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Abstract: This paper studies the generalized functional linear model with a scalar

response and a functional predictor. The response given the functional predictor

is assumed to come from the distribution of an exponential family. A penalized

likelihood approach is proposed to estimate the unknown intercept and coefficient

function in the model. Inference tools such as point-wise confidence intervals of

the coefficient function and prediction intervals are derived. The minimax rate of

convergence for the error in predicting the mean response is established. It is shown

that the penalized likelihood estimator attains the optimal rate of convergence. Our

simulations demonstrate a competitive performance against the existing approach.

The method is further illustrated in the use of the DTI tractography to distinguish

corpus callosum tracts with multiple sclerosis from normal tracts.
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1. Introduction

In the past decade, a lot of attention has focused on functional linear models,

where the dependence of a continuous response variable on a functional covariate

is modeled through a regression model, generalizing the standard multiple linear

regression. The literature on functional linear models is vast and we only refer

to the well-known monographs Ramsay and Silverman (2005) and Ferraty and

Vieu (2006), and some recent developments such as Cai and Hall (2006), Hall

and Horowitz (2007), Crambes, Kneip, and Sarda (2009), and Yuan and Cai

(2010), for further references. Our paper is concerned with a general setting

that includes functional linear models, functional logistic regression, functional

log-linear regression, and functional censored regression as special cases.

Generalized functional regression models have not been as well studied.

James and Hastie (2001) extended Fisher’s linear discriminant analysis to han-

dle the classification problem with functional covariates. James (2002) studied

generalized linear models with functional predictors. These papers used natu-

ral cubic splines to approximate the functional covariate, but neither provided

theoretical insights into the method and the choice of the number of basis func-

tions is purely empirical. Müller and Stadtmüller (2005) considered functional
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quasi-likelihood estimation of a generalized functional linear model and used a

truncated orthonormal expansion to approximate the predictor process. The

truncation parameter increases with the sample size in their asymptotic analysis

and is selected by AIC in practice. The orthonormal basis functions often come

from the leading functions in the Fourier basis system or the Karuhen-Loève ex-

pansion of the predictor process. Since the latter is used in functional principal

component analysis (FPCA), this is often referred to as the FPCA approach.

Some extensions of such an approach are Crainiceanu, Staicu, and Di (2009),

where functional data are observed at multiple levels, and Li, Wang, and Car-

roll (2010), where the predictors may consist of scalar and functional covariates

together with their interactions. Dou, Pollard, and Zhou (2010) use the FPCA

approach to study the functional regression for general exponential families, and

assume that the coefficient function is a linear combination of the eigenfunctions

of the covariance kernel with decaying coefficients.

Despite its popularity the FPCA approach has a critical drawback. As shown

in Cai and Yuan (2012), the success of the FPCA approach hinges crucially on

the assumption that the coefficient function can be effectively represented by the

leading functional principal components of the covariance kernel of the predictor

process. This is problematic. The coefficient function and the covariance kernel

of the predictor process are generally unrelated, so the FPCs from the covariance

kernel may not form an efficient basis system for the coefficient function. For

example, consider the covariance kernel K(t, s) =
∑∞

k=1(|k−25|+1)−2ψk(t)ψk(s)

and the coefficient function β(t) =
∑50

k=1 k
−2ψk(t), where {ψk : k = 1, 2, . . .} is an

orthonormal basis function system. The leading eigen-functions of K are ψk(t)’s

with k around 25, whereas an effective representation of β requires the leading

functions in the system {ψk : k = 1, 2, . . .}. These sets of functions do not overlap

unless a large number of basis functions are used in the representation of β, but

too many basis functions without any roughness penalty often lead to numerical

instability and large variation.

The FPCA approach is a popular model regularization method for functional

regression models. Here a finite-dimensional approximation to the functional

parameter is used to regularize the model complexity, in theory and in practice.

This approximation may result from a well-known basis system, such as the

Fourier basis and the B-spline basis, or from the FPCs. This approach has a well-

known drawback, as pointed out in Ramsay and Silverman (2005): the dimension

of the approximation jumps in a discrete manner, yielding a discrete and often

unprecise control on the model complexity, and can often lead to inaccurate

functional estimate with hard-to-interpret “artificial” bumps. An alternative

regularization approach uses a roughness penalty to govern model complexity via

a smoothing parameter. This approach often yields more reasonable functional
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estimates than its finite expansion competitor, and even leads to the advice

“splines should be penalized”, Carroll and Ruppert (2006).

The practical superiority of the roughness penalty approach often comes at

the price of a harder theory. Crambes, Kneip, and Sarda (2009) and Yuan and

Cai (2010) are among the few who have done thorough theoretical analysis of

the roughness penalty approach to functional linear regression models. Cardot

and Sarda (2005) is a first theoretical attempt in the direction of generalized

functional regression models by penalized likelihood. They used penalized B-

splines to estimate the functional parameter and derived the L2 convergence

rate of the estimation error. However, their convergence rate is not optimal

possibly due to the choice of their spline basis, and they did not investigate the

convergence rate of the error in predicting the mean response from the coefficient

function estimator.

We adopt a penalized likelihood approach to study generalized functional

regression models. The minimax rate of convergence for the error in predicting

the mean response is established. It is shown that the penalized likelihood es-

timator attains this optimal rate of convergence. This is not a trivial extension

of Yuan and Cai (2010), as they only considered the functional linear regression

model, where the objective function is quadratic and a closed form solution is

available for the estimate. We resort to the calculus of variation to explicitly

characterize the penalized likelihood estimator, and, ultimately, to obtain the

optimal rate of convergence. As demonstrated by Cai and Hall (2006) and Hall

and Horowitz (2007) in functional linear regression models, the prediction error

has different characteristics from the estimation error that measures the distance

between the estimator and the true coefficient function. Particularly, the pre-

dicted mean response involves an integral of the coefficient function and is thus

smoother. Hence, a procedure optimal in smoothing the coefficient function may

not be optimal in predicting, or can actually over-smooth the prediction. Our

method differs from that of Cardot and Sarda (2005) in that we use the smooth-

ing spline basis functions that are naturally introduced by the derivative penalty

of the coefficient function. Based on the Representer Theorem in Yuan and Cai

(2010), this spline basis allows a finite-dimensional exact solution to the infinite-

dimensional optimization problem of the corresponding penalized likelihood and

hence greatly facilitates the estimation. We also derive confidence intervals for

the coefficient function and the predicted mean response.

The rest of the paper is organized as follows. Section 2 proposes the penal-

ized likelihood functional regression model. Section 3 introduces the Representer

Theorem and the estimation procedure. Section 4 derives the point-wise confi-

dence intervals for the coefficient function and the prediction intervals. Section 5

establishes the minimax convergence rate for the prediction error. Section 6
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presents simulations comparing the proposed method with the competitor in

Müller and Stadtmüller (2005). Section 7 applies the method to distinguishing

corpus callosum tracts with multiple sclerosis from normal tracts based on their

diffusivity profiles from the DTI tractography. Potential extensions and future

research directions are discussed in Section 8. The technical proof of the main

theorem is given in the Appendix.

2. The Model

Assume that the observed data (Yi, Xi) are i.i.d. copies of (Y,X) for i =

1, . . . , n, where {X(t) : t ∈ T } is a square integrable random function on a

compact interval T with mean µ(t) and covariance K(s, t) = cov(X(s), X(t)).

