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Abstract: We derive rates of convergence and asymptotic normality of the least

squares estimator for a large class of parametric inverse regression models Y =

(Φf)(X)+ ε. Our theory provides a unified asymptotic tretament for estimation of

f with discontinuities of certain order, including piecewise polynomials and piece-

wise kink functions. Our results cover several classical and new examples, including

splines with free knots or the estimation of piecewise linear functions with indirect

observations under a nonlinear Hammerstein integral operator. Furthermore, we

show that ℓ0-penalisation leads to a consistent model selection, using techniques

from empirical process theory. The asymptotic normality is used to provide confi-

dence bands for f . Simulation studies and a data example from rheology illustrate

the results.
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1. Introduction

We consider the inverse regression model

yi = (Φf0)(xi) + εi for i = 1, . . . , n, (1.1)

where X = (x1, . . . , xn), n ∈ N is a (possibly random) vector of design points

in a bounded interval I ⊂ R, and ε = (ε1, . . . , εn) denotes the observation error

that is assumed to be independent of X, with mean zero. Further, Φ denotes

some integral operator Φ : L2([a, b]) −→ L2(I),

(Φf)(x) :=

∫ b

a
φ(x, y)f(y)dy, (1.2)

acting on a piecewise continuous function f(y) = f(y, θ), which is determined by

a parameter vector θ ∈ Θk ⊂ Rd for some d ∈ N. Here k describes the number

of (unknown) discontinuities of f . The aim is to reconstruct the true function

f0(y) = f(y, θ0) from the observations (X,Y ) = ((x1, y1), . . . , (xn, yn)).

http://dx.doi.org/10.5705/ss.2012.007
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This class of models covers a large variety of applications, ranging from

multiphase regression to piecewise polynomial splines. Model (1.1) has been

introduced in Boysen, Bruns, and Munk (2009a) for piecewise constant functions

f , where the integral kernels φ was restricted to the class of piecewise Lipschitz

continuous convolution kernels φ(x, y) = ϕ(x− y).

Integral equations as in (1.2) are well known to generate ill posed problems,

that is, small perturbations on the right hand side of (1.1) induce large errors

in the solution. Therefore, reconstruction of f0 from (1.1) requires appropriate

regularization. In this paper we show that this can be achieved in good generality

by an ℓ0 penalized least squares estimator restricted to suitable compact func-

tion classes,indexed in Θk. To this end we extend the model of Boysen, Bruns,

and Munk (2009a) for piecewise constant functions with respect to the consid-

ered classes of objective functions as well as with respect to the integral kernels

φ. We show n−1/4 convergence rates of the least squares estimator f(y, θ̂n) of a

piecewise continuous parametric function f(y, θ0) with known number of change

points. Furthermore we obtain n−1/2 rates for the convergence of the respective

parameter estimate θ̂n of the true parameter θ0 and show that it is asymptoti-

cally multivariate normally distributed. However, we mention that the obtained

asymptotic normality, together with “model consistency” in general, is not uni-

form in these models, as the kinks or jumps may degenerate. This is well known

already from much simpler cases, see e.g., Boysen, Bruns, and Munk (2009a).

The particular case in which f0 has no jumps but kinks is treated in detail.

Here the continuity assumption on f0 improves the convergence rate of the least

squares estimate f(y, θ̂n). The improvement depends directly on the smoothness

of the pieces between the kinks. For instance, for piecewise linear kink functions,

we obtain n−1/2-consistency of f̂n := f(y, θ̂n).

In order to obtain our results, we require techniques that are substantially

different from those in Boysen, Bruns, and Munk (2009a). The extension of the

class of objective functions from step functions to general piecewise continuous

parametric functions requires existence and uniform L2 boundedness of the first

derivative of the pieces of the objective function θ 7→ f(y, θ) for almost every

y ∈ [a, b]. This differentiability allows for a general estimate of the entropy of

the class of piecewise continuous parametric functions, a main ingredient in the

proof of consistency. Moreover, we will see that exactly this property implies

continuous differentiability of the mapping θ 7→ (Φf)(y, θ). This differentiability

in turn paves the way to the second order expansion of the expectation of the

score function, required for the proof of asymptotic normality. This is more

straightforward and in particular more general, than the elementary expansion

in Boysen, Bruns, and Munk (2009a). Remarkably, this approach abandons the

assumption of Lipschitz continuity of y 7→ f(y, θ) and (x, y) 7→ φ(x, y). The
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generality of the applied techniques furthermore covers the case of dependencies

between the parameter components of θ, as in the case of kinks functions.

When the number of change points of the objective function in (1.1) is not

known, we show that, under the additional assumption of subgaussian tails of the

error distribution, the number of change points can be asymptotically estimated

correctly with probability one.

A key ingredient of our consistency proof is the injectivity of the integral

operator Φ in (1.2). Two main classes are discussed in detail: product kernels

φ(x, y) = ϕ(xy) and convolution kernels φ(x, y) = ϕ(x− y). For the asymptotic

normality to hold injectivity of the corresponding integral operator plays an

important role. To this end we introduce an injectivity condition for general

symmetric and positive definite kernels (not restricted to one of the above classes)

that is based on the theory of native Hilbert spaces and on the so-called full

Müntz Theorem, Borwein and Erdélyi (1995). We mention, however, that our

asymptotic results are valid for every injective integral operator Φ with certain

properties (cf., Assumption C).

