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Abstract: Despite the prevalence of space-filling designs in many applications, most
of the existing approaches are unsuitable for irregular regions. A new sequential
design procedure is introduced for a specific type of irregular region. This procedure
constructs designs with desirable space-filling properties and without replacement
of design points. Moreover, it provides flexibility on the size of the experiments.
Efficient and easy-to-compute unbiased estimators are introduced. The various
estimators are compared using a simulation and a data center thermal management
example.
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1. Introduction

Space-filling designs, such as Latin hypercube designs (LHDs) (McKay, Beck
man, and Conover (T979)), are widely used to spread out the design points in
an experimental region (Santner, Williams, and NotZ (2003); Fang, Li, and Sud
j1anto (2008)), but are limited by the rectangular assumption on the experimental
region. When the design region is irregular, direct application of the conven-
tional designs can lose such desirable space-filling properties as one-dimensional
balance. A specific type of irregular region commonly occurring in practice is
a slid-rectangular region (Hung, Amemiya, and Wu (20110)), a two-dimensional
region where the feasible range of one factor depends on the level of the sec-
ond factor. For example, Figure 1 (Hung (2011)) concerns design for sensor
placement over a slid-rectangular region (gray area) in a data center thermal
management problem. Other examples occur in ecological study, environmental
sampling (Stevensand Olsen (2004)), and computer experiments (Hung (2011)).

Challenging issues arise in designing experiments with slid-rectangular re-
gions: how to spread out the initial design points uniformly; how to select the
follow-up design of experiments to efficiently improve estimation. As to the first
issue, probability-based LHDs (Hung, Amemiya., and Wu (2010)) can maintain
the one-dimensional balance property with design points evenly spread out over
the region. Figure 2 shows a data center example with a slid-rectangular region
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Figure 2. (a)A 22-run PLHD. (b) The resulting APLHD.

in which sensors can be placed. The circles shown in Figure 2(a) are design points
of a 22-run probability-based LHD.

Adaptive probability-based Latin hypercube designs (APLHDs) have been
proposed (Hung (2011)) to select follow-up design points. Here a criterion is
defined for sequentially adding design points based on the response. When the
response at an initial design point satisfies the criterion, additional points in the
neighborhood of that point are added to the sample; if any of the additionally



SEQUENTIAL PROBABILITY-BASED LATIN HYPERCUBE DESIGNS 987

added points satisfy the condition, then more points may be added to the sample.
This procedure continues until no more points meet the condition. In Figure
2(a), the bullet points satisfy the prespecified condition, but are not necessarily
included in the initial sample. The final sample is denoted by the circles in
Figure 2(b). The set of points satisfying the condition in the neighborhood of
one another is called a network. For example, in Figure 2(b), the four bullet
points in the middle form a network of size four.

APLHD is intuitive and works well in general, but design points may be
sampled more than once. Then, the final number of distinct networks selected is
random, and the size of the experiment may exceed a predetermined cost limit.
Further, the procedure allows the selection of networks with replacement, so de-
sign points cannot be spread out as uniformly as they should be and for some
experiments, observations with the same design setting provide little or no infor-
mation. This issue is particularly important for computer experiments (Santner]
Williams, and Notz (2003)) in which replicates should be avoided because the
outputs are deterministic (i.e., the same input produces exactly the same output.)

We discuss a new sequential sampling procedure in this paper. Design points
are selected without replacement and the one-dimensional balance property is
maintained. This approach can efficiently reduce estimation variance, and the
size of the experiment can be fixed in advance. This procedure is different from
the existing sampling approaches ([Thompson (1990, T991); [[Thompson and Sebei
(T996); Salehi and Sebet (T997)) that are developed for rectangular regions with
independent and equal individual inclusion probabilities. For slid-rectangular
regions, the inclusion probabilities are no longer equal, they are updated sequen-
tially according to the shape of the region and the design points selected earlier.
There are challenges in the development of the new approach, especially in the
construction of unbiased estimators.