Without loss of generality we take T = [0, 1] and µ(t) = 0. Given X, the

response variable Y follows an exponential family distribution with density

exp
[yη(X;α0, β0)− b(η(X;α0, β0))

a(ϕ)
+ c(y, ϕ)

]
, (2.1)

where η(X;α0, β0) = α0 +
∫ 1
0 X(t)β0(t)dt is the canonical parameter with an

unknown constant α0 and an unknown coefficient function β0(t), a, b, and c are

known functions, and ϕ is either known or considered as a nuisance parameter

that is independent of X. For example, a Gaussian response with variance σ2

has a(ϕ) = σ2 and b(η) = η2/2, a Bernoulli response has a(ϕ) = 1 and b(η) =

log(1 + eη), and a Poisson response has a(ϕ) = 1 and b(η) = eη. For notational

simplicity, we choose not to include α0 into the notation of η with the dependence

implicitly assumed. Also note that (2.1) can be easily generalized to the quasi-

likelihood estimation setting as in Müller and Stadtmüller (2005).

The infinite-dimensional function β0(t) is not estimable by n observations

without additional constraints on the functional regression model. Müller and

Stadtmüller (2005) dealt with this by modeling β0(t) as a truncated expansion

of certain orthonormal basis functions. They allow the number of basis functions

included in the truncation to increase with n for asymptotic analysis. We consider

a roughness penalty approach. Let L2 ≡ L2([0, 1]) = {f :
∫ 1
0 f

2dt < ∞} and

assume that β0 belongs to the Sobolev space Wm
2 ([0, 1]) of order m,

Wm
2 ([0, 1]) = {β : [0, 1] → R|β, β′, . . . , β(m−1) are absolutely continuous and

β(m) ∈ L2}.

We propose to find estimates α̂ ∈ R of α0 and β̂ ∈ Wm
2 of β0 that minimize the

penalized likelihood

− 1

n

n∑
i=1

{
Yiη(Xi;β)− b(η(Xi;β))

}
+
λ

2

∫ 1

0
[β(m)(t)]2dt, (2.2)
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where the sum is the negative log likelihood up to a constant derived from the

density (2.1) representing the goodness-of-fit of the estimate,
∫ 1
0 [β

(m)(t)]2dt is the

roughness penalty, and λ > 0 is the smoothing parameter balancing the tradeoff.

The terms c(Yi, ϕ) are independent of η and thus are dropped from (2.2), and

the dispersion parameter a(ϕ) is absorbed into λ.

3. Estimation

In this section, we introduce the Representer Theorem of Yuan and Cai

(2010) which guarantees a finite-dimensional representation of the estimate β̂ ∈
Wm

2 ([0, 1]).

Consider the inner product

⟨f, g⟩ =
m−1∑
d=0

∫ 1

0
f (d)

∫ 1

0
g(d) +

∫ 1

0
(f (m)g(m)) (3.1)

that makes Wm
2 a reproducing product Hilbert space. The roughness penalty

J(β) :=
∫ 1
0 [β

(m)(t)]2dt in (2.2) defines a squared semi-norm on Wm
2 . The null

space of J , H0 := {β ∈ Wm
2 : J(β) = 0}, is an m-dimension linear subspace of

Wm
2 with an orthonormal basis {k0(t), k1(t), . . . , km−1(t)}, where k0(t) = 1 and,

for r ≥ 1, kr(t) = Br(t)/r! is the rth scaled Bernoulli polynomial. Denote by H1

the orthogonal complement of H0 in Wm
2 such that Wm

2 = H0 ⊕ H1. Then H1

forms a reproducing kernel Hilbert space with the inner product (3.1) restricted

to H1. Particularly, the reproducing kernel of H1 has the form

R(s, t) = km(s)km(t) + (−1)m−1k2m(|s− t|). (3.2)

We refer to Wahba (1990) and Gu (2002) for more details on reproducing kernel

Hilbert spaces.

The reproducing kernel function R defines a nonnegative definite operator

from L2 to H1, (Rf)(t) =
∫ 1
0 R(t, s)f(s)ds ∈ H1 for any f ∈ L2. The Representer

Theorem in Yuan and Cai (2010) states that the minimizer β̂ of the penalized

likelihood (2.2) in Wm
2 ([0, 1]) lies in the subspace of functions of the form

β(t) =

m−1∑
j=0

djkj(t) +

n∑
i=1

ci(RXi)(t) ≡ ϕ′(t)d+ ξ′(t)c, (3.3)

where d = (d0, . . . , dm−1)
′ and c = (c1, . . . , cn)

′ are vectors of unknown coeffi-

cients, and ϕ′ = (k0, . . . , km−1) and ξ′ = (RX1, . . . , RXn) are vectors of basis

functions.

The objective function (2.2) is strictly convex in η, which is a linear trans-

formation of β. Hence for a fixed smoothing parameter λ, we can use the



1022 PANG DU AND XIAO WANG

Newton-Raphson procedure to compute the minimizer (α̂λ, β̂λ) of (2.2). Given

an estimate (α̃, β̃), define w̃i = b′′(η(Xi; β̃)) and Ỹi = η(Xi; β̃) − {b′(η(Xi; β̃)) −
Yi}/b′′(η(Xi; β̃)). Then the quadratic approximation of −Yiη(Xi;β)+b(η(Xi;β))

at (α̃, β̃) is 1
2 w̃i{Ỹi − η(Xi;β)}2 + Ci, where Ci is independent of (α, β). The

Newton iteration updates (α̃, β̃) by the minimizer of the penalized weighted least

squares functional

1

n

n∑
i=1

w̃i{Ỹi − η(Xi;β)}2 +
λ

2

∫ 1

0
[β(m)(t)]2dt. (3.4)

Plugging in the expression (3.3), we have η(Xi;β) = α + (
∫ 1
0 ϕ(t)Xi(t)dt)

′d +

(
∫ 1
0 ξ(t)Xi(t)dt)

′c. Note that
∫ 1
0 [β

(m)(t)]2dt = c′Σc, where Σ is an n× n matrix

with Σij =
∫ 1
0

∫ 1
0 Xi(s)R(t, s)Xj(t)dsdt. With d+ = (α,d′)′, (3.4) is quadratic

in c and d+ whose closed form solution is easily available.

To select the smoothing parameter λ, we use the generalized approximate

cross-validation (GACV) score developed in Xiang andWahba (1996). It provides

a cross-validation approximation to the Kullback-Leibler distance between an

estimate (α̂λ, β̂λ) and the true (α0, β0). Its explicit form is

GACV(λ) = − 1

n

n∑
i=1

{Yiη(Xi; β̂λ)− b(η(Xi; β̂λ))}

+
trace(H)

n− trace(HW )

1

n

n∑
i=1

Yi(Yi − b′(η(Xi; β̂λ))), (3.5)

where W = diag(w̃1, . . . , w̃n) and H = (Z ′Z + nλΣ)−1Z ′Ỹ is the hat matrix for

solving (3.4). Here Z is the design matrix with all 1’s in the first column, followed

by the columns
∫ 1
0 ϕj(t)X(t)dt, j = 0, . . . ,m− 1, and

∫ 1
0 ξi(t)X(t)dt, i = 1, . . . , n.