Our method can even be applied to the Hammerstein integral operators (see

e.g., Hammerstein (1930))

f 7−→
∫ b

a
φ(·, y)L(f(y), y)dy,

where the additional operator Lf(y) := L(f(y), y) is injective and satisfies certain

smoothness conditions to preserve essential properties of f , as e.g., the differen-

tiability for Lf . This allows one to provide estimators and confidence bands for

the time relaxation spectra of polymer melts reconstructed from their dynamic

modul (see Roths et al. (2000)).

We apply the asymptotic results to the estimation of a step function from

the noisy image of an integral operator with convolution kernel (inverse two

phase regression) and to the estimation of a piecewise linear kink function from

the noisy image of an integral operator with product kernel (inverse multiphase

regression). In both cases, we calculate confidence bands of the reconstructed

function that give an impression of the reliability of the estimate.

Our results differ substantially from the “truly nonparametric” kink models

that have appeared, including Korostelev (1987), Neumann (1997), Raimondo

(1998), Goldenshluger, Tsybakov, and Zeevi (2006), Goldenshluger et al. (2008b),

Goldenshluger et al. (2008a) for independent error and, recently, Wishart (2010,

2011) for long range dependent error. In the present paper f is modeled as a

piecewise “parametric” function that is
√
n estimable between kinks, leading to

asymptotic normality and a parametric rate of convergence. It is easily seen that

this rate is minimax for bounded kernels φ in (1.2), and can be even improved for
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singular kernels (see Boysen, Bruns, and Munk (2009a)). This is in contrast to

the afore mentioned papers, where piecewise (nonparametric) smooth functions

are treated which requires a different estimation technique and analysis. This

also leads to different rates of convergence which are additionally deteriorated by

the smoothness between discontinuities. Roughly speaking, the situation treated

here can be viewed as a limiting case, when the degree of smoothness tends to

infinity.

The paper is structured as follows. Section 2 gives some basic notation and

the main assumptions. The estimator and its asymptotic properties are given in

Section 3. Section 4 discusses injectivity of the considered integral operators. In

Section 5 we show how asymptotic normality can be used for the construction

of confidence bands for the case of jump and kink functions, respectively. The

finite sample performance of the asymptotic distribution is briefly investigated in

a simulation study. The proofs of the asymptotic results from Section 3 and the

injectivity statements from Section 4 are given in a supplement to this paper.

2. Definitions and Assumptions

2.1. Notation

For functions g, f : I → R, we denote by ∥f∥L2(I) the L2-norm and by

⟨f, g⟩L2(I) the corresponding inner product. The essential supremum is denoted

by ∥f∥∞, the empirical norm and the empirical inner product by

∥f∥2n =
1

n

n∑
i=1

f(xi)
2 and ⟨f, g⟩n =

1

n

n∑
i=1

f(xi)g(xi),

where x1, . . . , xn are given design points. Accordingly, the empirical measure is

Pn := n−1
∑n

i=1 δxi . For vectors θ, θ1, θ2 ∈ Rd, we use the Euclidean norm |θ|2
and the maximum norm |θ|∞, and take (θ1, θ2) := {θ ∈ Rd | θ = θ1 + t(θ2 − θ1),

for t ∈ (0, 1)}.

2.2. Piecewise continuous parametric functions

We start by introducing the class of functions f to be estimated in model

(1.1). Throughout this paper we assume that a, b ∈ R, a < b and r, k ∈ N \ {0}.

Definition 1. Assume that Ψ ⊂ Rr is convex and compact and choose M > 0

such that |ϑ|∞ ≤ M for all ϑ ∈ Ψ. Let f : [a, b]×Ψ −→ R satisfy:

(i) f is continuous and continuously differentiable with respect to ϑ;

(ii) for all open subintervals I ⊂ [a, b] the mapping FI : Ψ → C(I), FI(ϑ) :=

f(·, ϑ)|I is injective, and its derivative F′
I [ϑ] : Rr → C(I) is also injective for

all ϑ ∈ Ψ, where C(I) denotes the set of continuous functions on I.
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Then, F := {f(·, ϑ) | ϑ ∈ Ψ} is called a family of continuous parametric functions

with parameter domain Ψ.

Example 1 (Constant functions). If Ψ = [−M,M ] and f(y, ϑ) := ϑ we obtain

FT := {ϑ1[a,b] | |ϑ| ≤ M},

Example 2 (Linear functions). If Ψ = [−M,M ]2 and f(y, ϑ) := ϑ1 + yϑ2 we

obtain

FL := {ϑ1 + ϑ2• | |ϑ1|, |ϑ2| ≤ M}.

Definition 2. Let F = {f(·, ϑ) : ϑ ∈ Ψ} be a family of continuous parametric

functions on the interval [a, b]. A function f ∈ L∞([a, b]) is called a paramet-

ric piecewise continuous function (pc-function) generated by F if there exists a

partition a = τ0 < τ1 < · · · < τk+1 = b and parameter vectors ϑ1, . . . , ϑk+1 ∈ Ψ

such that

f =
k+1∑
j=1

f(·, ϑj)1[τj−1,τj) . (2.1)

The function f is also denoted by f(·, ϑ1, τ1, . . . , ϑ
k, τk, ϑ

k+1). We call the ele-

ments of the set

J (f) := {τi | i ∈ {1, . . . , k} such that ϑi ̸= ϑi+1 and τi < τi+1}

change points of the function f ∈ Fk, and denote its cardinality by ♯J (f). The

set of all parametric piecewise continuous functions with at most k change points

generated by F is denoted by Fk[a, b] (or shortly by Fk). With

[f ](τ) := lim
ϵ↘0

(f(τ + ϵ)− f(τ − ϵ)),

we say that f has a jump at τ if [f(·, θ)](τ) ̸= 0, and that f has a kink at τ if τ

is a change point and [f(·, θ)](τ) = 0. Moreover, we say that f is a kink function

(or jump function) if it has kinks (or jumps) at all change points.

