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Abstract: The prediction model, which makes effective use of auxiliary information

available throughout the population, is often used to derive efficient estimation

in survey sampling. To protect against failure of the assumed model, asymptotic

design unbiasedness is often imposed in the prediction estimator. An instrumental-

variable calibration estimator can be considered to achieve the model optimality

among the class of calibration estimators that is asymptotically design unbiased.

In this paper, we propose a new calibration estimator that is asymptotically

equivalent to the optimal instrumental-variable calibration estimator. The result-

ing weights are no smaller than one and can be constructed to achieve the range

restrictions. The proposed method can be extended to calibration estimation under

two-phase sampling. Some numerical results are presented using the data from the

1997 National Resource Inventory of the United States.

Key words and phrases: Asymptotic design unbiasedness, exponential tilting, re-

gression estimation, weighting.

1. Introduction

Consider a finite population of size N . Let y be the variable of interest with

value yi for unit i in the population. Suppose we are interested in estimating

the population total Y =
∑N

i=1 yi. Assume that a probability sampling design is

used to select a sample from the finite population. Let A be the set of sample

indices realized from the sampling design. Let πi = P (i ∈ A) be the first-order

inclusion probability of unit i. The Horvitz-Thompson estimator

ŶHT =
∑
i∈A

diyi

is unbiased for Y =
∑N

i=1 yi, where di = π−1
i is the design weight for unit i.

Now, suppose that a p-dimensional auxiliary vector xi is available from the

entire population. In this case, one can postulate a superpopulation model that

describes the structural relationship between yi and xi in the population. For

example, the linear regression model

yi = x′
iβ + ei, (1.1)
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with ei ∼ (0, viσ
2), can be imposed where β and σ2 are unknown model parame-

ters and vi = v(xi) is a known function of xi. We assume that model (1.1) holds

for the sampled part and also for the non-sampled part of the population. The

model can be used to build a prediction estimator for Y :

Ŷp =
∑
i∈A

yi +
∑
i∈Ac

ŷi (1.2)

where ŷi satisfies E (ŷi − yi | Ii = 0) ∼= 0, where Ii = 1 if i ∈ A and Ii = 0

otherwise. Under (1.1), we can use

ŷi = x′
i

(∑
i∈A

qixix
′
i

)−1∑
i∈A

qixiyi (1.3)

for some qi. Brewer (1963), Royall (1970, 1976), and others have adapted the

linear model prediction theory to the finite population situation and have derived

the best linear unbiased predictor (BLUP). When the sampling design is nonin-

formative (Pfeffermann (1993)), the BLUP of Y under (1.1) can be obtained by

the choice of qi = 1/vi in (1.3). However, the prediction estimator is not neces-

sarily justified if the regression model does not hold. To guarantee asymptotic

design unbiasedness (ADU) of the prediction estimator, Brewer (1979) suggested

using qi = (di − 1) in (1.3). Isaki and Fuller (1982) suggested using qi = d2i in

(1.3) and discussed conditions for the ADU. Wright (1983) also showed that the

BLUP of Y can satisfy the ADU property if and only if vi(di−1) = a′xi for some

p-dimensional constant vector a.

The prediction estimator (1.2) with the predictor in (1.3) can be written as

Ŷp =
∑

i∈Awiyi where wi satisfies∑
i∈A

wixi =

N∑
i=1

xi. (1.4)

The equation (1.4) is often called the calibration equation. The weights satisfying

(1.4) are often called calibration weights and the estimator using the calibration

weights is called the calibration estimator. Deville and Särndal (1992), Fuller

(2002), and Kim and Park (2010) provided comprehensive overviews for calibra-

tion estimation.

In this paper, we investigate the ADU property of the prediction estimator

in a more general class of prediction estimators under the regression superpop-

ulation model in (1.1). The proposed estimator can be directly written as a

calibration estimator and some optimal choice of instrumental variable is dis-

cussed. Furthermore, the proposed estimator is extended to construct a two-step

calibration estimator for two-phase sampling. Some numerical results are pre-

sented.
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2. Prediction Estimation

In this section, we briefly review the ADU theory of the prediction estimator

and discuss some choices of qi in (1.3). Here, we assume that the only available

information in the finite population is X. The prediction estimator in (1.2) can

be written as

Ŷp =

N∑
i=1

ŷi +
∑
i∈A

di (yi − ŷi) , (2.1)

if the predicted values are constructed to satisfy∑
i∈A

(di − 1) (yi − ŷi) = 0. (2.2)

Since the estimator for form (2.1) satisfies ADU conditions in general, we have

only to impose (2.2) in computing the predicted values. Condition (2.2) is referred

to as Internally Bias Calibrated (IBC) condition by Firth and Bennett (1998) and

IBC is a sufficient condition for the ADU property in the prediction estimator.