4. Confidence Intervals

In this section we derive confidence interval estimates for β0 and the predicted

mean response E(Y |Xn+1) with Xn+1(·) a new random covariate function with

the distribution of Xi, i = 1, . . . , n. Both are based on the confidence intervals

for the coefficient vectors c and d+ that are derived from the Baysian model

interpretation of the penalized likelihood (2.2). This generalizes a similar idea in

nonparametric regression by smoothing splines, Wahba (1990).

With the decomposition Wm
2 = H0 ⊕ H1, β = β⟨0⟩ + β⟨1⟩ with β⟨0⟩ ∈ H0

and β⟨1⟩ ∈ H1. Suppose we assign a diffuse prior to α in R and β⟨0⟩ in H0.

With β⟨0⟩ = ϕ′d, we have a diffuse prior on d+. Similarly, we can assign to

β⟨1⟩ a mean 0 Gaussian process with a chosen covariance such that it yields the

Gaussian prior N(0,Σ−1/(nλ)) for c. Then the coefficient vector b̂ = (d̂+′
, ĉ′)′
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of the minimizer of the penalized likelihood (2.2) is be the posterior mode under

such priors.

Through a second-order Taylor expansion of the log likelihood at this pos-

terior mode, we can approximate the posterior distribution of b = (d+′
, c′)′

by a Gaussian distribution with mean b̂ and covariance H−1/n. Hence the

approximate posterior mean of β(t) is β̂(t) and the approximate posterior vari-

ance is s2(t) = (0,ψ′(t))H−1
(

0
ψ(t)

)
/n, where ψ(t) = (ϕ′(t), ξ′(t))′. This yields

a 100(1 − α)% confidence interval β̂(t) ± zα/2s(t) for β0 at a point t. Similarly,

a 100(1 − α)% confidence interval for the mean response E(Y |Xn+1) can be

obtained as

b′
(
η(Xn+1; β̂)± zα/2

√
(1,

∫ 1

0
ψ′(t)Xn+1(t)dt)H−1(1,

∫ 1

0
ψ′(t)Xn+1(t)dt)′/n

)
provided b′ is strictly monotone, as in the binomial and Poisson regression models.

5. Minimax Rate of Convergence

We have E(Yi|Xi)=b
′(η(Xi;β0)) and Var(Yi|Xi) ∝ b′′(η(Xi;β0)). As pointed

out by Cai and Hall (2006), in terms of convergence rates the problems of

estimating α +
∫ 1
0 X(t)β(t)dt and

∫ 1
0 X(t)β(t)dt are not intrinsically different.

Let α = 0 in this discussion. Our goal is to derive the optimal rate of convergence

of the error in predicting the conditional mean.

The conditional mean of Yn+1 for any new random function Xn+1 possessing

the same distribution as X and independent of X1, . . . , Xn is η(Xn+1;β0). The

goal of prediction is to recover η(Xn+1;β0) from the training data (Xi, Yi), i = 1,

. . . , n. We measure its accuracy by the risk E
{[
b′(η(Xn+1; β̂))−b′(η(Xn+1;β0))

]2∣∣∣β̂}. If b′′ is uniformly bounded, this risk is bounded by ∥β̂ − β0∥2K , where

K(t, s) = cov(X(t), X(s)) and

∥β̂ − β0∥2M =

∫ ∫
(β̂(s)− β0(s))M(s, t)(β̂(t)− β0(t))dsdt,

for any positive definite function M . We require some assumptions.

A1. β0 belongs to the Sobolev space Wm
2 ([0, 1]) of order m.

A2. The function b′ is monotonic with c1 ≤ inft b
′′(t) ≤ supt b

′′(t) ≤ c2 and

supt |b(3)(t)| ≤ c3 for three positive constants c1, c2, c3. The function a(·)
has a positive lower bound.

A3. The covariance kernel K satisfies the Sacks-Ylvisaker conditions of order

r − 1, r a positive integer.
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A4. For any function f ∈ L2[0, 1], there exists a constant L > 0 such that

E
(∫ 1

0
X(t)f(t)dt

)4
≤ L

(
E
(∫ 1

0
X(t)f(t)dt

)2
)2

. (5.1)

The detailed discussions of the Sacks-Ylvisaker conditions are in Sacks and

Ylvisaker (1966, 1968, 1970) and in Ritter et al. (1995). A covariance kernel

K(t, s) satisfies the Sacks-Ylvisaker conditions of order zero is it is twice dif-

ferentiable when t ̸= s but not differentiable when t = s. Then, K satisfies

the Sacks-Ylvisake conditions of order r − 1 if ∂2(r−1)K/∂tr−1∂sr−1 satisfies the

Sacks-Ylvisaker conditions of order zero. It follows from A3 that the eigenval-

ues νk of K satisfy νk ≍ k−2r. The process X has exactly r − 1 derivatives in

the mean squared sense, and X(r−1) is Lipschitz in the mean square sense. It

follows from (5.1) that the linear functions of X have bounded kurtosis. This is

true particularly when X is a Gaussian process with c4 = 3. Let F(r, L) be the

collection of the distributions F of the process X that satisfy A3 and A4.

We have the following result.

Theorem 1. Let cn be any sequence of positive numbers with cn → 0 as n→ ∞.

Under A1−A4,

lim
n→∞

inf
β̂

sup
F∈F(r,L),β0∈Wm

2

P
(
∥β̂ − β0∥2K ≥ cnn

−2(m+r)/[2(m+r)+1]
)
= 1, (5.2)

where the infimum is taken over all possible estimators β̂ based on the training

data (Yi, Xi), i = 1, . . . , n.

The next result has the penalized smoothing spline estimator with the opti-

mal rate of convergence.

Theorem 2. Let β̂ minimize the penalized likelihood (2.2). If A1−A4 hold, then

as n→ ∞,
∥β̂ − β0∥2K = Op

(
λ+

1

n
λ−1/[2(m+r)] + n−1

)
. (5.3)

From Theorem 2, the optimal choice of λ is of order n−2(m+r)/[2(m+r)+1], and

thus the convergence rate of the error in predicting the conditional mean is of

order n−2(m+r)/[2(m+r)+1]. From Theorem 1 this is the optimal rate.

6. Numerical Studies

We present some simulation results comparing our method with that of

Müller and Stadtmüller (2005), hereafter MS. For the MS method, we used its up-

to-date implementation in the PACE package publicly available from the website

of the Department of Statistics at U.C. Davis. PACE uses the leading functional
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principal components as the orthonormal basis functions. For the predictor input

to PACE, we used a vector of 200 values at a dense grid of points to represent

each predictor curve. We conducted the simulations on both binary and Poisson

data. Due to the similarity of the results, we only present the results on binary

data.

We considered three simulation settings. For simplicity, the intercept α was

set to zero in all the settings.

• Setting 1: This matches well with Müller and Stadtmüller (2005). Let φk(t) =√
2 sin(kπt) for k ≥ 1. The random predictor function X was generated as

X =
∑20

k=1 ϵkφk(t) with ϵk ∼ N(0, 1/k2). The true coefficient function was

β0(t) = φ1(t) + φ2(t)/2 + φ3(t)/3.