The remainder of the article is organized as follows. A sequential design pro-
cedure is introduced in Section 2. In Section 3, unbiased estimators are proposed
and their variances are studied. Further improvements are achieved by reducing
the variance and simplifying the calculation. These estimators are illustrated
and compared via a toy example in Section 4. In Section 5, the performance
of the proposed methods is demonstrated in a data center thermal management
example. Conclusions are given in Section 6.

2. Design Procedure

Assume that factors z; and xy form a slid-rectangular region. Factor zo
has, for now, ¢ levels. For the jth level of x2, the feasible interval for 1 isk; =
(Aj,Bj),j=1,...,t, with A =min{A;} and B = max{B;}. The interval [A, B|
is divided into n equally spaced subintervals and n levels of x1 are assigned to
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the middle of these subintervals, 11 = 1,...,21, = n. For each level of z1, the
feasible range for x0 is Cj, i = 1,...,n.

A neighborhood is defined for each design point, consisting of, in addition
to itself, the intersection of the four spatially adjacent points and the slid-
rectangular region. For design point that satisfies a certain condition, its neigh-
borhood points are added to the sample; if any of these additional points satisfy
the condition, their neighborhood is added to the sample as well. Continually
adding points leads to a cluster of units whose edge points do not satisfy the
condition. The cluster minus its edge points is a network. Any point that does
not meet the condition forms a network of size 1.

Design points, together with their networks, are sampled sequentially with
the inclusion probabilities updated at every iteration. After selection of an ini-
tial point and its network, they are removed from the population and inclusion
probabilities are adjusted accordingly. Suppose we plan to select IV initial design
points sequentially, N predetermined with N < n, represented by u; = (214, x2;)’.
For each level of x1, the feasible ranges for xo are different and change at each
iteration, say Cj for x1 =4 in the [th iteration, C;; = C;.

Step 0: Let the initial sample space for x; be Q1 = (1,...,n). For I =1,..., N,
perform steps 1 to 3 iteratively.

Step 1: Randomly select a level of x1, denoted by t;, from the sample space €,
and sample the design point u; by selecting a level of zo with probability
P(xg = j) = cgll if j € Cy; and 0 otherwise, where ¢;; = 22‘:1 I[y
Ct1]. Thus, 1 = t.

Step 2: Sample the initial design point u; and its network W. If this network
contains all the units from some other levels of z1, denote the collection
of these x; levels by w.

Step 3: Update the sample space of x; by removing the set v; = {t; Uw}, Q11 =
Q;\v;. Remove the selected network from the population and update
the feasible regions Cy11, @ € 11, by removing the units belonging to
network W.

Figure 3 depicts an example of a slid-rectangular region in which there are
three levels for factor xo and the feasible regions of 1 depend on the levels of .
Factor x; has three levels and the sample space is 1 = {1,2,3}. For each level
of x1, the feasible ranges of xg are C11 = {1}, C21 = {1,2}, and C3; = {2,3}
respectively. The numbers shown in the cells are the responses. We consider
adding points adaptively when the observed response is larger than 8. Based
on this condition, it is clear that points (2,2) and (3,2) form a network of size
two. Let N = 3. Assume level 2 is selected randomly from 4, t; = 2 in
the first iteration. The corresponding xo coordinate is chosen with probability
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Figure 3. Illustrative example

P(x91 = j) =1/2for j = 1,2. Let 91 = 2 be selected, so the first design point is
u1 = (2,2). The selection of u; leads to the selection of (3, 2), because they form a
network. Now remove this network from the population and update Q9 = {1, 3}.
The new feasible ranges are C12 = {1} and C32 = {3}. In the second iteration,
suppose to = 3 is selected from 2o. There is only one point available for this
level, therefore P(x92 = 3) = 1 and ug = (3,3). Update Q3 = {1}, C13 = {1}
and P(x23 = 1) = 1. Hence, in the third iteration we have uz = (1,1).