Note that θ := (ϑ1, τ1, . . . , ϑ
k, τk, ϑ

k+1) lies in the convex and compact pa-

rameter set Θk ⊂ Rd, d = (r + 1)k + r where

Θk = {(ϑ1, τ1, . . . , ϑ
k, τk, ϑ

k+1) ∈ (Ψ×[a, b])k×Ψ | a ≤ τ1 ≤ · · · ≤ τk ≤ b} . (2.2)

Thus Fk = {f(·, θ) | θ ∈ Θk}. Accordingly we define

F∞[a, b] =

∞∪
k=1

F k[a, b].
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Example 3. The families FT and FL generate sets of step functions Tk and

piecewise linear functions Lk, respectively.

Note that for functions f ∈ Fk with less than k change points there is more

than one parameter vector in Θk generating f . In other words, the implication

f(·, θ) = f(·, θ0) ⇒ θ = θ0 is true if and only if ♯J (f) = k. If uniqueness of

the parameter vector is required, we have to confine ourselves to functions in Fk

with precisely k change points. Consider the subset of T̃k ⊂ Tk, with precisely

k jumps,

T̃k := {f = f(·, θ) ∈ Tk | [f ](τi) ̸= 0, τi−1 < τi, i = 1, · · · , k + 1}, (2.3)

and the subset L̃k ⊂ Lk of piecewise linear functions with precisely k kinks,

L̃k :={f ∈Lk | ϑi
1=ϑi−1

1 −(ϑi−1
2 −ϑi

2)τi−1, and ϑi−1
2 ̸=ϑi

2, τi−1<τi i=2, . . . , k+1}.
(2.4)

As in the case of kinks there may occur dependencies among the parameter com-

ponents such that actually the number of parameters which determine f(·, θ) is
smaller than the dimension of θ. Therefore we define a so-called reduced param-

eter domain.

Definition 3. Θk ⊂ Rd denote the parameter domain of a family Fk of pc

functions. If Θ̃ ⊂ Rd̃ is convex and compact and if there exists a continuously

differentiable function h : Θ̃ → Θk such that the mapping

Θ̃ → Fk, θ̃ 7→ f(·, h(θ̃))

and its derivative δθ̃ 7→ ∂f
∂θ (·, h(θ̃))δθ̃ are injective, then Θ̃ is called a reduced

parameter domain of F̃k := {f(·, h(θ̃)) | θ̃ ∈ Θ̃}, and the elements θ̃0 ∈ Θ̃ are

called reduced parameter vectors of the functions f(·, h(θ̃)) ∈ F̃k.

Note that if we consider a class of pc-functions Fk that is generated by a

parametric class F , and if (y, ϑ) 7→ f(y, ϑ) is continuously differentiable, then

the condition [f(·, θ)](τ) = 0 often implies local existence of a function h as in

Definition 3, by the Implicit Function Theorem. More precisely, if f(y, θ0) is a

kink function in such a space, the function

F : Θk −→ Rk,

θ 7−→ F (θ) :=
(
f(τ1, ϑ

1)− f(τ1, ϑ
2), . . . , f(τk, ϑ

k)− f(τk, ϑ
k+1)

)⊤

vanishes in θ0. Due to the differentiability of the map θ 7→ F (θ), the Implicit

Function Theorem implies that there exists a function h and a reduced parameter
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domain Θ̃, with Θ̃ ⊂ (Θl)l∈I ⊂ Rd−k, where I ⊂ {1, . . . , d} if the Jacobian
∂/(∂θl)l /∈IF (θ0) is invertible.

Consider for example the set L̃1 in (2.4). There we have ϑ2
1 = ϑ1

1+(ϑ1
2−ϑ2

2)τ1
and, choosing the reduced parameter vector θ̃ = (ϑ1

1, ϑ
1
2, τ1, ϑ

2
2) and the function

h(θ̃) = (ϑ1
1, ϑ

1
2, τ1, ϑ

1
1+(ϑ1

2−ϑ2
2)τ1, ϑ

2
2), the conditions of Definition 3 are satisfied.

2.3. Assumptions on the model

Assumption A (Assumptions on the error).

A1: the vector ε = (ε1, . . . , εn) consists of independent identically distributed
random variables with mean zero for every n and E(ε21) = σ2 < ∞.

In some situations, the error is additionally needed to satisfy a sub-gaussian
condition.

A2: ε satisfies A1, and there exists some α > 0 such that E(eε
2
1/α) < ∞.

Assumption B (Assumptions on the design). There exists a function s : I →
[su, sl] with 0 < su < sl < ∞ and

∫ b
a s(x)dx = 1, such that

i

n
=

∫ x(i)

a
s(x)dx+ δi

with νn := maxi=1,...,n |δi| = op(1). Here x(i) denotes the i-th order statistic of
x1, . . . , xn. Moreover, the design points x1, . . . , xn are independent of the error
terms ε1, . . . , εn.

The above assumption covers random designs. If the design points x1, . . . , xn
are nonrandom, the op(1) term above is to be understood as o(1). We do not
pursue this situation further, but with a slight change of technicalities, all sub-
sequent results hold analoguously.