• Setting 2: This was adopted from Yuan and Cai (2010). The true coeffi-

cient function was β0(t) =
∑50

k=1 4(−1)k+1k−2ϕk(t), where ϕ1(t) = 1 and

ϕk+1(t) =
√
2 cos(kπt) for k ≥ 1. The random predictor function X was

generated as X =
∑50

k=1 ζkZkϕk, with Zk independently sampled from the

uniform distribution on [−
√
3,
√
3] and ζk = (−1)k+1k−1.

• Setting 3: Here β0(t) =
∑50

k=1 4k
−2ϕk(t) and X(t) =

∑50
k=1(|k−5|+1)−2Zkϕk,

where Zk were the same as in Setting 2. As discussed, the MS method may

have difficulty with this setting due to the disordered representative basis

functions for X(t) and β0(t).

For each setting, we generated 100 data replicates with sample size n = 500,

as well as an independent testing data set with sample size 10,000 to evaluate the

prediction performance. For each training data set, we computed the estimates

of β0(t) and the 95% point-wise confidence intervals of β0(t) on a fine grid of

t based on the formula in Section 4. For each estimate of β0(t) thus obtained,

we computed the predicted mean and the 95% mean prediction intervals for

each observation in the testing data. The following performance metrics were

computed for our method and the MS method: estimation error defined as the

integrated squared error of the estimate, prediction error defined as the mean

squared errors of predicting η on the testing data, and misclassification error

which is the rate of misclassification on the testing data. To assess the effect of

sample size, we also repeated simulation Setting 2 for sample sizes n = 250 and

1,000.

Figure 1 shows the mean estimates of β0(t) in the middle of the plots com-

pared with the true functions. In Setting 1, the estimates from our method

and the MS method match almost exactly with the true function except for a

small deviation at the left end for our estimate. In Setting 2, the estimates also

track the true function well; they are close to each other except at the ends of

the interval where information from data dwindles. In Setting 3, our method
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Figure 1. Estimates of β0(t) based on 100 data replicates: Setting 1 (left),
Setting 2 (middle), and Setting 3 (right). Faded solid: true function; solid:
our mean estimates; dashed: connected means of point-wise 95% confidence
limits; dotted: empirical 2.5th and 97.5th percentiles from the 100 func-
tion estimates; dot-dashed: mean estimates from the method of Müller and
Stadtmüller (2005).

Figure 2. Point-wise empirical coverage of 95% confidence intervals of β0(t)
based on 100 data replicates: Setting 1 (left), Setting 2 (middle), and Setting
3 (right). Faded line: nominal level 0.95; stepped line: connected point-wise
coverage.

still yields an accurate estimate but the MS method suffers, as expected. This

is because the true coefficient function cannot be effectively represented by the

leading eigen-functions of the true covariance kernel function.

The performance metrics in Table 1 show favorable results for our method in

the last two simulation settings. Particularly for Setting 3, the large estimation

error of the MS method is no surprise, considering the deviation we see in Figure 1

at the first half of the interval. Even under Setting 1, designed to match the

assumptions of the MS method, our method can yield competitive performance

metrics.

Figure 1 shows the connected means of the 100 point-wise 95% confidence

limits at the grid points, against the connected empirical 2.5th and 97.5th per-

centiles of the 100 function estimates at the grid points. Figure 2 shows the
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Table 1. Performance metrics of the proposed method and the method of
Müller and Stadtmüller (2005) for three simulation settings with n = 500.
The numbers are means and standard deviations (in brackets). The mean
of estimation error was computed over 100 data replicates. The mean of
prediction error and misclassification error were computed over a testing
data set with 10,000 new observations.

Method Estimation Error Prediction Error Misclassification Error
Setting 1 Ours 0.21(0.23) 0.051(0.031) 0.106(0.003)

MS 0.17(0.15) 0.046(0.030) 0.105(0.003)
Setting 2 Ours 0.53(0.80) 0.27(0.66) 0.100(0.001)

MS 0.83(1.08) 0.34(0.79) 0.111(0.090)
Setting 3 Ours 0.68(0.57) 0.027(0.018) 0.360(0.006)

MS 7.30(0.13) 0.053(0.015) 0.371(0.015)

Table 2. Performance metrics of the proposed method and the method
of Müller and Stadtmüller (2005) for Setting 2 with n = 250 and 1,000.
The numbers are means and standard deviations (in brackets). The mean
of estimation error was computed over 100 data replicates. The mean of
prediction error and misclassification error were computed over a testing
data set with 10,000 new observations.

Method Estimation Error Prediction Error Misclassification Error
n = 250 Ours 0.85(1.19) 0.46(1.05) 0.101(0.002)

MS 1.49(1.53) 0.59(0.95) 0.113(0.090)
n = 1000 Ours 0.29(0.25) 0.12(0.17) 0.100(0.001)

MS 0.44(0.37) 0.14(0.17) 0.110(0.090)

point-wise empirical coverage of the confidence intervals for the three settings,

calculated as the percentage of times the intervals computed from a data repli-

cate covers the true function. Under Setting 1, we see a conservative performance

of the intervals; under Settings 2 and 3, the intervals delivered a good perfor-

mance. Figure 1 shows that the confidence intervals and empirical quantiles, are

very close to each other. Most of the empirical coverage values in Figure 2 are

also close to the nominal level. The empirical coverages of the 95% prediction

intervals calculated on the testing data were, respectively, 0.971, 0.947 and 0.968

for the three simulations settings.

7. Application: DTI Tractography

In this section we focus on an application to classifying corpus callosum

tracts as from multiple sclerosis patients or control patients. A similar study on

classifying white matter tracts was presented in Goldsmith et al. (2010). The

corpus callosum is the largest white matter structure in the brain connecting the

left and right cerebral hemispheres. The tracts within it consist of axons sur-
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rounded by fatty myelin sheaths that play a critical role in signal transmission.

Multiple sclerosis is a brain disease in which the myelin sheaths around the axons

are damaged, leading to severe disability in an affected individual. The diffusion

tensor imaging (DTI) tractography is a magnetic resonance imaging (MRI) tech-

nique that allows the study of white-matter tracts by measuring the diffusivity

of water in them. Hence, the functional predictor used here for classifying a

tract is the diffusivity profile of the tract. The data set is part of the R refund

package and consists of 334 cases and 42 controls. The diffusivity profiles for a

random sample of three case tracts and three control tracts are plotted in the left

panel of Figure 3. This data set, including the functional predictor considered, is

different from the one in Goldsmith et al. (2010) although we consider a similar

classification problem.

The fitted coefficient functions for our method and that of Müller and

Stadtmüller (2005) are displayed in the right panel of Figure 3 with the 95%

confidence limits. Both estimates show a similar overall trend: the tracts whose

diffusivity profile is above average between distances 80 and 90 are more likely

to be multiple sclerosis cases; the tracts whose diffusivity profile is above average

between distances 55 and 80 are more likely to be controls; the diffusivity profile

between distances 20 and 55, the flatter regions of the diffusivity profiles of the

six sample tracts in Figure 3, does not seem to be as important as the other

parts of the tract. The MS estimate is a bit jumpier on the ends of the interval,

a commonly-seen phenomenon when a basis expansion is used without penalty.

The delete-one misclassification rates were 10.6% for our method and 11.4% for

the MS method.