The sequential design procedure has another advantage in that the final num-
ber of distinct networks selected, N, can be determined based on the objective
of the experiment. If the focus is to explore the experimental region uniformly,
it is desirable to have N = n because the resulting initial design is a probability-
based LHD and the one-dimensional balance property holds. On the other hand,
if the experiment is expensive or time-consuming, N can be a smaller number to
reduce costs. Compared with APLHD, this approach provides a better control
over the size of the experiment. It is possible that N is less than n; this happens
when there is a large network containing at least two adjacent levels of x; and
at least one of them has all the units included in the network. In this situation,
there is a possibility that w # () at least once, and thus N < n. This rarely
occurs in practice because we mainly focus on experiments in which responses of
interest are clustered in a relatively small area.

3. Estimator

In this section, we focus on unbiased estimators for the population mean.
The individual inclusion probabilities are no longer equal, so the conventional
unbiased estimators cannot be directly used here. Since the new procedure fea-
tures unequal probability sampling without replacement, a Murthy-type unbiased
estimator (Murthy (1957)) is constructed. This estimator can be improved based
on the Rao-Blackwell Theorem to reduce variance. However, being different from
the conventional adaptive sampling (Salehi-and Sebed (1997)), the Rao-Blackwell
estimator is difficult to compute due to the unequal inclusion probabilities of the
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edge points. Thus, an easy-to-compute unbiased estimator is introduced that
provides a smaller variance with a simpler computation. Derivations of the un-
biased estimators of mean and variance are given in the Appendix.

3.1. Murthy’s estimator

Let K denote the number of networks in the population and y;, k = 1,..., K,
be the set of ordered sample values with y; = > jew, Yis where Wy, is the set of
units in the kth network. Raj (T956) introduced a general approach to unbiased
estimators for unequal probability sampling without replacement based on the
fact that the scheme of selection of a unit at a particular draw depends on the
units already drawn in the sample, but not on the order in which they were
drawn. Following Raj, we consider

5 yrI(ng > 0)

w1 = )
—1 Pl(nk > 0)
K
_ ). 3.1
we =Y + PQ(’I”L]@ > 0) ( )
k=2
W= bt +Zyk (e > 0)
= -1 ‘ nk > 0
where ¢ = 3,..., N, I;(ny > 0) is an indicator variable taking value 1 when the

kth network of the population is the ¢th network selected in the sample, and 0
otherwise. Pj(n; > 0) is the probability that the kth network is selected as the
1th sample, based on the updated feasible region in the iteration corresponding to
the ith sample. Let u be the population mean. It is clear that E(w;)/ >, ¢; = p,
where ¢; = i, Il € C,] is the number of feasible points for the jth level of 21.
Therefore, according to Raj (T956), an unbiased estimator of y is

fip = Zc] IZUM, (3.2)

7=1

where u; can be any constant satisfying Zf\i Lu = 1.

Murthy (I957) proposed a modification of Raj’s estimator, by constructing
an unordered version of Raj’s ordered unbiased estimator. Let s be an ordered
sample of the N networks selected according to the procedure in Section 2, T be
the set of all samples obtained by permuting the coordinates of the elements of
55, and sp be the unordered sample set of the N network. Murthy introduced

the unbiased estimator
L 2szer P(st)ir(sp)

/lM = (Z cj)i P(S()) (33)

J
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for the population mean, with a variance less than that of ir. By choosing
up = 1 and uw; = 0 for ¢ > 1, Murthy’s estimator can be written as

N .
s = (S e Y ety (3.4
j i=1

where P(sgl?) is the conditional probability of choosing sample s given network
i has been chosen as the first network. The variance of (B4) is (Murthy (I957);
Cochran (T977))

o= () (S5 5 "inen)
< vi Yj o |
Piln; > 0) — P, > 0)> Pi(n; > 0)Pi(n; > 0)}, (3.5)
and its unbiased estimator is

Vgr(/)M):(Z ) [ZZ( 50|Z] (s(;ii()i)(;om)

i=1 j<i

< vi v 2
Pi(n;>0)  Pi(n; > 0)) Pi(ni > 0)P(n; > 0)}, (3.6)

where P(spli, j) denotes the probability of the sample sy given that the points i
and j are selected in either order in the first two draws.

2. Rao-Blackwell estimator

The estimator fij; can be improved by incorporating more of the information
obtained in the final sample. In particular, the observations from edge points are
used in the estimator only if they are included in the first N samples. Thus,
according to the Rao-Blackwell method, an improved unbiased estimator can be
obtained by calculating the conditional expectation of fip; given the minimum
sufficient statistics.