2.4. Integral operator

The integral operator Φ in (1.2) acts on F k ⊂ L2([a, b]), hence it can be
considered as a map, acting on the parameter space Θk, for x ∈ [a, b], by

θ 7−→ Φf(·, θ) :=
∫ b

a
φ(·, y)f(y, θ)dy. (2.5)

In the following we require the Frechet differentiability of Φ to ensure identifiabil-
ity of the parametrization in (2.5). To this end we introduce the space M([a, b])
of all signed Borel measures µ on [a, b] of the form µ = f +

∑n
j=1 γjδxj with

f ∈ L1([a, b]), n ∈ N, xj ∈ [a, b], and γj ∈ R, and define

(Φµ)(x) :=

∫ b

a
φ(x, y) dµ(y) =

∫ b

a
φ(x, y)f(y) dy +

n∑
j=1

γjφ(x, xj), x∈I (2.6)
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for µ ∈ M. We denote by L(X ,Y) the space of bounded linear operators of a

normed space X into a normed space Y. We denote by C0,1(I) the space of uni-

formly Lipschitz continuous functions with norm ∥f∥C0,1 := ∥f∥∞+supx ̸=y |f(x)
−f(y)|/|x− y|.

Assumption C (Assumptions on the integral operator). The operator Φ in

(1.2) satisfies the following.

(i) Φ ∈ L
(
L∞([a, b]), C0,1(I)

)
and Φ ∈ L

(
L1([a, b]), L∞(I)

)
.

(ii) The mapping [a, b] → L2(I), y 7→ φ(·, y) is continuous, so in particular Φ

is well defined on M([a, b]) by (2.6). Moreover, Φ : M([a, b]) −→ L2(I) is

injective.

Conditions (ii) is essential in the consistency proof for the estimator of f0.

Condition (i) especially is needed to estimate the L2-norm of Φf by means of

the empirical norm. In Section 4 we introduce some special classes of operators

satisfying Assumption C.

The results of this paper can also be formulated for Φ : L2([a, b]) → L2(I),

with an interval I ⊂ R that need not coincide with the interval [a, b], but for ease

of notation we only discuss the case I = [a, b].

3. Estimate and Asymptotic Results

3.1. Known number of jumps

Estimate. An estimate of f for given k and F k is found by taking Φf̂n to

minimize the empirical distance to the observations Y in (1.1) with respect to

the space F k. That is, f̂n ∈ Fk and

∥Φf̂n − Y ∥2n ≤ min
f∈Fk

∥Φf − Y ∥2n + oP (n
−1). (3.1)

This estimator depends implicitly on k and F k, but we supress this when no con-

fusion is expected. It then follows from Definition 2 that there exists a parameter

vector θ̂n ∈ Θk, such that

f̂n(y) = f(y, θ̂n) =

k+1∑
i=1

f(y, ϑ̂i)1[τ̂i−1,τ̂i),

where ϑ̂i and τ̂i also depend on the index n.

It is easy to see that the minimum at (3.1) is attained, since F k is closed

and compact. It need not be unique. We do not require that f̂n minimizes

the functional ∥Φf − Y ∥2n exactly, but only up to a term of order oP (n
−1); this

allows for numerical approximation of the minimizer and gives an intuition of the

required precision for the asymptotic results to be valid.
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Consistency and asymptotic results. We give the asymptotic behavior of

the estimator in (3.1) for the case where the true function f0 ∈ Fk has precisely

k change points, that is ♯J (f0) = k, and for the case where the number of change

points is not known.

Let Λ : Θk → L2([a, b]) denote the mapping

Λθ := Φf(·, θ) . (3.2)

We show in the supplement that Λ is differentiable and denote by Λ′[θ] ∈
L2([a, b])d its gradient at θ. With this, we define the d× d matrix Vθ by

(Vθ) =

∫ b

a
Λ′[θ](Λ′[θ])ts(x)dx, (3.3)

where s is as in Assumption B.

Theorem 1. Suppose that Ass. A1, B, and C are satisfied and let f̂n(y) =

f(y, θ̂n) be the estimator of the true f0 = f(·, θ0) ∈ Fk at (3.1), with ♯J (f0) = k.

If the matrix Vθ0 is nonsingular, then

(i)
√
n(θ̂n − θ0)

D−→ N(0, σ2V −1
θ0

),

(ii) |θ0 − θ̂n|2 = OP (n
−1/2),

(iii)∥f0 − f̂n∥Lp([a,b]) = OP (n
−1/2p) for any p ∈ [1,∞),

(iv) ∥Φf0 − Φf̂n∥L∞([a,b]) = OP (n
−1/2).

If f0 depends on a reduced parameter vector θ̃ as in Definition 3, the deriva-

tive of θ̃ 7→ Λ(h(θ̃)) can be calculated by the chain rule, due to the differentiability

of the function h and we have the following.

Corollary 1. Suppose that Ass. A1, B, and C are satisfied and that the true

f0(y) = f0(y, h(θ̃)) can be parameterized by a reduced parameter domain. Then Vθ̃

is nonsingular, and the results of Theorem 1 are valid with θ0 and θ̂n substituted

by the reduced parameter vector θ̃0 and its estimator θ̃n.

Nonsingularity of the covariance matrix Vθ0 is essential for Theorem 1 to

hold. We characterize this property in terms of the partial derivatives ∂
∂ϑi f(y, ϑ

i
0),

i = 1, . . . , k + 1, for the case where f(·, θ0) has precisely k jumps.