8. Discussion

We have considered the penalized likelihood approach for generalized func-

tional linear regression with the assumption that the functional covariate X(t)

is completely observed. When X(t) is observed only at discrete times, in partic-

ular, when the time points are sparsely sampled, a popular strategy to handle

these functional data is a two-stage procedure. At the first step, a nonparamet-

ric method is used for data from each curve to obtain an estimate of X. The

interesting readers are referred to Hall and Hosseini-Nasab (2006) for discussion

of two-step procedures. The technique proposed here can be applied to sparsely

sampled data directly without using two steps. Its development is involved and

will be reported in the future.

We have provided an optimal rate estimator of predicting the mean response.

Interesting questions, such as the asymptotic distribution of the estimator and

adaptive estimation over the Sobolev classes, remain open. A recent work in this
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Figure 3. Left: Diffusivity profiles for a random sample of three case tracts
(solid) and three control tracts (dashed). Right: Coefficient function esti-
mates for the DTI tractography example, the coefficient estimate (solid) and
the connected point-wise 95% confidence limits (dashed) from our method,
and the estimate from the method of Müller and Stadtmüller (2005) (dot-
ted). The faded solid line is the zero reference line.

direction is Cai and Yuan (2012) where adaptive estimation for the Gaussian case

is studied.
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Appendices

A.1. Proof of Theorem 1

First, any lower bound for a specific case yields immediately a lower bound

for the general case. We only consider the case when α0 = 0. Denote by Jm
the reproducing kernel for Wm

2 , Wm
2 = H(Jm). Let (ρk, ψk)k≥1 be the eigen-

value and eigenfunction pairs for J
1/2
m KJ

1/2
m . Following (Cai and Yuan, 2012,

Theorem 5), we can show that ρk ≍ k−2(m+r) under A3. Let M be the smallest

integer which is larger than c0n
−1/[2(m+r)+1] and we specify c0 later. For any

τ = (τM+1, . . . , τ2M )T ∈ {0, 1}M , let

βτ (t) =

2M∑
k=M+1

τkM
−1/2J1/2

m ψk(t).
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Observe that βτ ∈Wm
2 , since

∥∥∥β(m)
τ

∥∥∥2
2
=

∥∥∥βτ∥∥∥2
H(Jm)

=
∥∥∥ 2M∑
k=M+1

τ2kM
−1J1/2

m ψk(t)
∥∥∥2
H(Jm)

=
2M∑

k=M+1

τ2kM
−1

∥∥∥J1/2
m ψk(t)

∥∥∥2
H(Jm)

≤
2M∑

k=M+1

M−1
∥∥∥J1/2

m ψk(t)
∥∥∥2
H(Jm)

= 1.

Here we use the fact that⟨
J1/2
m ψj , J

1/2
m ψk

⟩
H(Jm)

=
⟨
ψj , Jmψk

⟩
H(Jm)

=
⟨
ψj , ψk

⟩
L2

= δjk.

We apply the results from Tsybakov (2009) to establish the minimax lower

bound based on testing multiple hypotheses. Fix α ∈ (0, 1/8). We have to check

three conditions:

(a) βτ j ∈Wm
2 , j = 1, . . . , N ;

(b) ∥βτk − βτj∥2K ≥ 2s > 0, ∀k ̸= j, and we specify s later;

(c) 1/N
∑N

j=1K(Pβ
τj
, Pβτ0

) ≤ α logN , where K(·, ·) is the Kullback-Leibler dis-

tance between Pβτ and Pβτ ′ , and Pβ is the joint distribution of {(Yi, Xi) : i =

1, . . . , n} with the coefficient function β.

If these conditions are satisfied, the minimax lower bound has the same order

as s. First consider (a). For each τj , we have shown that βτ j ∈ Wm
2 . Further,

the Varshamov-Gilbert bound shows that for any M ≥ 8, there exists a set

B = {τ0, τ1, τ2, . . . , τN} ⊂ {0, 1}M such that τ0 = (0, . . . , 0)T , H(τ, τ ′) > M/8

for any τ ̸= τ ′ ∈ B, where H(·, ·) is the Hamming distance, and N > 2M/8. To

check (b), we have

∥βτ − βτ ′∥2K =

2M∑
k=M+1

(τk − τ ′k)
2ρjM

−1

≥ cM−1
2M∑

k=M+1

(τk − τ ′k)
2k−2(m+r)

≥ cM−1(2M)−2(m+r)M

8
= c2−2(m+r)−3M−2(m+r).

For (c), observe that for any βτ , βτ ′ we have

log(Pβτ ′/Pβτ ) =
n∑

i=1

1

a(ϕ)

[
Yiη(Xi;βτ−τ ′)−

(
b(η(Xi;βτ ))− b(η(Xi;βτ ′))

)]
.

Therefore, by A1, for some positive constant c̃1,
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K(Pβτ ′ , Pβτ )

=
n

a(ϕ)
EX

[
b′(η(X;βτ ′))b(η(X;βτ−τ ′))−

(
b(η(X;βτ ))− b(η(X;βτ ′))

)]
=

n

a(ϕ)
EX

[
b′(η(X;βτ ′))b(η(X;βτ−τ ′))− b′(η∗)b(η(X;βτ−τ ′))

≤ c̃1n∥βτ − βτ ′∥2K = c̃1n

2M∑
k=M+1

(τk − τ ′k)
2j−2mM−1ρj

≤ c̃2nM
−2(m+r).

Then for any 0 < α < 1/8,

1

N

N∑
k=1

K(Pβ
τj
, Pβτ0

) ≤ c̃2nM
−2(m+r) ≤ α log 2M/8 ≤ α logN

by taking c0 = cα−1/[2(m+r)+1] with a large numerical constant c > 0. Note that
s in (b) is of order n−2(m+r)/[2(m+r)+1]. This completes the proof of the theorem.

A.2. Proof of Theorem 2

We give a sketch of the proof with the proofs of all technical lemmas collected
in the online Supplementary Material.

Write

ϵi =
1√

b′′(η(Xi;β0))

(
Yi −E(Yi|Xi)

)
, i = 1, . . . , n.

The ϵi are independent with mean zero and constant variance σ2. Since E(ϵi|Xi)
= E(ϵiXi) = 0, i = 1, . . . , n,

Yi = b′(η(Xi;β0)) +
√
b′′(η(Xi;β0)) ϵi, i = 1, . . . , n.

We first give the optimality conditions for β̂. For any process X, let X
(−1)
i (t)

=
∫ t
0 Xi(s)ds and, for k ≥ 2, X

(−k)
i (t) =

∫ t
0 X

(−k+1)
i (s)ds.

Lemma A.1. The necessary and sufficient conditions for β̂ to minimize (2.2)
are

(−1)mλβ̂(m)(x) +
1

n

n∑
i=1

[b′(η(Xi; β̂))− b′(η(Xi;β0))]X
(−m)
i (t)

=
1

n

n∑
i=1

√
b′′(η(Xi;β0)) ϵiX

(−m)
i (t) (A.1)

and, for k = 1, . . . ,m,

1

n

n∑
i=1

[b′(η(Xi; β̂))− b′(η(Xi;β0))]X
(−k)
i (1) =

1

n

n∑
i=1

√
b′′(η(Xi;β0)) ϵiX

(−k)
i (1).