According to the new procedure, the minimum sufficient statistic, d, is the
final unordered sample of the v distinct networks, with labels denoted by d =
{(i1,9i)s- -, (iv,vi,)}. Define D as the sample space for d, g(s{,) as the function
that maps an initial design s; into a value of d, and S as the sample space
containing all possible initial samples. An improved unbiased estimator, firg =
E(fips | D = d), can be written as

o= (Se) {3 Sl

J

+L7H Y [I(g(s{)) =d) ) J;f(sso‘g)y]} (3.7)

/
sp€ES i€s(), e;=1 0
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where L = Zs es1(9(sp) = d), ef = > .y, €j, and e; = 1 if unit j is an edge
point and e; = 0 otherwise. The variance of this improved unbiased estimator is

var(firg) = var(fips) Z Z I(g )iine — firs)?, (3.8)
deD S0€S

where P(d) is the probability that D = d. An unbiased estimator of the variance
is var(irs) = var(fiiag) — L7 Y5 e 1(9(30) = d)[finr — firs]®. A more efficient
estimator can be further obtained by conditioning on the minimum sufficient
statistic

var(jips) = E(var(jigg)|D = d)
1

1(g(30) = d)var(finr) — 7 ) 1(9(50) = d) [fins — irp)?. (3.9)
508

b(\»—l?’:l

'}

o
Il
n

3.3. Easy-to-compute Rao-Blackwell estimator

The RB estimator is computationally difficult for large designs because all
compatible designs must be evaluated to obtain the estimation. This is not
surprising, given that the same difficulty is experienced in some adaptive designs
(Dryver and Thompson (2005); Hung (2011)). We construct a new unbiased
estimator obtained by conditioning on a carefully chosen sufficient statistic, not
the minimum.

Decompose the final sample s into s. and sz, s. the set of units in the
sample for which the condition to sample adaptively is satisfied. Take V as a
collection of 1 coordinates at which edge points occur in the initial sample. Using
the notation of Section 3.2, a sufficient statistic is d* = {(4,4:),V, (J,y;j) : ¢ €
Seyj € szt. The sample space for d* is defined by D* and an improved unbiased
estimator can be derived by conditioning on d* as i* = E(fip | D* = d*). Let
es; = Y es €iti(4) and (i) be an indicator variable taking 1 if the unit ¢ belongs
to level [ in factor o7 and O otherwise. This estimator can be written as

M*:<ch>_l{if;( 'y -+ 8013311—1 Zeiyitl(i)}_

- ; €s;
j =1 lev €8
(3.10)

The variance is

() =var(ing) - Y- O Y {rtatsy = )

{Z( ) ﬁfﬁég)yim—P“’gj‘f;é)—l)Zez-yz»tz@'))r} _

ol ; €s
eV “ies]), e;=1 1€S
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An unbiased estimator of the variance is

var(i) = var(ing) — 25 Y {I<g<sa> @)
s,€S
P(soli), v Plsolen = 1) 5~ eayita(i) 2
[ZV(Z AR A Dhrs )|}

and a more efficient estimator for the variance is
var(i*) = Elvax(i") | D* = ']
1 A 1 *
— 5 X 1to(sh) = i) - 3 3 {t0(55) =)

s4€S 50€S
P(shl4 ~ P(shlzi =1 eyit1(1)\ 12
(5 o Bt o)
eV “ies), ei=1 0 0 i€s 81

4. Simulation Study

The small population example in Figure 3 is revisited in order to show the
computations and properties of the unbiased estimators in relation to the esti-
mators in APLHDs. APLHDs partition the population into distinct networks
and selection of any point within the network leads to inclusion in the sample
of every other design point in the network. More than one of the initial design
points can fall in the same network and be selected more than once.