Proposition 1. Suppose that f(·, θ) =
∑k+1

i=1 f(·, ϑi)1[τi−1,τi) ∈ Fk has k change

points and Ass. B and C are satisfied. Then the matrix Vθ at (3.3) is nonsingular

if and only if f(·, θ) has jumps in all change points.
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Accordingly, Theorem 1 cannot be applied, if f0 is a kink function. This case
requires restriction to a reduced parameter set Θ̃. Then it is even possible to
improve the rate of convergence of f̂n, which depends on themodulus of continuity
of the considered function class F ,

ν(F , δ) := sup
f∈F

sup
|y1−y2|≤δ

|f(y1)− f(y2)|. (3.4)

Corollary 2. If the conditions of Corollary 1 are satisfied and the true f0(y, h(θ̃))
is a kink function, then the results of Corollary 1 are valid with the improved rate

∥f0 − f̂n∥Lp([a,b]) = OP (n
−1/2 + n−1/2pν(F , n−1/2)) for p ∈ [1,∞). (3.5)

For example, we obtain rates of order n−1/2 if f ∈ L̃2. More generally, if F
consists of Hölder continuous functions with exponent 0 < α ≤ 1, one gets a rate
of order n−(1+α)/4.

It is straight forward to see that the
√
n rate in Theorem 1 (i), (ii) is min-

imax under a normal error for bounded, continuous integral kernels. A similar
argument as in the proof of Theorem 1 in Wishart (2011) can be employed to
estimate the Kullback Leibler divergence between the distributions of different
(Y,X) and apply Theorem 2.2.(iii) in Tsybakov (2009). In a normal model, we
claim the asymptotic variance V −1

θ0
in 1 is asymptotically optimal in Le Cam

sense, provided the experiment is differentiable in quadratic mean (see van der
Vaart (1998)).

The ill posedness of the problem is not reflected in the rate of convergence but
rather in the asymptotic varianceV −1

θ0
, as can be seen from (3.3). The variance is

large when the gradient of Φf(·, θ0) is flat. Loosely speaking, this happens when
kinks or jumps in the signal are only weakly propagated through the operator Φ,
and hence hard to detect.

We finally mention that we believe that the rates in Theorem 1 (iii) and (iv)
and in Corollary 2 are minimax but we do not have a proof for this.

3.2. Unknown number of jumps

If we do not know the number of change points of the objective function, we
can use f̂n penalized by the number of change points ♯J (f̂n). We consider the
ℓ0-minimizer f̂λn :

∥Φf̂λn − Y ∥2n + λn♯J (fλn) ≤ min
f∈F∞

∥Φf − Y ∥2n + λn♯J (f) + oP (n
−1) (3.6)

where λn is some smoothing parameter converging to zero and ♯J (f) is taken to
be nonzero. In the following result we show that for a large range of parameters
(λn)n∈N, the correct number of change points is estimated with probability tend-
ing to one. That means, for large enough n, the estimators f̂n in (3.1) and f̂λn

in (3.6) coincide.
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Theorem 2. Suppose that Ass. A2, B and C are satisfied. Let f0 ∈ F∞ and

choose {λn}n∈N such that λn −→ 0 and λnn
1/(1+ϵ) −→ ∞ for some ϵ > 0.

Then, the minimizer f̂λn of (3.6) satisfies P (♯J (f̂λn) = ♯J (f0)) −→ 1.

This can be viewed as a model consistency result in that, for n large enough,

the correct number of junps/kinks is selected. Viewed as a post model selection

estimator, the normal approximation can become unreliable in Theorem 1 (i),

since the model selection step may affect the distributional limit from the post

model selection estimator (Leeb and Pötscher (2006)). In fact, the convergence

in Theorem 2 is nonuniform in the sense that this probabilty will depend on the

true underlying function f .

We do not know whether λn ∼ logn/n would give model consistency as

well, the penailzation rate required in Theorem 2 is stronger. The choice of

λn ∼ log n/n would correspond to the classical BIC criterion. The practical

choice of λn in the last theorem is a subtle task and we do not address this here.

In general, (generalized) cross validation methods could be employed (see e.g.,

Mao and Zhao (2003) in the context of splines), or residual based multiresolution

techniques following Boysen et al. (2009b). In general, a severe computational

burden arises in models with many kinks.

3.3. Examples

Example 4 (Hammerstein integral equations). The structure of F k[a, b] allows

extension of the results in Theorem 1, and Corollaries 1 and 2, to a class of

nonlinear integral operators of the form

Hf(x) =

∫ b

a
φ(x, y)L(f(y), y)dy , (3.7)

known as Hammerstein integral operators. We take L to satisfy the following.

(1) L is continuously differentiable with respect to the first variable and contin-

uous with respect to the second variable.

(2) The operator L : L2([a, b]) → L2([a, b]) is injective:

(Lf)(y) := L(f(y), y), y ∈ [a, b].

(3) For any f ∈ C([a, b]) the derivative L′[f ] : L2([a, b]) → L2([a, b]) is injective.

For a specific application from rheology we refer to Subsection 5.3.