(A.2)
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In (A.1) and (A.2), we approximate b′(η(Xi; β̂))− b′(η(Xi;β0)) by

b′′(η(Xi;β0))η(Xi; β̂ − β0), and consider a linear estimator β̃ that satisfies

(−1)mλβ̃(m)(t) +
1

n

n∑
i=1

b′′(η(Xi;β0))η(Xi; β̃ − β0)X
(−m)
i (t)

=
1

n

n∑
i=1

√
b′′(η(Xi;β0)) ϵiX

(−m)
i (t), (A.3)

1

n

n∑
i=1

b′′(η(Xi;β0))η(Xi; β̃ − β0)X
(−k)
i (1)

=
1

n

n∑
i=1

√
b′′(η(Xi;β0)) ϵiX

(−k)
i (1), k = 1, . . . ,m. (A.4)

Later, we show that β̂ and β̃ are asymptotically equivalent in terms of the pre-

diction error.

Let Z(t) =
√
b′′(η(X;β0)) X(t), and

Z̃(1) =
[
Z(−1)(1), Z(−2)(1), . . . , Z(−m)(1)

]T
.

Then (A.3) and (A.4) are, respectively,

(−1)mλβ̃(m)(t) +
1

n

n∑
i=1

η(Zi; β̃ − β0)Z
(−m)
i (t)

=
1

n

n∑
i=1

ϵiZ
(−m)
i (t), (A.5)

1

n

n∑
i=1

η(Zi; β̃ − β0)Z
(−k)
i (1)

=
1

n

n∑
i=1

ϵiZ
(−k)
i (1), i = 1, . . . ,m. (A.6)

Let

Ĥ =
1

n

n∑
i=1

Z̃i(1)Z̃i(1)
T =

1

n

n∑
i=1

b′′(η(Xi;β0))X̃i(1)X̃i(1)
T ,

Ĝ(−m•)(t) =
1

n

n∑
i=1

Z
(−m)
i (t)Z̃i(1) =

1

n

n∑
i=1

b′′(η(Xi;β0))X
(−m)
i (t)X̃i(1),

Ĝ(−j,−k)(t, s) =
1

n

n∑
i=1

Z
(−j)
i (t)Z

(−k)
i (s) =

1

n

n∑
i=1

b′′(η(Xi;β0))X
(−j)
i (t)X

(−k)
i (s),
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for j, k = 0, 1, . . . ,m. Given Ĝ(−m•) and Ĥ, take

Û(t;Z) = Z(−m)(t)− Ĝ(−m•)(t)T Ĥ−1Z̃(1).

Lemma A.2. The β̃(m) satisfy the differ-integral equation

λβ̃(m)(t) +

∫ 1

0
Q̂(t, s)

(
β̃(m)(s)− β

(m)
0 (s)

)
ds = (−1)m

1

n

n∑
i=1

ϵiÛ(t;Zi). (A.7)

where

Q̂(t, s) =
1

n

n∑
i=1

Z
(−m)
i (t)Z

(−m)
i (s)− Ĝ(−m•)(t)T Ĥ−1Ĝ(−m•)(s).

Lemma A.3. Let Q̂+ = (λI + Q̂)−1. For any random function Z, we have∫ 1

0
Z(t)

(
β̃(t)− β0(t)

)
dt

= (−1)m+1λ

∫ 1

0
Û(t;Z)Q̂+β

(m)
0 (t)dt+

1

n

n∑
i=1

ϵi

∫ 1

0
Û(t;Z)Q̂+Û(t;Zi)dt

+
1

n

n∑
i=1

ϵiZ̃(1)Ĥ
−1Z̃i(1). (A.8)

Recall that Zi(t) =
√
b′′(η(Xi;β0)) Xi(t), and observe that Q̂(t, s) = 1/n∑n

i=1 Û(t;Zi)Û(s, Zi). Write the spectral expansion of Q̂ as Q̂(t, s) =
∑∞

j=1

κ̂jϕ̂j(t)ϕ̂j(s), where κ̂1 ≥ κ̂2 ≥ · · · ≥ 0 are the eigenvalue sequence of the linear

operator with kernel Q̂, and ϕ̂1, ϕ̂2, · · · are the respective orthonormal eigenfunc-

tions. Write

Û(t;Zi) =
∞∑
j=1

ξ̂
(i)
j ϕ̂j(t), i = 1, . . . , n.

Since Q̂(t, s) = n−1
∑n

i=1 Û(t;Zi)Û(s;Zi), we have

κ̂j =
1

n

n∑
i=1

(ξ̂
(i)
j )2,

1

n

n∑
i=1

ξ̂
(i)
j ξ̂

(i)
k = 0, j ̸= k.

Let Γ(t, s) = E [b′′(η(X;β0))X(s)X(t)] and

Γn(t, s) =
1

n

n∑
i=1

Zi(t)Zi(s) =
1

n

n∑
i=1

b′′(η(Xi;β0))Xi(t)Xi(s).

It follows from (A.8) that

∥β̃ − β0∥2Γn
=

1

n

n∑
i=1

{∫ 1

0
Zi(t)(β̃(t)− β0(t))dt

}2
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≤ 3λ2
∫ ∫

Q̂(t, s)Q̂+β
(m)
0 (t)Q̂+β

(m)
0 (s)dtds

+
3

n2

n∑
i=1

n∑
j=1

ϵiϵj

∫ 1

0

∫ 1

0
Q̂(t, s)Q̂+Û(t;Zi)Q̂

+Û(s;Zi)dtds

+
3

n2

n∑
i=1

n∑
j=1

ϵiϵjZ̃
T
i (1)Ĥ

−1Z̃j(1)

= 3λ2
∞∑
j=1

η̂2j κ̂j

(λ+ κ̂j)2
+

3

n2

n∑
i=1

n∑
j=1

ϵiϵj

∞∑
k=1

ξ̂
(i)
k ξ̂

(j)
k κ̂k

(λ+ κ̂k)2

+
3

n2

n∑
i=1

n∑
j=1

ϵiϵjZ̃
T
i (1)Ĥ

−1Z̃j(1), (A.9)

where β
(m)
0 (t) =

∑∞
j=1 η̂jϕ̂j(t) and

∑∞
j=1 η̂

2
j < ∞. We find the asymptotic order

of each term in (A.9). The first term is

3λ2
∞∑
j=1

η̂2j κ̂j

(λ+ κ̂j)2
≤ 3λ2

∞∑
j=1

η̂2j sup
j

κ̂j
(λ+ κ̂j)2

≤ 3λ2
∞∑
j=1

η̂2j
1

4λ
= O(λ).