By construction, the prediction estimator with ŷi computed by (1.3) satisfies∑
i∈A

(yi − ŷi)xiqi = 0.

Thus, the prediction estimator using ŷi in (1.3) satisfies ADU if xi contains

q−1
i (di−1), which is consistent with the result of Wright (1983) for the particular

choice of qi = v−1
i .

We consider a more general class of prediction estimators of form (1.2) with

ŷi = x′
i

(∑
i∈A

zix
′
i

)−1∑
i∈A

ziyi (2.3)

for some zi = z(xi, di, vi) such that
∑

i∈A zix
′
i is nonsingular. By construction,

the predicted values in (2.3) satisfy∑
i∈A

zi(yi − ŷi) = 0.

Thus, the prediction estimator using the predicted values in (2.3) satisfies ADU

if zi contains (di − 1). The prediction estimator using (2.3) also satisfies the

calibration condition in (1.4) as it can be written as Ŷp =
∑

i∈Awiyi with

wi = 1 +

( ∑
i∈Ac

x′
i

)(∑
i∈A

zix
′
i

)−1

zi. (2.4)

Calibration estimators using the weights of the form in (2.4) are sometimes called

instrumental-variable (IV) calibration estimators (Estavo and Särndal (2000);
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Kott (2006); Kim (2010)). Variable zi is the instrumental variable and can be

chosen to improve statistical efficiency.

To discuss the optimal choice of zi = z(xi, di, vi) in the IV calibration es-

timator, let Bz be the probability limit of β̂z =
(∑

i∈A zix
′
i

)−1∑
i∈A ziyi. If zi

contains (di − 1), then we can write (di − 1) = a′zi for some a and

N−1
∑
i∈Ac

(
yi − x′

iBz

)
= p lim

{
N−1

∑
i∈A

(di − 1)
(
yi − x′

iβ̂z

)}
= p lim

{
N−1

∑
i∈A

a′zi

(
yi − x′

iβ̂z

)}
= 0.

Thus, we can write

Ŷp − Y =
∑
i∈Ac

x′
i

(
β̂z −Bz

)
=

( ∑
i∈Ac

x′
i

)(∑
i∈A

zix
′
i

)−1{∑
i∈A

zi
(
yi − x′

iBz

)}
. (2.5)

The anticipated variance (AV) of Ŷp, defined by AV (Ŷp) = E{(Ŷp − Y )2} where

the expectation is taken with respect to the joint distribution of the superpopu-

lation model (1.1) and the sampling mechanism, is

AV (Ŷp) ∼= E

{( ∑
i∈Ac

x′
i

)(∑
i∈A

zix
′
i

)−1(∑
i∈A

ziz
′
ivi

)(∑
i∈A

xiz
′
i

)−1( ∑
i∈Ac

xi

)}
.

(2.6)

Because E
{
(yi − x′

iBz)
2
}

∼= E
{
(yi − x′

iβ)
2
}

= vi, the anticipated variance in

(2.6) is minimized with respect to zi, i ∈ A, at z∗i = xi/vi, i ∈ A; see Section

S1 of the Supplementary Note. Therefore, if xi/vi contains (di − 1), then the IV

calibration estimator using the weight in (2.4) satisfies ADU and achieves the

minimum AV.