It is straightforward to verify that if L satisfies (1)−(3) and, if F is a contin-

uous parametric family, then the image L(F) is a continuous parametric family

with f replaced by fL(y, ϑ) := L(f(y, ϑ), y). Moreover, L(F k[a, b]) is again a set
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of pc-functions. That means L preserves the properties of f ∈ F k[a, b] and all

results from the preceding section hold for Hammerstein integral equations of the

first kind, since for f ∈ F k[a, b] we can consider Hf = Φf̃ as a linear operator,

where f̃ is an element of the transformed function space L(F k[a, b]). Since esti-

mating a function f̃(·, θ0) ∈ L(F k[a, b]), under the conditions of Theorem 1, or

Corollary 1 or 2, yields an estimator for θ0, we obtain an estimator for f(·, θ0)
simultaneously.

Example 5 (Free knot splines). The question of what happens if the true func-

tion f in (1.1) is not an element of Fk, has been treated in Boysen, Bruns, and

Munk (2009a, Lemma 3.3). In analogy to this, under certain conditions on the

design the minimizer of (3.1) converges to a pc function f̄ ∈ Fk such that Φf̄ is

the best approximation of Φf .

For the set of piecewise polynomial functions, there is a connection to dis-

tributional asymptotics for splines. According to the Curry and Schoenberg

Theorem (cf., De Boor (2001, Chapter VIII, (44))), for fixed change points, the

set of piecewise polynomials of degree p is the B-spline space of order p with

knots in {τ0, . . . , τk+1} with multiplicity p in the case of jumps, and at most

p−1 in the case of kinks. Here misspecification of the model could be considered

as spline approximation of f0 and this leads to “spline-regularization”. Results

concerning spline-regularization with fixed knots and its relationship to inverse

problems as in (1.1) is a classical topic and can be found e.g., in Cardot (2002).

Here we have to deal with free-knot splines and these spaces are no longer linear.

Approximation of a function by splines improves dramatically if the knots are

free (Rice (1969), Burchard (1973/74)), although stable and effective computa-

tion of optimal knots is in general a challenging task (see e.g., Jupp (1978)). In

the context of regression the optimal knot number and the optimal density for

the knot distribution minimizing the asymptotic IMSE has been characterized

by Agarwal and Studden (1980). Our results do not only yield an asymptotic

expression for the variance of the estimated parameters including knot locations

(which yields the MSE and can be optimized following the lines of Agarwal and

Studden (1980)), but also show that they are asymptotically multivariate nor-

mally distributed and can be used for cofidence bands (see also Mao and Zhao

(2003)). Finally, Theorem 2 gives model selection consistency of knot penali-

sation in F∞, new to our knowledge. Thus from Theorem 2 it follows that for

a large range of regularization parameters λn (which should converge to zero

slower than O(n−1)) penalization with the number of knots picks asymptotically

the right number of knots eventually in the set F∞ of free knot splines.

Example 6 (Confidence bands). Theorem 1 (i) implies that the quadratic form

nσ−2(θ̂n − θ0)Vθ0(θ̂n − θ0)
⊤
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is asymptotically χ2 distributed with d degrees of freedom. This is still true if

σ and Vθ0 are replaced by consistent estimators σ̂n and Vθ̂n
, respectively. Hence

an approximate (1− α)-confidence ellipsoid for θ̂n in Rd is

n(σ̂n)
−2(θ̂n − θ0)(Vθ̂n

)(θ̂n − θ0)
⊤ ≤ χ2

d(1− α). (3.8)

By maximizing and minimizing f(y, θ) for θ inside this confidence ellipsoid, we

obtain simultaneous confidence bands for f̂n. Of course, any of the common

methods for approximate confidence sets, namely Bonferroni, Scheffée or stu-

dentized maximum modulus statistics (for details see e.g., Miller (1966)) can be

applied as well. In fact, some simulation studies show (not presented) that for

functions with discontinuities including jump functions as treated in this paper,

the studentized statistic is the least conservative of them, even for a small num-

ber of parameters as long as these are less than the number of observations.

Moreover, if we consider the surface area of the respective bands as a further

criterion, simulations show that for increasing number of parameters the bands

corresponding to the studentized statistic outperform in terms of smaller surface

area even the exact bands obtained from the elliptic confidence set. Therefore, we

confine ourselves in Section 5.2 to the maximum modulus statistics. Note, that

this extends the pointwise confidence intervals for free knot splines constructed

in Mao and Zhao (2003) (see the previous example) in a simple way to bands.

4. Injectivity and Mapping Properties for Some Classes of Integral

Operators

We consider product and convolution kernels that assure L2 injectivity and

range inclusions for the corresponding linear integral operator Φ in (1.2) as re-

quired by Ass. C.

We start with a theorem that establishes a connection between injectivity of

an integral operator with product kernel φ(x, y) = ϕ(xy) and the expansion of ϕ.

The main argument in the proof is given by the Full Müntz Theorem in Borwein

and Erdélyi (1997, Thm. 6.2):

Lemma 1 (Full Müntz-Theorem). Suppose that J ⊂ N and that 0 < a < b.

Then span({yj : j ∈ J}) is dense in C([a, b]) with respect to the maximum norm

if and only if ∑
j∈J

j−1 = ∞. (4.1)

Theorem 3 (product kernels). Suppose 0 < a < b and 0 ≤ c < d and that

φ(x, y) = ϕ(xy) for some piecewise continuous function ϕ ∈ L∞([ac, bd]). Then

(i) and (ii) of Ass. C are satisfied under the following conditions:
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C(i): We have Φ ∈ L
(
L1([a, b]), L∞([c, d])

)
. Moreover, Φ ∈ L(L∞([a, b]),

C0,1([c, d])) if ϕ ∈ BV ([ac, bd]), the space of functions of bounded vari-

ation on [ac, bd].

