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Abstract: Despite the prevalence of space-filling designs in many applications, most

of the existing approaches are unsuitable for irregular regions. A new sequential

design procedure is introduced for a specific type of irregular region. This procedure

constructs designs with desirable space-filling properties and without replacement

of design points. Moreover, it provides flexibility on the size of the experiments.

Efficient and easy-to-compute unbiased estimators are introduced. The various

estimators are compared using a simulation and a data center thermal management

example.
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1. Introduction

Space-filling designs, such as Latin hypercube designs (LHDs) (McKay, Beck-

man, and Conover (1979)), are widely used to spread out the design points in

an experimental region (Santner, Williams, and Notz (2003); Fang, Li, and Sud-

jianto (2006)), but are limited by the rectangular assumption on the experimental

region. When the design region is irregular, direct application of the conven-

tional designs can lose such desirable space-filling properties as one-dimensional

balance. A specific type of irregular region commonly occurring in practice is

a slid-rectangular region (Hung, Amemiya, and Wu (2010)), a two-dimensional

region where the feasible range of one factor depends on the level of the sec-

ond factor. For example, Figure 1 (Hung (2011)) concerns design for sensor

placement over a slid-rectangular region (gray area) in a data center thermal

management problem. Other examples occur in ecological study, environmental

sampling (Stevens and Olsen (2004)), and computer experiments (Hung (2011)).

Challenging issues arise in designing experiments with slid-rectangular re-

gions: how to spread out the initial design points uniformly; how to select the

follow-up design of experiments to efficiently improve estimation. As to the first

issue, probability-based LHDs (Hung, Amemiya, and Wu (2010)) can maintain

the one-dimensional balance property with design points evenly spread out over

the region. Figure 2 shows a data center example with a slid-rectangular region
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Figure 1. A data center.

Figure 2. (a)A 22-run PLHD. (b) The resulting APLHD.

in which sensors can be placed. The circles shown in Figure 2(a) are design points

of a 22-run probability-based LHD.

Adaptive probability-based Latin hypercube designs (APLHDs) have been

proposed (Hung (2011)) to select follow-up design points. Here a criterion is

defined for sequentially adding design points based on the response. When the

response at an initial design point satisfies the criterion, additional points in the

neighborhood of that point are added to the sample; if any of the additionally
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added points satisfy the condition, then more points may be added to the sample.

This procedure continues until no more points meet the condition. In Figure

2(a), the bullet points satisfy the prespecified condition, but are not necessarily

included in the initial sample. The final sample is denoted by the circles in

Figure 2(b). The set of points satisfying the condition in the neighborhood of

one another is called a network. For example, in Figure 2(b), the four bullet

points in the middle form a network of size four.

APLHD is intuitive and works well in general, but design points may be

sampled more than once. Then, the final number of distinct networks selected is

random, and the size of the experiment may exceed a predetermined cost limit.

Further, the procedure allows the selection of networks with replacement, so de-

sign points cannot be spread out as uniformly as they should be and for some

experiments, observations with the same design setting provide little or no infor-

mation. This issue is particularly important for computer experiments (Santner,

Williams, and Notz (2003)) in which replicates should be avoided because the

outputs are deterministic (i.e., the same input produces exactly the same output.)

We discuss a new sequential sampling procedure in this paper. Design points

are selected without replacement and the one-dimensional balance property is

maintained. This approach can efficiently reduce estimation variance, and the

size of the experiment can be fixed in advance. This procedure is different from

the existing sampling approaches (Thompson (1990, 1991); Thompson and Seber

(1996); Salehi and Seber (1997)) that are developed for rectangular regions with

independent and equal individual inclusion probabilities. For slid-rectangular

regions, the inclusion probabilities are no longer equal, they are updated sequen-

tially according to the shape of the region and the design points selected earlier.

There are challenges in the development of the new approach, especially in the

construction of unbiased estimators.

The remainder of the article is organized as follows. A sequential design pro-

cedure is introduced in Section 2. In Section 3, unbiased estimators are proposed

and their variances are studied. Further improvements are achieved by reducing

the variance and simplifying the calculation. These estimators are illustrated

and compared via a toy example in Section 4. In Section 5, the performance

of the proposed methods is demonstrated in a data center thermal management

example. Conclusions are given in Section 6.