The population in Figure 3 consists of five points. Based on APLHD, there
are four possible designs listed in Table 1. For each row in the table, the first
three points form the initial design according to probability-based LHD and the
rest of them are added adaptively. For each design, we evaluated two unbiased
estimators introduced by Hung (201T), § and its Rao-Blackwell estimator ogp.
The estimator SRB is derived conditional on the minimum sufficient statistics, and
therefore it is the most efficient. Hung (2011) proposed another Rao-Blackwell
estimator, 6. Tt may not be as efficient as Srp but it is easier to compute. This
estimator has the same performance as 5 in this example so it is not listed in
the table. Variances of the unbiased estimators are also reported. The last row
summarizes the average performance of these estimators over all possible designs.
Note that the third design in the table has two initial design points falling in the
same network, and therefore the network {(2,2), (3,2)} is selected twice.

With the new procedure, there are 18 possible ordered samples listed in
Table 2, along with their probabilities reported in column p. Three unbiased
estimators, fips, firp, and 4%, and their variances were evaluated for each design.
The value of V for each design is listed for the calculation of 4*. Similar to
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Table 1. All possible APLHDs and the unbiased estimators
sampler ) brg  var(d)  var(Ors)
(1,1),(2,1),(3,2);(2,2),(3,3) 587 6.40 6.04 3.16
(1,1),(2,1),(3,3); 3.20 3.20 2.96 2.96
(1,1),(2,2),(3,2);(2,1),(3,3) 547 6.40 6.42 3.16
(1,1),(2,2),(3,3); (2,1),(3,2) 787 640  0.34 3.16
Mean 5.60  5.60 3.94 3.11
Table 2. All possible sequential designs without replacement and the unbi-
ased estimators
ordered sampler p Vo pm 4 pmrp var(f) var(a*) var(igs)
(1,1),(2,1),(3,2);(2,2),(3,3) 1/24 2 5.73 5.73 6.40 5.14 5.14 2.56
(1,1),(3,2),(2,1);(2,2),(3,3) 1/12 2 5.73 573 6.40 5.14 5.14 2.56
(2,1),(1,1),(3,2);(2,2),(3,3) 1/24 2 573 573 640 514 514 2.56
(2,1),(3,2),(1,1);(2,2),(3,3) 1/24 2 5.73 5.73 6.40 5.14 5.14 2.56
(3,2),(1,1),(2,1);(2,2),(3,3) 1/12 2 5.73 5.73 6.40 5.14 5.14 2.56
(3,2),(2,1),(1,1);(2,2),(3,3) 1/12 2 5.73 5.73 6.40 5.14 5.14 2.56
(1,1),(2,1),(3,3); 1/24 2 3.20 3.20 3.20 0 0 0
(1,1),(3,3), (2,1); 1/24 2 320 320 320 0 0 0
(2,1),(1,1),(3,3); 1/24 2 3.20 3.20 3.20 0 0 0
(2,1),(3,3), (1,1); 1/24 2 3.20 3.20 3.20 0 0 0
(3,3),(1,1),(2,1); 1/24 2 3.20 3.20 3.20 0 0 0
(3,3),(2,1), (1,1); 1/24 2 3.20 3.20 3.20 0 0 0
(1,1),(2,2),(3,3);(2,1),(3,2) 1/12 3 7.07 7.07 6.40 0.87 0.87 2.56
(1,1),(3,3),(2,2); (2,1),(3,2) 1/24 3 7.07 7.07 6.40 0.87  0.87 2.56
(2,2),(1,1),(3,3);(2,1),(3,2) 1/12 3 7.07 7.07 6.40 0.87 0.87 2.56
(2,2),(3,3),(1,1);(2,1),(3,2) 1/12 3 7.07 7.07 6.40 0.87 0.87 2.56
(3,3),(1,1),(2,2);(2,1),(3,2) 1/24 3 7.07 7.07 6.40 0.87 0.87 2.56
(3,3),(2,2),(1,1);(2,1),(3,2) 1/24 3 7.07 7.07 6.40 0.87 0.87 2.56
Mean 5.60 5.60 5.60 2.00 2.00 1.71

the previous table, the last row summarizes the average performances of these

estimators over all designs.