If xi/vi does not contain (di − 1), we no longer have the ADU property. To

obtain a design-consistent IV calibration estimator that is close to optimal in the

sense of minimizing the anticipated variance in (2.6), we can impose the ADU

condition into the instrumental variable zi by choosing z′i = (z0i, z
′
1i) where

z0i = di − 1 and z1i = x1i/vi, with x′
i = (1,x′

1i). In this case, it is equivalent to

the prediction estimator for form (1.2) with

ŷi =
(
1,x′

1i

){∑
i∈A

(
di − 1

x1i/vi

)′(
1

x1i

)}−1∑
i∈A

(
di − 1

x1i/vi

)
yi. (2.7)

The prediction estimator using (2.7) was originally proposed by Brewer,

Muhammad, and Tam (1988). The optimal regression estimator considered by
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Isaki and Fuller (1982), which uses ŷi = x′
iβ̂2 where β̂2 =

(∑
i∈A π−2

i xix
′
i

)−1∑
i∈A π−2

i xiyi, under a sampling design with πi ∝ v
1/2
i also achieves the mini-

mum AV. Note that the prediction estimator using ŷi = x′
iβ̂2 also belongs to the

class of the IV calibration estimator for form (2.4). As pointed out by Isaki and

Fuller (1982), the ADU property holds for the choice of xi = (πi, π
2
i ,x1i) when

ŷi = x′
iβ̂2 is used in (1.2).

The prediction estimator using ŷi in (2.7), which can also be written as an

IV calibration estimator using (2.4), has such nice statistical properties as ADU

and some optimality under (1.1). However, such optimality is not tenable for

multipurpose sampling because there are many y-variables in the survey. The

IV calibration estimator using (2.4) can be quite inefficient for some yi if the

working model (1.1) is far from the true model. Furthermore, the weights in

(2.4) can take extreme values and some modification is needed to guarantee that

they satisfy some range restriction.

3. Proposed Method

We consider a calibration estimator that can be viewed as a prediction esti-

mator under (1.1) and with some range restriction in the weights. The calibration

weights in (2.4) can take negative values, and avoiding this has been an important

practical problem in survey sampling (Huang and Fuller (1978)).

Given the instrumental variable in (2.5), the proposed calibration estimator

is

Ŷcal,p =
∑
j∈A

{
1 + (dj − 1)exp

(
λ̂0 + λ̂′

1z
∗
1j

)}
yj , (3.1)

where z∗1j = z1j/(dj − 1), exp(−λ̂0) = (N − n)−1
∑

j∈A(dj − 1)exp(λ̂′
1z

∗
1j), and

λ̂1 satisfies (1.4). This estimator is a modified version of the exponential tilting

calibration estimator

ŶET =
∑
j∈A

djexp(λ̂0 + λ̂′
1z

∗
1j)yj

considered in Kim (2010). The proposed calibration weights satisfy w̃i ≥ 1,

which makes sense because a unit in the sample represents at least one unit in

the population. Some computational details for finding (λ̂0, λ̂1) are discussed in

Section S2 of Supplementary Note.

Using Taylor linearization, we can show that Ŷcal,p satisfies

N−1(Ŷcal,p − Ŷp) = op(n
−1/2). (3.2)

where

Ŷp =
∑
i∈A

yi +
∑
i∈Ac

ŷi
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with ŷi = x′
iβ̂z and

β̂z =

{∑
i∈A

(
di − 1

z1i

)(
1

x1i

)′}−1∑
i∈A

(
di − 1

z1i

)
yi.

A proof of (3.2) is a straightforward application of Theorem 1 of Kim and Park

(2010) and is sketched in Section S3 of Supplementary Note. By (3.2), the pro-

posed calibration estimator is asymptotically equivalent to a prediction estimator

using an instrumental variable zi = (di − 1, z1i). The first component, di − 1, is

needed for the ADU property and the other component can be chosen to improve

efficiency.

Calibration weight is an exponential function of z∗1i = z1i/(di − 1),

wi = 1 + (di − 1)exp

(
λ̂0 + λ̂′

1

z1i
di − 1

)
(3.3)

and extreme values of z1i/(di − 1) can lead to extreme weights. As a remedy,

instead of using z1i = x1i/vi for optimal estimation, one can take ci in z1i =

x1i/(vici) so that

wi − 1

di − 1
= exp

(
λ̂0 + λ̂′

1

z1i
di − 1

)
< K, (3.4)

for a predetermined upper bound K. The choice of ci = 1 gives us back the

best prediction estimator not necessarily satisfying the range restriction in the

final weights. Roughly, K can be in the range of three to five. The proposed

method, in line with the range restriction wi ∈ [1,K), uses z1i = x1i/(vic
∗
i ),

where c∗i = 1 if it satisfies (3.4). Otherwise c∗i is the value that makes the ratio

(wi − 1)/(di − 1) equal to K. Use of instrumental variable for range restricted

calibration estimation was also considered by Kott (2011).