2. Design Procedure

Assume that factors x1 and x2 form a slid-rectangular region. Factor x2
has, for now, t levels. For the jth level of x2, the feasible interval for x1 isEj =

(Aj , Bj), j = 1, . . . , t, with A = min{Aj} and B = max{Bj}. The interval [A,B]

is divided into n equally spaced subintervals and n levels of x1 are assigned to
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the middle of these subintervals, x11 = 1, . . . , x1n = n. For each level of x1, the

feasible range for x2 is Ci, i = 1, . . . , n.

A neighborhood is defined for each design point, consisting of, in addition

to itself, the intersection of the four spatially adjacent points and the slid-

rectangular region. For design point that satisfies a certain condition, its neigh-

borhood points are added to the sample; if any of these additional points satisfy

the condition, their neighborhood is added to the sample as well. Continually

adding points leads to a cluster of units whose edge points do not satisfy the

condition. The cluster minus its edge points is a network. Any point that does

not meet the condition forms a network of size 1.

Design points, together with their networks, are sampled sequentially with

the inclusion probabilities updated at every iteration. After selection of an ini-

tial point and its network, they are removed from the population and inclusion

probabilities are adjusted accordingly. Suppose we plan to select N initial design

points sequentially, N predetermined with N ≤ n, represented by ui = (x1i, x2i)
′.

For each level of x1, the feasible ranges for x2 are different and change at each

iteration, say Cil for x1 = i in the lth iteration, Ci1 = Ci.

Step 0: Let the initial sample space for x1 be Ω1 = (1, . . . , n). For l = 1, . . . , N ,

perform steps 1 to 3 iteratively.

Step 1: Randomly select a level of x1, denoted by tl, from the sample space Ωl,

and sample the design point ul by selecting a level of x2 with probability

P (x2l = j) = c−1
tll

if j ∈ Ctll and 0 otherwise, where ctll =
∑t

j=1 I[j ∈
Ctll]. Thus, x1l = tl.

Step 2: Sample the initial design point ul and its network W . If this network

contains all the units from some other levels of x1, denote the collection

of these x1 levels by w.

Step 3: Update the sample space of x1 by removing the set vl = {tl∪w}, Ωl+1 =

Ωl\vl. Remove the selected network from the population and update

the feasible regions Cil+1, i ∈ Ωl+1, by removing the units belonging to

network W .

Figure 3 depicts an example of a slid-rectangular region in which there are

three levels for factor x2 and the feasible regions of x1 depend on the levels of x2.

Factor x1 has three levels and the sample space is Ω1 = {1, 2, 3}. For each level

of x1, the feasible ranges of x2 are C11 = {1}, C21 = {1, 2}, and C31 = {2, 3}
respectively. The numbers shown in the cells are the responses. We consider

adding points adaptively when the observed response is larger than 8. Based

on this condition, it is clear that points (2, 2) and (3, 2) form a network of size

two. Let N = 3. Assume level 2 is selected randomly from Ω1, t1 = 2 in

the first iteration. The corresponding x2 coordinate is chosen with probability
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Figure 3. Illustrative example

P (x21 = j) = 1/2 for j = 1, 2. Let x21 = 2 be selected, so the first design point is

u1 = (2, 2). The selection of u1 leads to the selection of (3, 2), because they form a

network. Now remove this network from the population and update Ω2 = {1, 3}.
The new feasible ranges are C12 = {1} and C32 = {3}. In the second iteration,

suppose t2 = 3 is selected from Ω2. There is only one point available for this

level, therefore P (x22 = 3) = 1 and u2 = (3, 3). Update Ω3 = {1}, C13 = {1}
and P (x23 = 1) = 1. Hence, in the third iteration we have u3 = (1, 1).

The sequential design procedure has another advantage in that the final num-

ber of distinct networks selected, N , can be determined based on the objective

of the experiment. If the focus is to explore the experimental region uniformly,

it is desirable to have N = n because the resulting initial design is a probability-

based LHD and the one-dimensional balance property holds. On the other hand,

if the experiment is expensive or time-consuming, N can be a smaller number to

reduce costs. Compared with APLHD, this approach provides a better control

over the size of the experiment. It is possible that N is less than n; this happens

when there is a large network containing at least two adjacent levels of x1 and

at least one of them has all the units included in the network. In this situation,

there is a possibility that w ̸= ∅ at least once, and thus N < n. This rarely

occurs in practice because we mainly focus on experiments in which responses of

interest are clustered in a relatively small area.

3. Estimator

In this section, we focus on unbiased estimators for the population mean.