C(ii): Suppose there exists an interval [ρ1, ρ2] ⊂ [ac, bd] with ρ1
a < ρ2

b , such that

ϕ has an absolutely convergent expansion

ϕ(z) =
∞∑
j=0

αjz
j with αj ∈ R for all j ∈ N, z ∈ [ρ1, ρ2] (4.2)

and the set J := {j ∈ N : αj ̸= 0} satisfies (4.1). Then Φ : B([a, b]) −→
L2([a, b]) is injective on the space B([a, b]) of signed Borel measures on

[a, b]. If ρ1 = ac and ρ2 = bd, then (4.1) is also necessary for injectivity

of Φ on B([a, b]).

One example of such a kernel occurs in the example from rheology, which is

discussed in Section 5.2. The Gaussian kernel, ϕ(x) = (2πσ2)−1/2e−(x/σ)2/2, is a

well known example of a function satisfying the assumptions of Theorem 3.

Theorem 4 (positive definite convolution kernels). Suppose φ(x, y) = ϕ(x− y)

for all x, y ∈ [a, b] for some function ϕ ∈ C(R)∩L1(R). Then (i) and (ii) of Ass.

C are satisfied under the following conditions:

C(i): If ϕ ∈ BV ([a − b, b − a]), then Φ ∈ L
(
L∞([a, b]), C0,1([a, b])

)
and Φ ∈

L
(
L1([a, b]), L∞([a, b])

)
.

C(ii): If the Fourier transform ϕ̂ is integrable and strictly positive a.e. on R,
then Φ : M([a, b]) → L2([a, b]) is injective.

Examples of kernels satisfying the assumptions of Theorem 4 include the

Laplace kernel ϕ(x) = 1
2e

−|x| and kernels of the type ϕ(x) = max(1− |x|, 0))p for

p = 2, 3, . . ..

Theorem 5 (analytic convolution kernels). Suppose φ(x, y) = ϕ(x−y) for x, y ∈
[a, b] for some analytic function ϕ ∈ L2(R), and that the Fourier transform ϕ̂

vanishes at most on a set of Lebesgue measure 0. Then the operator Φ satisfies

Ass. C.

5. Simulations and Data Example

5.1. Example: Inverse two phase regression

To evaluate the speed of convergence and quality of the approximation by

the asymptotic law given in Theorem 1, we did a simulation study with the true
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n=102 n=103 n=104

Figure 1. Asymptotic and finite sample size distribution of the jump loca-
tion for different sample sizes n. 105 simulation runs with data generated
according to (5.1) were performed. The finite sample size distribution is
given by the black line and the asymptotic distribution by the gray line.

n=102 n=103 n=104

Figure 2. Empirical coverage probability for different sample sizes n of confi-
dence bands for the estimated jump location. 105 simulation runs with data
generated according to (5.1) were performed. The x-axis shows the nominal
and the y-axis the empirical coverage.

function f0 ∈ T̃1, a step function with one jump given by the parameter vector

θ0 = (b1, τ, b2) = (−3, 1/2, 3). We generated the observations Y by

Yi = Φ
(
−3 · 1[0,1/2) + 3 · 1[1/2,1]

(
i
n

))
+

1

2
εi, i = 1, . . . , n, (5.1)

where (Φf)(x) =
∫ 1
0 1[0,∞](x− y)f(y)dy and ε ∼ N(0, 1) for i = 1, . . . , n. Theo-

rem 1 yields √
n(θ̂n − θ0)

D−→ N(0, σ2V −1
θ0

)

where the (non-singular) covariance in (3.3) is

σ−2Vθ0 =


12
τ3

−6
(b1−b2)τ2

0

−6
(b1−b2)τ2

4
(b1−b2)2(1−τ)τ

−6
(b1−b2)(1−τ)2

0 −6
(b1−b2)(1−τ)2

12
(1−τ)3

 ,
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Figure 3. Simulated data examples and confidence bands for the two phase
regression with n = 100 (left) and n =1,000 (right) observations. The first
row displays the observations and the reconstruction in the image space, and
the second row shows the estimate for the signal f . The gray line represents
the true function and the solid black line the estimate. The dashed lines show
the confidence bands for the function and the gray dots the observations.
The ellipses in the second row show the confidence sets for (τ, b1) and (τ, b2),
respectively.

In particular for the jump location we obtain

√
n(τ̂ − τ)

D−→ N
(
0,

4σ2

(b1 − b2)2(1− τ)τ

)
.

This was used to calculate confidence intervals for τ̂ . Figure 1 shows the empirical

and the asymptotic distribution of τ̂ for different sample sizes n.

The quality of approximation by the asymptotic law is reflected in the em-

pirical coverage of the confidence bands for τ̂ , as displayed in Figure 2.

As described in Example 6 we can calculate confidence bands for the esti-

mated function f̂n as well as for its image Φf̂n. Figure 3 shows two simulated

data sets, including their 95%-confidence regions, for n = 100 and n =1,000.
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5.2. Example: inverse multiphase regression

In this subsection we discuss an application of Corollary 2 to a problem

from rheology. The aim here is the determination of the so called relaxation

time spectrum (see Roths et al. (2000)). This is a characteristic quantity used

in rheology that describes the viscoelastic properties of polymer solutions and

polymer melts. Given the spectrum, it is very easy to convert one material

function into another. Additionally, many theories are based on the spectrum

or provide predictions about its character (see for example Ferry (1970)). The

relaxation time spectrum is not directly accessible by experiment and has to be

inferred from dynamic stress moudli. It is common to assume that these are

observed (with gaussian noise) under a nonlinear integral transform (see Roths

et al. (2000)).