For variance estimation, first assume that there is a consistent estimator for

the variance of Ŷd given by

V̂ (Ŷd) =
∑
i∈A

∑
j∈A

Ωijyiyj (3.5)

and that V̂ (Ŷd) satisfies

V̂ (Ŷd)

V (Ŷd)
= 1 + op(1),

for any y with bounded fourth moment. Using (3.2), the asymptotic variance

of Ŷcal,p is asymptotically equivalent to the variance of Ŷp. Moreover, Ŷp can be

expressed as Ŷp = Ŷd + (X − X̂d)
′β̂z, since ŷi satisfies (2.2). The asymptotic

variance of the Ŷp has the form
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Table 1. Data structure for two-phase sampling.

Set Size Observation
Population (U) N x1i

First-phase sample (A1) n1 xi = (x1i,x2i)
Second-phase sample (A2) n2 xi, yi

V (Ŷp) ∼= V
{∑

i∈A
di
(
yi − x′

iBz

)}
. (3.6)

Thus the estimator for the variance of Ŷcal,p has the form

V̂ (Ŷcal,p) =
∑
i∈A

∑
j∈A

Ωijgigj

(
yi − x′

iβ̂z

)(
yj − x′

j β̂z

)
, (3.7)

where gi = wi/di, with wi provided by (3.3).

4. Calibration for Two-Phase Sampling

We discuss an extension of the proposed method to two-phase sampling.

Two-phase sampling, or double sampling, is a cost-effective technique widely used

in survey sampling (Hidiroglou (2001)); Rao (1973); Kim, Navarro, and Fuller

(2006); Fuller (2003)). In two-phase sampling, a first-phase sample A1 with size

n1 is drawn from the population U under a sampling design with the first-order

inclusion probabilities π1k. Given the first-phase sampling A1, a second-phase

sample A2 with size n2 is drawn from A1 under a sampling scheme with the first-

order conditional probabilities π2k|A1
= π2k|1k. We denote the first-phase design

weight of unit k as d1k = π−1
1k , the second-phase conditional design weight of unit

k as d2k|1k = π−1
2k|1k, and the final design weight as d2k = d1kd2k|1k. Assume that

there is a vector of auxiliary variables that can be partitioned as x′
k = (x1k,x2k)

′,

with x1k observed for the entire population and x2k observed up to the first-phase

sample. The study variable y is observed only in the second-phase sample A2.

Table 1 presents the data structure of two-phase sampling.

In this two-phase sampling setup, we can consider a prediction estimator for

Y =
∑N

i=1 yi of the form

Ŷtp,p =
∑
j∈A2

yj +
∑

j∈A1/A2

ŷ2j +
∑

j∈U/A1

ŷ1j , (4.1)

where ŷ1j = x′
1jB̂1, ŷ2j = x′

jβ̂ with

B̂1 =

( ∑
j∈A1

x1jx
′
1j

vj

)−1{ ∑
j∈A2

x1jyj
vj

+
∑

j∈A1/A2

x1j ŷ2j
vj

}
,
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β̂ = (β̂
′
1, β̂

′
2)

′ =

( ∑
j∈A2

xjx
′
j

vj

)−1 ∑
j∈A2

xjyj
vj

.

Here, the implicit model is

yi = x′
iβ + ei (4.2)

with ei ∼ (0, vi). By the definition of ŷ2j , we can write B̂1 = β̂1 + β̂1,xβ̂2, where

β̂1,x =

( ∑
j∈A1

x1jx
′
1j

vj

)−1 ∑
j∈A1

x1jx
′
2j

vj
.

After some algebra, Ŷtp,p in (4.1) can be expressed as

Ŷtp,p =
∑
j∈U

x′
1jB̂1 +

∑
j∈A1

(x′
2j − x′

1jβ̂1,x)β̂2 +
∑
j∈A2

(yj − x′
jβ̂)

=
∑
j∈U

ŷ1j +
∑
j∈A1

(ŷ2j − ŷ1j) +
∑
j∈A2

(yj − ŷ2j) . (4.3)

However, the prediction estimator (4.3) does not necessarily satisfy the ADU

property.