The individual inclusion probabilities are no longer equal, so the conventional

unbiased estimators cannot be directly used here. Since the new procedure fea-

tures unequal probability sampling without replacement, a Murthy-type unbiased

estimator (Murthy (1957)) is constructed. This estimator can be improved based

on the Rao-Blackwell Theorem to reduce variance. However, being different from

the conventional adaptive sampling (Salehi and Seber (1997)), the Rao-Blackwell

estimator is difficult to compute due to the unequal inclusion probabilities of the
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edge points. Thus, an easy-to-compute unbiased estimator is introduced that
provides a smaller variance with a simpler computation. Derivations of the un-

biased estimators of mean and variance are given in the Appendix.

3.1. Murthy’s estimator

LetK denote the number of networks in the population and y∗k, k = 1, . . . ,K,
be the set of ordered sample values with y∗k =

∑
j∈Ψk

yj , where Ψk is the set of
units in the kth network. Raj (1956) introduced a general approach to unbiased

estimators for unequal probability sampling without replacement based on the
fact that the scheme of selection of a unit at a particular draw depends on the

units already drawn in the sample, but not on the order in which they were
drawn. Following Raj, we consider

ω1 =

K∑
k=1

y∗kI1(nk > 0)

P1(nk > 0)
,

ω2 = y∗1 +

K∑
k=2

y∗kI2(nk > 0)

P2(nk > 0)
, (3.1)

ωi = y∗1 + · · ·+ y∗i−1 +
K∑
k=i

y∗kIi(nk > 0)

Pi(nk > 0)
,

where i = 3, . . . , N , Ii(nk > 0) is an indicator variable taking value 1 when the
kth network of the population is the ith network selected in the sample, and 0

otherwise. Pi(nk > 0) is the probability that the kth network is selected as the
ith sample, based on the updated feasible region in the iteration corresponding to

the ith sample. Let µ be the population mean. It is clear that E(ωi)/
∑

j cj = µ,

where cj =
∑t

l=1 I[l ∈ Cj ] is the number of feasible points for the jth level of x1.
Therefore, according to Raj (1956), an unbiased estimator of µ is

µ̂R = (
n∑

j=1

cj)
−1

N∑
i=1

uiωi, (3.2)

where ui can be any constant satisfying
∑N

i=1 ui = 1.
Murthy (1957) proposed a modification of Raj’s estimator, by constructing

an unordered version of Raj’s ordered unbiased estimator. Let s∗0 be an ordered

sample of the N networks selected according to the procedure in Section 2, T be
the set of all samples obtained by permuting the coordinates of the elements of

s∗0, and s0 be the unordered sample set of the N network. Murthy introduced
the unbiased estimator

µ̂M = (
∑
j

cj)
−1

∑
s∗0∈T

P (s∗0)µ̂R(s
∗
0)

P (s0)
(3.3)
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for the population mean, with a variance less than that of µ̂R. By choosing
u1 = 1 and ui = 0 for i > 1, Murthy’s estimator can be written as

µ̂M = (
∑
j

cj)
−1

N∑
i=1

P (s0|i)
P (s0)

y∗i , (3.4)

where P (s0|i) is the conditional probability of choosing sample s given network
i has been chosen as the first network. The variance of (3.4) is (Murthy (1957);
Cochran (1977))

var(µ̂M ) =
(∑

j

cj

)−2
[ K∑

i=1

K∑
j<i

(
1−

∑
a,b∈s0

P (s0|a)P (s0|b)
P (s0)

)
(

y∗i
P1(ni > 0)

−
y∗j

P1(nj > 0)

)2

P1(ni > 0)P1(nj > 0)

]
, (3.5)

and its unbiased estimator is

v̂ar(µ̂M ) =
(∑

j

cj

)−2
[ N∑

i=1

N∑
j<i

(
P (s0|i, j)
P (s0)

− P (s0|i)P (s0|j)
P (s0)2

)
(

y∗i
P1(ni > 0)

−
y∗j

P1(nj > 0)

)2

P1(ni > 0)P1(nj > 0)

]
, (3.6)

where P (s0|i, j) denotes the probability of the sample s0 given that the points i
and j are selected in either order in the first two draws.

3.2. Rao-Blackwell estimator

The estimator µ̂M can be improved by incorporating more of the information
obtained in the final sample. In particular, the observations from edge points are
used in the estimator only if they are included in the first N samples. Thus,
according to the Rao-Blackwell method, an improved unbiased estimator can be
obtained by calculating the conditional expectation of µ̂M given the minimum
sufficient statistics.