It is easy to see that the expectation of the third term in (A.9) is (3σ2/n)E[Z̃T (1)

Ĥ−1Z̃(1)], which is of orderO(n−1). Similarly, the expectation of the second term

in (A.9) is

3σ2

n
E
{ ∞∑

j=1

κ̂2j
(λ+ κ̂j)2

}
≤ 3σ2

n
E
{ J∑

j=1

κ̂2j
(λ+ κ̂j)2

+
∞∑

j=J+1

κ̂2j
(λ+ κ̂j)2

}
≤ 3Jσ2

n
+

3σ2

nλ2
E
{ ∞∑

j=J+1

κ̂2j

}
. (A.10)

Next, we discuss the choice of J and the upper bound for (A.10). Let

Ū(t;Zi) = Z
(−m)
i (t)−C(−m•)(t)TH−1Z̃i(1), where C

(−m•)(t) = E[Z(−m)(t)Z̃(1)],

H = E[Z̃(1)Z̃(1)T ]. Then, E[Ū(t;Zi)Ū(s;Zi)] is

Q(t, s) = G(t, s)− C(−m•)(t)TH−1C(−m•)(s), (A.11)

where G(t, s) = E(Z(−m)(t)Z(−m)(s)).

Lemma A.4. The operator Q is nonnegative definite. If κ1 ≥ κ2 ≥ · · · > 0 are

the nonzero eigenvalues of Q and ϕj is the eigenfunction corresponding to κj ,

then, under A3, κk ≍ k−2(m+r).
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Let

∆̂jk =

∫ 1

0

∫ 1

0
(Q̂(t, s)−Q(t, s))ϕj(t)ϕk(s)dtds.

Hall and Hosseini-Nasab (2006) have shown that

κ̂j − κj = ∆jj +
∑
k:k ̸=j

∆2
jk

(κj − κk)
+ remainder terms,

where the expected value of the remainder terms can be shown to be of order

n−2 which is negligible in our analysis. Using the discussion in Section 5.3 of

Hall and Horowitz (2007), we can show that E(∆̂2
jj) = O(n−1κ2j ) and

nE
[ ∑
k:k ̸=j

∆2
jk

(κj − κk)

]2
≤ Cκ2j ,

uniformly in j. Therefore,

E
( ∞∑

k=ϱ+1

κ̂2k

)
≤ (1 +O(n−1))

∞∑
k=ϱ+1

κ2k.

Choosing J = λ−1/(2(m+r)), we have E
{∑∞

j=J+1 κ̂
2
j

}
= O(λ2−1/[2(m+r)]). Com-

bining these results,

E∥β̃ − β0∥2Γ = O
(
λ+ n−1λ

− 1
2(m+r) + n−1

)
.

Since b′′ has a positive lower bound, we also have

∥β̃ − β0∥2K = Op

(
λ+ n−1λ

− 1
2(m+r) + n−1

)
.

Lemma A.5. ∥β̂ − β0∥2Γ = ∥β̃ − β0∥2Γ +Op

(
λ+ n−1λ−1/[2(m+r)] + n−1

)
.

It follows from Lemma A.5 that ∥β̂ − β0∥2Γ and ∥β̃ − β0∥2Γ have the same

asymptotic order. This completes the proof of the theorem.

B. Proofs of Lemmas

Proof of Lemma A.1. Denote

L(β) = − 1

n

n∑
i=1

{
Yiη(Xi;β)− b(η(Xi;β))

}
+
λ

2

∫ 1

0
[β(m)(t)]2dt.

For any δ > 0 and β1 ∈Wm
2 ,

L(β + δβ1)− L(β1) = − 1

n

n∑
i=1

{
δYiη(Xi;β1)− [b(η(Xi;β + δβ1)− b(η(Xi;β))]

}
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+δλ
∫ 1
0 β

(m)(t)β
(m)
1 (t)dt+O(δ2)

So, by letting δ → 0, it is easy to see that the necessary and sufficient condition

for β to minimize (2.2) is, for any β1 ∈Wm
2 , L1(β, β1) = 0, where

L1(β, β1) = − 1

n

n∑
i=1

{
Yiη(Xi;β1)−b′(η(Xi;β))η(Xi;β1)

}
+λ

∫ 1

0
β(m)(t)β

(m)
1 (t)dt.

(B.1)

In (B.1), letting β1(t) = tk, k = 0, 1, . . . ,m, we obtain m equalities in (A.2).

For example, when β1(t) = 1, we have

1

n

n∑
i=1

b′(η(Xi;β))X
(−1)
i (1) =

1

n

n∑
i=1

YiX
(−1)
i (1).

Further, since

η(Xi; 1− t) =

∫ 1

0
Xi(t)

∫ 1

t
dsdt =

∫ 1

0
X

(−1)
i (t)dt = X

(−2)
i (1),

when β1(t) = t,

− 1

n

n∑
i=1

{
Yiη(Xi; t)− b′(η(Xi;β))η(Xi; t)

}
=

1

n

n∑
i=1

{
Yiη(Xi; 1− t)− b′(η(Xi;β))η(Xi; 1− t)

}
=

1

n

n∑
i=1

YiX
(−2)
i (1)− 1

n

n∑
i=1

b′(η(Xi;β))X
(−2)
i (1).

Hence,

1

n

n∑
i=1

b′(η(Xi;β))X
(−2)
i (1) =

1

n

n∑
i=1

YiX
(−2)
i (1).

Following the same procedure, it may be shown that (A.2) holds.

Next, using these equalities, we show that L1(β, β1) =
∫ 1
0 L2(β)β

(m)
1 (t)dt,

where

L2(β) = λβ(m)(t) + (−1)m
{ 1

n

n∑
i=1

b′(η(Xi; β̂))X
(−m)
i (t)− 1

n

n∑
i=1

YiX
(−m)
i (t)

}
.

Note that∫ 1

0
Xi(s)β1(s) = β1(1)X

(−1)
i (1)−

∫ 1

0
X

(−1)
i (s)β′(s)ds
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= β1(1)X
(−1)
i (1)− β′(1)X

(−2)
i (1) +

∫ 1

0
X

(−2)
i (s)β′′(s)ds

=
...

=
m−1∑
k=0

(−1)kβ
(k)
1 (1)X

(−k−1)
i + (−1)m

∫ 1

0
X

(−m)
i (s)β(m)(s)ds.

Plugging this into L1(β, β1) = 0, together with (A.2), we have L1(β, β1) =∫ 1
0 L2(β)β

(m)
1 (t)dt. Finally, since L1(β, β1) = 0 for any β1 ∈ Wm

2 , we have

L2(β) = 0 a.e., which completes the proof of the lemma.

Proof of Lemma A.2. Observe that∫ 1

0
Zi(s)β̃(s)ds =

m−1∑
k=0

(−1)kβ̂(k)(1)Z
(−k−1)
i (1) + (−1)m

∫ 1

0
Z

(−m)
i (s)β̂(m)(s)ds.

Hence, for j = 1, . . . ,m,∫ 1

0
Ĝ(−j,0)(1, s)β̃(s)ds =

m−1∑
k=0

(−1)kβ̃(k)(1)Ĝ(−j,−k)(1, 1)

+(−1)m
∫ 1

0
Ĝ(−j,−m)(1, s)β̃(m)(s)ds.

From (A.6), we have

Ĥβ̃v(1) =
1

n

n∑
i=1

ϵiZ̃(1)− (−1)m
∫ 1

0
Ĝ(−m•)(s)β̃(m)(s)ds, (B.2)

where β̃v(1) =
[
β̃(1),−β̃′(1), · · · , (−1)m−1β̃(m−1)(1)

]T
. Hence, (A.7) follows by

plugging (B.2) into (A.5).