To satisfy ADU, we consider more general predicted values for y using the

instrumental vector variable zi = z(xi, d1i, d2i, vi), with zi = (z′1i, z
′
2i)

′ where z1i
is available for the population and z2i is available up to A1. Let ŷ1i,z = x′

1iB̂1,z,

ŷ2i,z = x′
iβ̂z, where B̂1,z =

(
β̂1,z + β̂x,zβ̂2,z

)
, β̂x,z =

(∑
j∈A1

z1jx
′
1j

)−1∑
j∈A1

z1jx
′
2j , and β̂z = (β̂

′
1,z, β̂

′
2,z)

′ =
(∑

j∈A2
zjx

′
j

)−1∑
j∈A2

zjyj . Then a prediction

estimator under two-phase sampling using the instrumental variable zi has the

form of

Ŷtp,z =
∑
j∈A2

yj +
∑

j∈A1/A2

ŷ2j,z +
∑

j∈U/A1

ŷ1j,z

=
∑
j∈U

ŷ1j,z +
∑
j∈A1

(ŷ2j,z − ŷ1j,z) +
∑
j∈A2

(yj − ŷ2j,z) . (4.4)

If (d1i − 1) is included in z1i and (d2i − 1) is included in zi, then Ŷtp,z can be

expressed as

Ŷtp,r =
∑
j∈U

ŷ1j,z +
∑
j∈A1

d1j (ŷ2j,z − ŷ1j,z) +
∑
j∈A2

d2j (yj − ŷ2j,z) . (4.5)

Expression (4.5) suggests that Ŷtp,z satisfies the ADU property. Thus, we assume

that (d1i − 1) and (d2i − 1) are included in the column space of z1i and zi,

respectively.
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Note that we can express

Ŷtp,z =
∑
i∈A2

w1iyi +
∑

i∈A1/A2

w1iŷ2i,z =
∑
i∈A2

w2iyi,

where

w1i = 1 +
∑
j∈Ac

1

x′
1j

( ∑
j∈A1

z1jx
′
1j

)−1

z1i, (4.6)

w2i = w1i +
∑

i∈A1/A2

w1ix
′
i

( ∑
j∈A2

zjx
′
j

)−1

zi

= 1 +

( ∑
i∈A1

w1ixi −
∑
i∈A2

xi

)′( ∑
j∈A2

zjx
′
j

)−1

zi. (4.7)

The weights w1i and w2i satisfy∑
i∈A1

w1ix1i =
∑
i∈U

x1i (4.8)

∑
i∈A2

w2ixi =
∑
i∈A1

w1ixi. (4.9)

Thus, both w1i and w2i are well calibrated for the population total of x1i and also

provide consistency for x2i. Such calibration can be called two-step calibration,

as discussed by Dupont (1995). In step one, w1i are constructed to satisfy (4.8).

In step two, w2i are constructed to satisfy (4.9) using the calibration weights w1i

computed from step one. The resulting calibration estimator is efficient if the

linear model (4.2) holds. Modified exponential-tilting calibration weights can be

constructed similarly.

The two-step calibration method requires that we observe the individual

information of xi in A1 when computing w1i from (4.8). Instead of using (4.8)

in step one and (4.9) in step two, the following two-step calibration method can

also be considered.

Step 1: For i ∈ A2, compute the initial calibration weights w
(1)
2i from A2,

w
(1)
2i = 1 + (d2i − 1) exp

(
λ̂
(1)
0 +

z′1i
d2i − 1

λ̂
(1)
1 +

z′2i
d2i − 1

λ̂
(1)
2

)
,

where (λ̂
(1)
0 , λ̂

(1)
1 , λ̂

(1)
2 ) satisfies∑

i∈A2

w
(1)
2i xi =

∑
i∈A1

d1ixi. (4.10)

Step 2: Use w
(1)
2i in [Step 1] to compute
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w
(2)
2i = 1 +

(
w

(1)
2i − 1

)
exp

{
λ̂
(2)
0 +

(d2i
d1i

) z′1i

w
(1)
2i − 1

λ̂
(2)
1

}
,

where (λ̂
(2)
0 , λ̂

(2)
1 ) satisfies∑

i∈A2

w
(2)
2i x1i =

∑
i∈U

x1i. (4.11)

Such a two-step calibration does not need to compute the calibration weights

w1i for the first-phase sample, which is quite convenient in practice. In Section S4

of Supplementary Note, we briefly show that the proposed two-step calibration

method for two-phase sampling is asymptotically equivalent to the classical two-

step calibration method in (4.8)−(4.9).