According to the new procedure, the minimum sufficient statistic, d, is the
final unordered sample of the ν distinct networks, with labels denoted by d =
{(i1, yi1), . . . , (iν , yiν )}. Define D as the sample space for d, g(s′0) as the function
that maps an initial design s′0 into a value of d, and S as the sample space
containing all possible initial samples. An improved unbiased estimator, µ̂RB =
E(µ̂M | D = d), can be written as

µ̂RB =
(∑

j

cj

)−1
{ N∑

i=1

P (s0|i)
P (s0)

y∗i (1− e∗i )

+L−1
∑
s′0∈S

[
I(g(s′0) = d)

∑
i∈s′0, ei=1

P (s′0|i)
P (s′0)

yi

]}
, (3.7)
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where L =
∑

s′0∈S
I(g(s′0) = d), e∗i =

∑
j∈Ψi

ej , and ej = 1 if unit j is an edge

point and ej = 0 otherwise. The variance of this improved unbiased estimator is

var(µ̂RB) = var(µ̂M )−
∑
d∈D

P (d)

L

∑
s̃0∈S

I(g(s̃0) = d)[µ̂M − µ̂RB]
2, (3.8)

where P (d) is the probability that D = d. An unbiased estimator of the variance

is ṽar(µ̂RB) = v̂ar(µ̂M ) − L−1
∑

s̃0∈S I(g(s̃0) = d)[µ̂M − µ̂RB]
2. A more efficient

estimator can be further obtained by conditioning on the minimum sufficient

statistic

v̂ar(µ̂RB) = E(ṽar(µ̂RB)|D = d)

=
1

L

∑
s̃0=S

I(g(s̃0) = d)v̂ar(µ̂M )− 1

L

∑
s̃0∈S

I(g(s̃0) = d)[µ̂M − µ̂RB]
2. (3.9)

3.3. Easy-to-compute Rao-Blackwell estimator

The RB estimator is computationally difficult for large designs because all

compatible designs must be evaluated to obtain the estimation. This is not

surprising, given that the same difficulty is experienced in some adaptive designs

(Dryver and Thompson (2005); Hung (2011)). We construct a new unbiased

estimator obtained by conditioning on a carefully chosen sufficient statistic, not

the minimum.

Decompose the final sample s into sc and sc̄, sc the set of units in the

sample for which the condition to sample adaptively is satisfied. Take V as a

collection of x1 coordinates at which edge points occur in the initial sample. Using

the notation of Section 3.2, a sufficient statistic is d∗ = {(i, yi), V, (j, yj) : i ∈
sc, j ∈ sc̄}. The sample space for d∗ is defined by D∗ and an improved unbiased

estimator can be derived by conditioning on d∗ as µ̂∗ = E(µ̂M | D∗ = d∗). Let

esl =
∑

i∈s eitl(i) and tl(i) be an indicator variable taking 1 if the unit i belongs

to level l in factor x1 and 0 otherwise. This estimator can be written as

µ∗ =
(∑

j

cj

)−1
{ N∑

i=1

P (s0|i)
P (s0)

y∗i (1− e∗i ) +
∑
l∈V

P (s0|x11 = l)

P (s0)

∑
i∈s

eiyitl(i)

esl

}
.

(3.10)

The variance is

var(µ̂∗) = var(µ̂M )−
∑

d∗∈D∗

P (d∗)

L∗

∑
s′0∈S

{
I(g(s′0) = d∗)

[∑
l∈V

( ∑
i∈s′0, ei=1

P (s′0|i)
P (s′0)

yitl(i)−
P (s′0|x11 = l)

P (s′0)

∑
i∈s

eiyitl(i)

esl

)]2}
. (3.11)
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An unbiased estimator of the variance is

ṽar(µ̂∗) = v̂ar(µ̂M )− 1

L∗

∑
s′0∈S

{
I(g(s′0) = d∗)

[∑
l∈V

( ∑
i∈s′0, ei=1

P (s′0|i)
P (s′0)

yitl(i)−
P (s′0|x11 = l)

P (s′0)

∑
i∈s

eiyitl(i)

esl

)]2}
,

and a more efficient estimator for the variance is

v̂ar(µ̂∗) = E[ṽar(µ̂∗) | D∗ = d∗]

=
1

L∗

∑
s′0∈S

I(g(s′0) = d∗)v̂ar(µ̂M )− 1

L∗

∑
s′0∈S

{
I(g(s′0) = d∗)

[∑
l∈V

( ∑
i∈s′0, ei=1

P (s′0|i)
P (s′0)

yitl(i)−
P (s′0|x11 = l)

P (s′0)

∑
i∈s

eiyitl(i)

esl

)]2}
.