Proof of Lemma A.3. Direct calculation yields

1

n

n∑
i=1

ϵiZ̃(1) = Ĥβ0v(1) + (−1)m
∫ 1

0
Ĝ(−m•)(s)β

(m)
0 (s)ds+

1

n

n∑
i=1

ϵiZ̃i(1).

Combining this with (B.2) leads

β̃v(1)− β0v(1)

= (−1)m+1

∫ 1

0
Ĥ−1Ĝ(−m•)(s)

(
β̃(m)(s)− β

(m)
0 (s)

)
ds+

1

n

n∑
i=1

ϵiĤ
−1Z̃i(1).
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Therefore,∫ 1

0
Z(s)

(
β̂(s)− β0(s)

)
ds

= Z̃(1)T
(
β̃v(1)− β0v(1)

)
+ (−1)m

∫ 1

0
Z(−m)(s)

(
β̃(m)(s)− β

(m)
0 (s)

)
ds

= (−1)m
∫ 1

0
Û(s;Z)

(
β̃(m)(s)− β

(m)
0 (s)

)
ds+

1

n

n∑
i=1

ϵiZ̃(1)
T Ĥ−1Z̃i(1). (B.3)

From Lemma A.2.,

β̃(m) − β
(m)
0 = −λQ̂+β

(m)
0 + (−1)m

1

n

n∑
i=1

ϵiQ̂
+Û(t;Zi).

Plugging this into (B.3) leads to (A.8). This completes the proof of the lemma.

Proof of Lemma A.4 Let H(K) denote the reproducing kernel space associated

withe the kernel K. For two covariance kernel K and L on [0, 1]2 we write K ≪ L

if cL − K is nonnegative definite for some positive constant c. Then, K ≪ L

implies H(K) ⊂ H(L). From (A.11),

Q≪ G⇐⇒ H(Q) ⊂ H(G).

Let λ1(G) ≥ λ2(G) ≥ · · · > 0 be the eigenvalues of G. Let ϕk be the eigenfunction

of Q which corresponds to κk such that Qϕk = κkϕk. The minimax principle [see

Weidmann (1980, Thm. 7.3) yields

Q≪ G =⇒ κk ≤ cλk(G) for some positive constant c. (B.4)

We may write H(G) = H(Q) ⊕ H(G − Q), and H(G − Q) is the orthogonal

complement of H(Q). Note that H(G − Q) is a finite dimensional space with

rank m. Let f1, . . . , fm be an orthonormal base of H(G−Q), and let F⊥ denote

the sets of normalized functions in L2 that are orthogonal to f1, . . . , fm. Let

Ξ⊥
k = span{ϕk, ϕk+1, . . . , }. The minimax principle implies

λk+m(G) ≤ sup
f∈F⊥∩Ξ⊥

k

⟨Gf, f⟩ = sup
f∈F⊥∩Ξ⊥

k

⟨Qf, f⟩ ≤ sup
f∈Ξ⊥

k

⟨Qf, f⟩ = κk. (B.5)

From A1, Ritter et al. (1995) showed that λk(G) ≍ k−2(m+r). Further, (B.4) and

(B.5) yield that κk ≍ k−2(m+r). Since H(G−Q) is not an empty set, the operator

Q is not a strictly positive definite operator, and Q has m zero eigenvalues.

Proof of Lemma A.5. In the lemma, we discuss the relationship between β̂

and β̃. Denote

∆(β1, β2;Xi) = b′(η(Xi;β1))− b′(η(Xi;β2))− b′′(η(Xi;β2))η(Xi;β1 − β2).
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Let δ1 satisfy

(−1)mλδ
(m)
1 (t) +

1

n

n∑
i=1

b′′(η(Xi; β̃))η(Xi; δ1)X
(−m)
i (t)

= − 1

n

n∑
i=1

X
(−m)
i (t)∆(β̃, β0;Xi).

For k ≥ 2, let δk satisfy

(−1)mλδ
(m)
k (t) +

1

n

n∑
i=1

b′′(η(Xi; δk−1))η(Xi; δk)X
(−m)
i (t)

= − 1

n

n∑
i=1

X
(−m)
i (t)∆(β̃ +

k−1∑
j=1

δj , β̃ +

k−2∑
j=1

δj ;Xi).

By summing all these equations together, it is easy to verify that β̂ = β̃+
∑∞

k=1 δk.
Following the same discussion in Lemma A.1, for any β1 ∈Wm

2 ,

1

n

n∑
i=1

{
b′′(η(Xi; β̃))η(Xi; δ1)η(Xi;β1)−

√
b′′(η(Xi; β̃))η(Xi;β1)∆i

}
+λ

∫ 1

0
δ
(m)
1 (t)β

(m)
1 (t)dt = 0,

where ∆i = ∆(β̃, β0;Xi). By choosing β1 = δ1,

1

n

n∑
i=1

b′′(η(Xi; β̃))[η(Xi; δ1)]
2 − 1

n

n∑
i=1

√
b′′(η(Xi; β̃))η(Xi;β1)∆i

+λ

∫ 1

0
[δ

(m)
1 (t)]2dt = 0.

Therefore,

∥δ1∥2Γn
≤ c2
nc1

n∑
i=1

b′′(η(Xi; β̃))[η(Xi; δ1)]
2 + λ

∫ 1

0
[δ

(m)
1 (t)]2dt

≤ c2
nc1

n∑
i=1

√
b′′(η(Xi; β̃))η(Xi; δ1)∆i

≤ C1∥δ1∥Γn

{ 1

n

n∑
i=1

[η(Xi; β̃ − β)]4
}1/2

.

Recall that the (νj , ψj) are the eigenvalue-eigenfunction pairs for the covariance
kernel K. By A4,

E
{ 1

n

n∑
i=1

[η(Xi; β̃ − β)]4
∣∣∣β̃}
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=E
{ ∞∑

j1

∞∑
j2

∞∑
j3

∞∑
j4

ζj1ζj2ζj3ζj4η(ψj1 , β̃−β)η(ψj2 , β̃−β)η(ψj3 , β̃−β)η(ψj4 , β̃−β)
∣∣∣β̃}

=

∞∑
j=1

E(ζ4j )[η(ψj , β̃ − β)]4 +
∑
j1

∑
j2 ̸=j1

νj1νj2 [η(ψj1 , β̃ − β)]2[η(ψj2 , β̃ − β)]2

≤C2

∞∑
j=1

ν2j [η(ψj , β̃ − β)]4 +
∑
j1

∑
j2 ̸=j1

νj1νj2 [η(ψj1 , β̃ − β)]2[η(ψj2 , β̃ − β)]2

≤(1 + C2)
∞∑

j1=1

νj1 [η(ψj1 , β̃ − β)]2
∞∑

j2=1

νj2 [η(ψj2 , β̃ − β)]2

=(1 + C2)∥β̃ − β∥4K .

So,

E∥δ1∥2Γ = E∥δ1∥2Γn
≤ C2

(
λ+ n−1λ

− 1
2(m+r) + n−1

)2
.

Similarly, we may establish, for k ≥ 1,

E∥δk∥2Γ = E∥δ1∥2Γn
≤ C2

(
λ+ n−1λ

− 1
2(m+r) + n−1

)2k
.

Therefore,
∑∞

k=1 δk is of order Op(λ + n−1λ−1/[2(m+r)] + n−1). This shows the

lemma.
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