5. Simulation Study

To compare the estimators, we performed a limited simulation study. We

considered two study variables, y1 and y2, and generated a population of size

N = 10, 000 with

xi ∼ N (4, 1) ,

ei ∼ N(0, 0.25x2i ),

zi ∼ 0.5xi + χ2(0.5) + 5,

y1i = 1 + xi + ei,

y2i = (xi − 1)2 + ei,

with xi and ei independent. From the population, we generated B = 2, 000

Monte Carlo samples, of sizes n = 500 and n = 1, 000, under simple random

sampling and probability proportional to size zi sampling with replacement. The

parameters of interest are population means for y1 and y2. We considered five

estimators: direct estimator without calibration, denoted by HT ; generalized

regression estimator of Deville and Särndal (1992), denoted byGREG; best linear

prediction estimator, denoted by Prediction; bias-corrected prediction estimator,

denoted by B −C prediction; proposed calibration estimator, denoted by New.

Under (1.1) with vi = x2i , the five estimators are

HT :
∑
i∈A

diyi,

GREG :
∑
i∈A

diyi + (
N∑
i=1

x′
i −

∑
i∈A

dix
′
i)

(∑
i∈A

di
xix

′
i

vi

)−1∑
i∈A

di
xiyi
vi

,

P rediction :
∑
i∈A

yi +
∑
i∈Ac

x′
i

(∑
i∈A

xix
′
i

vi

)−1∑
i∈A

xiyi
vi

,
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B − C prediction :
∑
i∈A

yi +
∑
i∈Ac

x′
i

(∑
i∈A

zix
′
i

)−1∑
i∈A

ziyi,

New :
∑
i∈A

{
1 + (di − 1)exp(λ̂0 + λ̂′

1z
∗
1i)

}
yi.

For deriving the bias-corrected estimators, we used zi = (di − 1, xi/vi), and for

deriving the proposed calibration estimators z∗1i = xi/{vi(di − 1)}.
The bias and the mean squared errors of the five estimators for the two

population means are presented in Table 2. All estimators have smaller mean

squared errors than the HT estimator, as expected. The prediction estimator

is the most efficient in terms of mean squared error for y1 because the working

linear regression model is true for variable y1. The mean squared errors of the

GREG and B-C prediction estimators are slightly higher than that of the pre-

diction estimator, but the bias of the GREG estimator and the B-C prediction

estimator are smaller for y2. The calibration estimator is similar to the B-C

prediction estimator in terms of the two criteria for estimating y1. For y2, since

the linear regression model is not a good fit, the prediction estimator demon-

strates significant bias. The proposed calibration estimator is more robust than

the other three estimators in term of both bias and mean squared error.

We considered variance estimation only for bias-corrected prediction and the

proposed calibration estimator. The linearization variance estimator in (2.6) was

used to compute the variance of each estimator in the simulation. The Monte

Carlo relative biases of the linearization variance estimators are all less than 5%

in absolute values; they are not presented here.

6. Data Example

To compare the proposed estimator with other estimators we used a small

sample of segments from the 1997 National Resource Inventory for the state of

Missouri that is presented in Table 2.8 of Fuller (2009). In this sample with

all 80 segments chosen from three strata, 79 segments have three sample points

and one segment has only two sample points. The sampling design features

stratified random sampling for segments and second-stage sampling selected with

two or three points within segments. The variable “Weight” in the table is the

inverse of the sampling rate and “Segment Size” is the total area of the segment

in acres. The variable “Cultivated Cropland” is the fraction of points having

cropland in active use multiplied by the segment size. Other variables,“Forest”

and “Federal”, are defined in the same way.

As for auxiliary variables, the variables “Segment Size” and “Federal” can be

considered. We included indicators for three strata in the regression so that the
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Table 2. Monte Carlo Biases and Mean squared errors of the five point estimators.