The first design in Table 2 is spelled out as an example. The ordered ob-
servations are denoted by y11, y21, and ys2, respectively. Additional points yoo
and y33 are added sequentially to the final sample. For Murthy’s unbiased es-
timator, we first evaluate probabilities P(so|{11}) = 3/8, P(so|{21}) = 1/2,
P(s0l{22,32}) = 1/2, and P(sp) = 9/24, where P(sp|{11}) is the conditional
probability of choosing the unordered sample given network (1,1) has been cho-

sen as the first network. The unbiased estimator is

~

1] 3/8

1/2

MMZg Y11

9/24

+ Y21

9/24

+ (y22 + y32)

9/24

= 5.73.




SEQUENTIAL PROBABILITY-BASED LATIN HYPERCUBE DESIGNS 995

To calculate figp for the first design, we need the information from twelve de-
signs, including the first and last six designs, because they share the same final
unordered sample. We need probabilities P(s9|{33}) = 1/2 and P(s¢) = 9/24
for the last six designs, because (3,3) is the edge point collected in the initial
sample. Thus, we have

3/8
9/24

12 1 1/2 1/2
— X 6 6 = 6.40.
(y22+y32)9/24+ y219/24 —I—y339/24>< }}

X 1 {
URB = Y11 7
In this example, g* is the same as jips because V' = 2 and there is only one edge
point at the second level of x;.

Comparing Tables 1 and 2, it is clear that the design constructed without
replacement is more efficient than APLHD in terms of variance reduction. The
average variance of fips is 36% (=(3.11 — 2)/3.11) smaller than orp, and the
variance is further reduced by 15% (=(2 — 1.71)/2) using [irp.

5. Application in Data Center Thermal Management

We consider the data center thermal management example in Hung (201T).
The objective is to model the thermal distribution in the data center and the
final goal is to design a data center with an efficient heat-removal mechanism
(Schmidt, Cruz. and Iyengai (2005); Hamann (200R)). To monitor and study the
thermal distribution, sensors are attached to the surfaces of facilities to measure
temperature. The facilities are located in six rows with different lengths, which
result in a slid-rectangular experimental region.

Sequential designs are desirable in reducing estimation variances because
hot spots are usually clustered in a few locations of the data center, with large
portions of the region remaining cool. In this example, we consider adding design
points if the observed temperature is at least 34°C.

To compare performance with APLHDs, we conducted simulations based on
the snapshot of the data center temperatures reported in Hung (2011). With
the snapshot data, detailed temperature observations are available for all 166
sites, allowing comparisons based on different choices of design. The simulations
consisted of 1,000 iterations. The z; coordinate was divided into 24 equally
spaced intervals and we assumed N = 24. For the Rao-Blackwell estimators,
we considered 6* and 1 because they are easy to compute and recommended in
practice. The estimated mean temperatures and estimated variances for all the
unbiased estimators are summarized in Table 3. The proposed sequential design
without replacement outperforms § and 6* based on APLHDs. In particular, &*
has an approximate 12.5% variance reduction compared with 5 using APLHDs.
The average sample size for the sequential design without replacement was 27.53,
which is slightly smaller than that for APLHDs, 28.81.
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Table 3. Comparison of estimators in the data center study

J 0" fing i SRS
mean 24.208 24.211  24.198 24.215  24.219
variance 0.538 0.497 0.451 0.435 0.782

In this study, we also compared the performance of the proposed sequential
designs with simple random sampling, a non-sequential design, given the same
sample size. In each simulation, simple random samples were generated with the
same sample size as the corresponding sequential design without replacement,
and the unbiased estimator is denoted by fisrs. The result in Table 3 shows that
the proposed design obtains 44.4% variance reduction compared with simple
random sampling.

6. Summary and Concluding Remarks

We focus on experimental design for a specific type of irregular region called
slid-rectangular region, where the desirable range of one factor depends on the
level of another factor. For slid-rectangular regions, we introduce a sequential
design procedure that achieves space-filling properties for design points chosen
without replacement. This procedure provides flexibility on the size of the exper-
iment so that it can be determined according to the objective of the experiment.
Unbiased estimators are introduced for the procedure and improvements are ob-
tained by the Rao-Blackwell Theorem. An unbiased estimator is recommended
which is efficient and easy to compute. Examples show significant improvement
in variance reduction over existing approaches.