Definition 4. Let 0 < a < 1 < b < ∞ and c ̸= 0. The relaxation time spectrum

transform is given as

H : L∞([a, b]) −→ L2([a, b]),

f 7−→Hf(x) :=

∫ b

a

x2y

1 + x2y2
ecf(y)dy.

Note that this is a Hammerstein integral H = Φ ◦ L, where L : L∞([a, b]) →
L2([a, b]) and Φ : L2([a, b]) → L2([a, b]) are defined by

(Lf)(y) := y−1ecf(y),

(Φg)(y) :=

∫ b

a

x2y2

1 + x2y2
g(y)dy.

The exponential operator L satisfies the assumptions claimed in Example 4. Fur-

thermore, the integral operator Φ satisfies Assumption C by virtue of Theorem

3.

The function f describing the relaxation time spectrum is known to have the

interpretation f(·, θ) = f̃(log(·), θ) such that f̃(·, θ) is continuous and piecewise

linear with two kinks (see Prince (1953)). This means that f̃ is an element of L̃2

as defined in (2.4) with reduced parameter vector θ̃ = (ϑ1
1, ϑ

1
2, τ1, ϑ

2
2, τ2, ϑ

3
2). For

simplicity we rename θ̃ as θ = (b0, b1, τ1, b2, τ2, b3). Then we have

L̃2 = {f̃ ∈ L2([log(a), log(b)]) | f̃(y, θ) = b0+b1y+b2(y−τ1)++b3(y−τ2)+, θ∈Θ2},

where Θ2 is assumed to be compact. The true function f0(y) = f(y, θ0) we intend

to estimate is an element of the set

Llog := {f(y, θ) = f̃(log(y), θ) | f̃ ∈ L̃2},
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log(ω/s)

Figure 4. A log− log- plot of the ω frequency of harmonic stress (x-axis)
against the dynamic stress moduli of a polymer melt.

which satisfies the conditions of Definition 2. In Roths et al. (2000) it is as-

sumed that the observation model coincides with (1.1) with f0 substituted by

Lf0, namely

yi = Hf(xi, θ0) + ε = ΦLf(xi, θ0) + εi for i = 1, . . . , n,

where Ass. A1 and B on error and design are fulfilled. Figure 4 shows a sample

of stress moduli measurements on a log-scale performed at the Center of Ma-

terial Sciences at Freiburg for a certain polymer melt (see Roths et al. (2000)

for details). For estimation we use the estimator at (3.1). Then, application of

Corollary 2 yields
√
n(θ̂n − θ0)

D−→ N(0, σ2V −1
θ0

), (5.2)

where σ2 = E(ε2) if Vθ0 is regular. By the chain rule the derivative of the

mapping Λ : R6 → L2([a, b]), Λθ := ΦLf(·, θ0) is

(Λ′[θ0]h)(x)=Φ

(
∂

∂θ
[Lf(·, θ0)]h

)
(x)=c

∫ b

a

x2y

1 + x2y2
ecf(y,θ0)

(
h⊤df(y, θ0)

)
dy,

(5.3)
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Figure 5. From l.t.r.: 0.95- and 0.80-confidence bands for the estimated kink
function f̂n of the log relaxation time spectrum with two (typical) kinks
plotted on a log scale

Figure 6. Empirical coverage probability (grey lines) of confidence bands
for the estimated kink function for normal observations with σ2 = 0.01
for different sample sizes. From the left, n = 100, 1,000, 5,000, and 104

simulations each. The x-axis shows the nominal and the y-axis the empirical
coverage probability. The black line x = y is for comparison, it shows perfect
coincidence of empirical and nominal coverage.

where

df(y, θ) =



1

log(y)

−b21[eτ1 ,b]
(log(y)− τ1)1[eτ1 ,b]

−b31[eτ2 ,b]
(log(y)− τ2)1[eτ2 ,b]


.

Remembering that b2 ̸= 0 ̸= b3 and τ1 < τ2 by Definition 2.4, it is easy to see

that the components of df(·, θ0) are linearly independent. Together with the

injectivity of Φ, it follows that Λ′[θ0] is injective, and hence Vθ0 ∈ R6×6 defined

as in (3.3) is nonsingular.

The results of Theorem 1 hold with the improved rate

∥f0 − f̂n∥L2[a,b] = OP (n
−1/2), (5.4)

which for comparison is the square of the rate in (iv) of Theorem 1. Equa-

tion (5.4) directly follows from Corollary 2, since linear functions with bounded
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slopes are Lipschitz continuous with a uniform Lipschitz constant. Hence, for

the modulus of continuity it holds that ν(FL, n
−1/2) = O(n−1/2).

Figure 5 shows the estimated kink function for the polymer melt data of the

relaxation time spectrum from dynamic moduli (see Roths et al. (2000)), with

95%- and 80%-confidence bands calculated by using a studentized maximum

modulus statistic (Miller (1966)).

As in Subsection 5.1, we evaluated the accuracy of the normal approximation

from (5.2) in this special example, by performing a simulation study (see Figure

6). Here we used the operator in Definition 4 acting on the space of kink func-

tions with two kinks. A comparison of Figure 2 and 6 illustrates that increasing

complexity of the kernel in Subsection 5.2 reduces the finite sample accuracy of

the empirical coverage probability.
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