Parameter Sample Size Estimator
SRS PPS

Bias MSE Bias MSE

E(Y1)

500

HT -0.0026 0.0096 -0.0040 0.0098
GREG -0.0021 0.0082 -0.0023 0.0085

Prediction -0.0002 0.0081 0.0065 0.0082
B − C prediction -0.0021 0.0082 -0.0022 0.0085

New -0.0021 0.0082 -0.0022 0.0085

1000

HT 0.0004 0.0043 -0.0034 0.0047
GREG -0.0015 0.0036 -0.0022 0.0042

Prediction 0.0002 0.0035 0.0061 0.0041
B − C prediction -0.0014 0.0036 -0.0021 0.0042

New -0.0014 0.0036 -0.0021 0.0042

E(Y2)

500

HT -0.0013 0.0790 -0.0097 0.0694
GREG -0.0036 0.0147 -0.0089 0.0173

Prediction -0.2111 0.0611 -0.1438 0.0474
B − C prediction -0.0028 0.0120 -0.0066 0.0141

New 0.0006 0.0121 -0.0012 0.0139

1000

HT 0.0092 0.0360 -0.0091 0.0338
GREG -0.0015 0.0069 -0.0083 0.0085

Prediction -0.1999 0.0477 -0.1513 0.0458
B − C prediction -0.0031 0.0057 -0.0067 0.0066

New -0.0012 0.0057 -0.0029 0.0065

Table 3. Alternative Estimators and Standard Errors.

Model Variance Estimator Cultivated Forest Other

γ = 0

GREG
156.88 74.74 178.28
(16.73) (13.72) (17.19)

B − C prediction
156.89 74.77 178.25
(16.73) (13.74) (17.17)

Calibration
156.58 74.72 178.6
(16.58) (13.74) (17.12)

γ̂ = 1.31

GREG
156.24 75.05 178.61
(16.50) (13.77) (17.15)

B − C prediction
156.41 74.82 178.67
(16.53) (13.74) (17.11)

Calibration
156.19 74.98 178.72
(16.46) (13.76) (17.10)

sampling design would be noninformative. To estimate total acres of cultivated

cropland, the main variable of interest, we considered the model

yi = β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + ei,

where yi is the acres of cultivated cropland, (x1i, x2i, x3i) is the vector of stratum

indicators for segment i, x4i is the total area of segment i, x5i is federal acres,
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and ei ∼ N(0, σ2
ex

γ
4i).

To estimate γ, we considered the regression model:

log(ê2i ) = log(σ2
e) + γlog(x4i) + ui,

where ui ∼ N(0, σ2
u). The procedure of estimating β and γ can be iterated with

initial values calculated by the ordinary least squares method. Similar estimation

procedures are also discussed in Valliant, Dorfman, and Royall (2000).

For deriving the total average of cultivated cropland, we considered three

estimators using model variance that depends on γ : generalized regression esti-

mator, GREG, bias-corrected prediction estimator, B − C prediction, and the

proposed calibration estimator, Calibrtaion. In addition to cultivated cropland,

we also estimated the total acres of forest and nonfederal land in other categories.

Table 3 presents the resulting estimators and their standard errors for γ = 0

and γ̂ = 1.31. From Table 3, we conclude that it is a more reasonable assumption

that the model variance depends on x4i, since the estimators computed when we

assume that the model variance depends on x4i have smaller standard errors for

total acres of cultivated cropland than the estimators calculated under constant

variance assumption. The generalized regression and bias-corrected estimators

show similar performance in terms of standard errors under both model variance

assumptions. The proposed calibration estimator for the total area of cultivated

cropland, when model variance is proportional to xγ4i, is the most efficient among

the estimators considered. For estimating total area of forest and other non-

federal land categories, the three estimators do not have significant differences in

biases and mean squared errors.

7. Concluding Remarks

Calibration constraint is important in survey estimation. Using a predic-

tion model, instrumental variables can be constructed to achieve optimality in

the sense of minimizing the anticipated variance among the class of asymptotic

design unbiased estimators satisfying the calibration constraint. The proposed

instrumental-variable calibration estimator can be modified to achieve range re-

strictions on the final weights. The proposed method can be directly applied to

two-phase sampling. An alternative two-step calibration method is discussed.

Optimality of the proposed estimator is based on the linear regression model

with known variance function. Further investigation of the departure from the

model assumptions is a topic of future research.
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