4. Simulation Study

The small population example in Figure 3 is revisited in order to show the

computations and properties of the unbiased estimators in relation to the esti-

mators in APLHDs. APLHDs partition the population into distinct networks

and selection of any point within the network leads to inclusion in the sample

of every other design point in the network. More than one of the initial design

points can fall in the same network and be selected more than once.

The population in Figure 3 consists of five points. Based on APLHD, there

are four possible designs listed in Table 1. For each row in the table, the first

three points form the initial design according to probability-based LHD and the

rest of them are added adaptively. For each design, we evaluated two unbiased

estimators introduced by Hung (2011), δ̂ and its Rao-Blackwell estimator δ̂RB.

The estimator δ̂RB is derived conditional on the minimum sufficient statistics, and

therefore it is the most efficient. Hung (2011) proposed another Rao-Blackwell

estimator, δ̂∗. It may not be as efficient as δ̂RB but it is easier to compute. This

estimator has the same performance as δ̂ in this example so it is not listed in

the table. Variances of the unbiased estimators are also reported. The last row

summarizes the average performance of these estimators over all possible designs.

Note that the third design in the table has two initial design points falling in the

same network, and therefore the network {(2, 2), (3, 2)} is selected twice.

With the new procedure, there are 18 possible ordered samples listed in

Table 2, along with their probabilities reported in column p. Three unbiased

estimators, µ̂M , µ̂RB, and µ̂∗, and their variances were evaluated for each design.

The value of V for each design is listed for the calculation of µ̂∗. Similar to
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Table 1. All possible APLHDs and the unbiased estimators

sampler δ̂ δ̂RB v̂ar(δ̂) v̂ar(δ̂RB)
(1, 1), (2, 1), (3, 2); (2, 2), (3, 3) 5.87 6.40 6.04 3.16

(1, 1), (2, 1), (3, 3); 3.20 3.20 2.96 2.96
(1, 1), (2, 2), (3, 2); (2, 1), (3, 3) 5.47 6.40 6.42 3.16
(1, 1), (2, 2), (3, 3); (2, 1), (3, 2) 7.87 6.40 0.34 3.16

Mean 5.60 5.60 3.94 3.11

Table 2. All possible sequential designs without replacement and the unbi-
ased estimators

ordered sampler p V µ̂M µ̂∗ µ̂RB v̂ar(µ̂) v̂ar(µ̂∗) v̂ar(µ̂RB)
(1, 1), (2, 1), (3, 2); (2, 2), (3, 3) 1/24 2 5.73 5.73 6.40 5.14 5.14 2.56
(1, 1), (3, 2), (2, 1); (2, 2), (3, 3) 1/12 2 5.73 5.73 6.40 5.14 5.14 2.56
(2, 1), (1, 1), (3, 2); (2, 2), (3, 3) 1/24 2 5.73 5.73 6.40 5.14 5.14 2.56
(2, 1), (3, 2), (1, 1); (2, 2), (3, 3) 1/24 2 5.73 5.73 6.40 5.14 5.14 2.56
(3, 2), (1, 1), (2, 1); (2, 2), (3, 3) 1/12 2 5.73 5.73 6.40 5.14 5.14 2.56
(3, 2), (2, 1), (1, 1); (2, 2), (3, 3) 1/12 2 5.73 5.73 6.40 5.14 5.14 2.56

(1, 1), (2, 1), (3, 3); 1/24 2 3.20 3.20 3.20 0 0 0
(1, 1), (3, 3), (2, 1); 1/24 2 3.20 3.20 3.20 0 0 0
(2, 1), (1, 1), (3, 3); 1/24 2 3.20 3.20 3.20 0 0 0
(2, 1), (3, 3), (1, 1); 1/24 2 3.20 3.20 3.20 0 0 0
(3, 3), (1, 1), (2, 1); 1/24 2 3.20 3.20 3.20 0 0 0
(3, 3), (2, 1), (1, 1); 1/24 2 3.20 3.20 3.20 0 0 0

