{βS :|βS−β∗|<δ}

|δn(βS)| ≤ |δn(β∗)|+
ϵ

2
, n ∈ N.

By the compactness of ΘS , there exist finitely many points β1, . . . , βK ∈ ΘS such

that

sup
βS∈ΘS

|δn(βS)| ≤ |δn(βi)|+
ϵ

2
, n ∈ N,

for some i ∈ 1, . . . , k. As a consequence,

lim
n→∞

P ( sup
βS∈ΘS

|δn(βS)| > ϵ) ≤ lim
n→∞

P ( max
1≤i≤k

|δn(βi)| >
ϵ

2
) = 0.

where the last equation follows from (B2), which implies (3.7).

Proof of (3.11). With the definition of F̃ and f̃ in (A1), a straightforward

calculation yields

E[ψτ (ui,S)] = τ(1− F̃in(0)) + (τ − 1)F̃in(0) = F̃in(∆i(βtrue))− F̃in(0).
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This gives

E[Γn,S ] =

n∑
i=1

[(
F̃in(∆i(βtrue))− F̃in(0)

) 1√
n
m(xi, β0,S)

]
. (A.3)

Note that for some αi satisfying |αi| ≤ |∆i(βtrue)| and β̃i between β0,full and βtrue,
by using (A1), (A2), and (2.7), we obtain

F̃in(∆i(βtrue))− F̃in(0) = f̃in(αi)
(
m(xi, β̃i)

t δ̃√
n

)
= f̃in(0)

(
m(xi, β0,full)

t δ̃√
n

)
+ o(

1√
n
).

Together with (A.3) and (A1)(iv), (A3)(i), and (3.3), this yields

E[Γn,S ] =
1

n

n∑
i=1

f̃in(0)m(xi, β0,S)m(xi, β0,full)
tδ̃ + o(1) (A.4)

and (A3)(ii) implies

lim
n→∞

E[Γn,S ] =

(
Q01

πSQ11

)
δ. (A.5)

For the calculation of the variance of Γn,S , with rn,τ in (3.3) and use of (A.3)

and (A4) we get

Var[ψτ (ui,S)] = F̃in(0)− 2τF̃in(0) + τ2 − (τ − F̃in(0))
2

= F̃in(∆i(βtrue))− rn,τ (xi)−
[
F̃in(∆i(βtrue))− rn,τ (xi)

]2
= τ(1− τ) + rn,τ (xi)(2τ − 1)− (rn,τ (xi))

2

= τ(1− τ) + o(1). (A.6)

Using (3.3) we have

Var[Γn,S ] =

n∑
i=1

τ(1− τ)(
1

n
m(xi, β0,S)m(xi, β0,S)

t) + o(1).

which yields by (A3)(i)

lim
n→∞

Var[Γn,S ] = τ(1− τ)Vs. (A.7)

Note that, due to (A0), (A2) and (A3), the process Γn,S satisfies a Lindeberg-

Condition. From this result and (A.5), (3.11) is then obvious.

Proof of (3.12). We first establish the asymptotic properties of the terms in

(3.9) for βS ∈ U . For the expectation of bi(βS), assuming that ∆i(βS) > 0 (the
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case where ∆i(βS) ≤ 0 can be treated analogously) we obtain that for some ξi
with |ξi| ≤ |∆i(βS)|,

E[bi(βS)] =

∫ ∆i(βS)

0
(−s+∆i(βS))f̃in(s) ds = f̃in(ξi)

(∆i(βS)
2)

2
.

Note that for βS ∈ U by (A3)(iii), we have

∆i(βS) = m(xi, β0,S)
t v√
n
+

1

2n
vtM(xi, β̃i)v = O(n−1/2∥v∥) +O(n−1∥v∥2),

(A.8)

where β̃i ∈ U denotes a suitable value between βS and β0,S . Thus, using (A.8)

together with assumption (A1)(iv) we obtain

E
[ n∑

i=1

bi(βS)
]
=

n∑
i=1

(
f̃in(0)

(∆i(βS)
2)

2

)
+

n∑
i=1

(
(f̃in(ξi)− f̃in(0))

(∆i(βS)
2)

2

)

=
1

2n

n∑
i=1

(
f̃in(0)v

tm(xi, β0,S)m(xi, β0,S)
tv
)
+O(n−1/2∥v∥3)

+O(n−1∥v∥4)

=
1

2
vtQn,Sv +O(n−1/2∥v∥3) +O(n−1∥v∥4). (A.9)

Similarly, for the variance of bi(βS) (we again consider the case ∆i(βS) > 0,

calculations for ∆i(βS) ≤ 0 yield the same result) it holds that

Var[bi(βS)] ≤
∫ ∆i(βS)

0
(∆i(βS)− s)2f̃in(s) ds ≤ K1

|∆i(βS)|3

3
,

and consequently, for βS ∈ U ,

Var[

n∑
i=1

bi(βS)] ≤ K1

n∑
i=1

|∆i(βS)|3

3
= O(n−1/2∥v∥3) (A.10)

where the last equality follows from (A3)(iii). An application of Chebychev’s

inequality using (A.10) yields

n∑
i=1

bi(βS) = E
[ n∑

i=1

bi(βS)
]
+OP (n

−1/6∥v∥3/2). (A.11)

Finally, we determine the asymptotical behavior of the term Rn,S(βS) for βS ∈ U .

Using (A3)(i), a similar argument as in the proof of (3.11) can be applied in order

to show that (1/
√
n)

∑n
i=1 ψτ (ui,S) is asymptotically normal and stochastically
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bounded. Then, under (A3)(iii), one obtains vtRn,S(βS) = OP (n
−1/2∥v∥2), and

this completes the proof of (3.12).

Proof of (3.13). We need that ∥T̂n∥ = OP (1). Note that Theorem 1 implies

∥T̂n∥/
√
n = oP (1). It follows from (3.12) and P (β̂n,S ∈ U) → 1 for n→ ∞, that

Gn(β̂n,S) = An +Bn (A.12)

with

An := −T̂ t
nΓn,S + oP (∥T̂n∥2) +OP (n

−1/6∥T̂n∥3/2) + oP (1), (A.13)

Bn :=
1

2
T̂ t
nQn,ST̂n = O(∥T̂n∥2). (A.14)

By (3.11), the term Γn,S in (A.13) is asymptotically normal and satisfies T̂ t
nΓn,S =

OP (∥T̂n∥). Moreover, under A1(ii) and (A3)(i) we have |Bn| > c∥T̂n∥2 for some

positive constant c and n sufficiently large and Bn ≥ 0 due to the positive

definiteness of the matrices Qn,S . Observing that Gn(β̂n,S) ≤ Gn(β0,S) = 0 by

the definiton of β̂n,S , we obtain

c∥T̂n∥2 < |Bn| ≤ |An|. (A.15)

Considering the stochastic order of the terms in (A.13), this implies ∥T̂n∥ =

OP (1).
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