The computation of P(sg) can be intensive when N is large because it re-
quires the consideration of N! permutations. The approach is mainly recom-
mended for the experiments in which observations of interest are usually clus-
tered in a few locations; if the number of network with size greater than one in
the sample is small, computation is reduced. We are currently developing algo-
rithms to efficiently evaluate P(sg) under a general setting. The results will be
reported elsewhere.
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Appendix A: Derivation of (87) and (33)

Because S is the sample space containing all possible initial samples, we have
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fars = E(fipr | D = d), which can be written as

. i C I(g(sp) = d)
:E: P(S = s D:dZE 0 . Al
HRB SIES/JM ( 0l ) S/GSMMZS{)ES I(g(sh) = d) (A.1)
0 0

We decompose jips into a part that excludes the sample edge units and another
that includes the sample edge units. With e; the indicator variable taking value

1 if the initial sample i is an edge point and e} =) ej, we have

JEY;

P(SO‘Z) * P(SO‘Z) * * P(SO‘Z) *
yi_z P yi(l—ei)‘*‘; P(so) Y; €

= Plso) = Plso)
= Psol) Lo P(soli)
- ; P(SO) Y; (]' - ei) + 7;68221 P(S(]) Yi- (AQ)

The first term on the right side of (A=) is fixed given D = d, so based on (A1)
and (A=) we have

) -1 L P(soli) , *
= (20) {3 g1
+L70 Y {I (9(sp) =d) D ]_;(89? yi] }

spEeS i€s(), e;=1 0

where L = nges I(g(s() = d).
The variance of firp can be easily derived as var(iirg) — E[(fips — firs)?],
details are omitted.

Appendix B: Derivation of (B1M) and (B1T)

The easy to compute unbiased estimator is

it = B(ing | D' = d) = 3 juyP(S = sy | D" = d°). (B.1)

spES

Similar to Appendix A, we decompose [ip; as

o~ Plsoli) o _ 5 Plsold) iy ey g Plool)
; P(so) Yi = ; P(s0) y; (1 —6,-)4-; P(s0) yse;. (B.2)

With ¢;(¢) an indicator variable taking 1 if the unit ¢ belongs to level [ in factor
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x1 and 0 otherwise, the second term on the right side of (B=) can be written as

N, P(soli . N, P(soli
3 raptie= 3 | 3 pay vt
P(s

=1 lev
0l?)

= Z Z P(SO) yltl(z)‘

leV i€sp, ;=1

The first term on the right side of (B=) remains the same given D* = d*, therefore
we have

(soli) )\ I(glsh) = d*)
2 (Z P(s >236€s I(g(s) = d°)

spES
N P(sgli « % 1 , . P(sli .

N ) N
:Zifzo;)yf(l_ej)+(;>z{ZI(Q(Sé)Zd*){ > P)P(fg‘))yitl(i)}}'

/
leV > sies i€s(), e;=1 0
(B.3)

Because each edge point with the same level of z; has an equal probability of be-
ing selected as the first unit, and only one is selected, we have P(s{|x1 = 1)/P(s;)
the same given [ and D* = d*. Denote this value by P(so|z1 =1)/P(so). Hence,
the second term on the right side of (B23) can be written as

(X P =S sy =] S ]}

lev spEeS i€s), e;=1
and since
L*
! . .
S et =a)| X wu] -5 X
5,€S i€s(), e;=1 Sl jes, es=1
: Z ezyztl
S jes
we have

N . .
() [P gy Pl =l g et
J

lev i€s s
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where s is the final sample and e,, represents the total number of edge points
with level [ in z; in the sample. Therefore, (BI0) holds.
For the variance, we have

N

var(f1*) = var(jiar) — E[(fin — £17)

—var(ing) — Y DS 1(g(sh) = ) as — 1)
d*eD* s,€S
(i) - Y T Y {rtats = )
d*eD* spEeS
P(spli) ; _ P(splzin = 1) — eyiti(i) ?
[2(2 TEARA T R Dl )|}
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