(1, 1), (2, 2), (3, 3); (2, 1), (3, 2) 1/12 3 7.07 7.07 6.40 0.87 0.87 2.56
(1, 1), (3, 3), (2, 2); (2, 1), (3, 2) 1/24 3 7.07 7.07 6.40 0.87 0.87 2.56
(2, 2), (1, 1), (3, 3); (2, 1), (3, 2) 1/12 3 7.07 7.07 6.40 0.87 0.87 2.56
(2, 2), (3, 3), (1, 1); (2, 1), (3, 2) 1/12 3 7.07 7.07 6.40 0.87 0.87 2.56
(3, 3), (1, 1), (2, 2); (2, 1), (3, 2) 1/24 3 7.07 7.07 6.40 0.87 0.87 2.56
(3, 3), (2, 2), (1, 1); (2, 1), (3, 2) 1/24 3 7.07 7.07 6.40 0.87 0.87 2.56

Mean 5.60 5.60 5.60 2.00 2.00 1.71

the previous table, the last row summarizes the average performances of these

estimators over all designs.

The first design in Table 2 is spelled out as an example. The ordered ob-

servations are denoted by y11, y21, and y32, respectively. Additional points y22
and y33 are added sequentially to the final sample. For Murthy’s unbiased es-

timator, we first evaluate probabilities P (s0|{11}) = 3/8, P (s0|{21}) = 1/2,

P (s0|{22, 32}) = 1/2, and P (s0) = 9/24, where P (s0|{11}) is the conditional

probability of choosing the unordered sample given network (1, 1) has been cho-

sen as the first network. The unbiased estimator is

µ̂M =
1

5

[
y11

3/8

9/24
+ y21

1/2

9/24
+ (y22 + y32)

1/2

9/24

]
= 5.73.
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To calculate µ̂RB for the first design, we need the information from twelve de-

signs, including the first and last six designs, because they share the same final

unordered sample. We need probabilities P (s0|{33}) = 1/2 and P (s0) = 9/24

for the last six designs, because (3, 3) is the edge point collected in the initial

sample. Thus, we have

µ̂RB =
1

5

{
y11

3/8

9/24
+ (y22+ y32)

1/2

9/24
+

1

12

[
y21

1/2

9/24
× 6+ y33

1/2

9/24
× 6

]}
= 6.40.

In this example, µ̂∗ is the same as µ̂M because V = 2 and there is only one edge

point at the second level of x1.

Comparing Tables 1 and 2, it is clear that the design constructed without

replacement is more efficient than APLHD in terms of variance reduction. The

average variance of µ̂M is 36% (=(3.11 − 2)/3.11) smaller than δ̂RB, and the

variance is further reduced by 15% (=(2− 1.71)/2) using µ̂RB.

5. Application in Data Center Thermal Management

We consider the data center thermal management example in Hung (2011).

The objective is to model the thermal distribution in the data center and the

final goal is to design a data center with an efficient heat-removal mechanism

(Schmidt, Cruz, and Iyengar (2005); Hamann (2008)). To monitor and study the

thermal distribution, sensors are attached to the surfaces of facilities to measure

temperature. The facilities are located in six rows with different lengths, which

result in a slid-rectangular experimental region.

Sequential designs are desirable in reducing estimation variances because

hot spots are usually clustered in a few locations of the data center, with large

portions of the region remaining cool. In this example, we consider adding design

points if the observed temperature is at least 34◦C.

To compare performance with APLHDs, we conducted simulations based on

the snapshot of the data center temperatures reported in Hung (2011). With

the snapshot data, detailed temperature observations are available for all 166

sites, allowing comparisons based on different choices of design. The simulations

consisted of 1,000 iterations. The x1 coordinate was divided into 24 equally

spaced intervals and we assumed N = 24. For the Rao-Blackwell estimators,

we considered δ̂∗ and µ̂∗ because they are easy to compute and recommended in

practice. The estimated mean temperatures and estimated variances for all the

unbiased estimators are summarized in Table 3. The proposed sequential design

without replacement outperforms δ̂ and δ̂∗ based on APLHDs. In particular, µ̂∗

has an approximate 12.5% variance reduction compared with δ̂∗ using APLHDs.

The average sample size for the sequential design without replacement was 27.53,

which is slightly smaller than that for APLHDs, 28.81.
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Table 3. Comparison of estimators in the data center study

δ̂ δ̂∗ µ̂M µ̂∗ µ̂SRS

mean 24.208 24.211 24.198 24.215 24.219
variance 0.538 0.497 0.451 0.435 0.782

In this study, we also compared the performance of the proposed sequential

designs with simple random sampling, a non-sequential design, given the same

sample size. In each simulation, simple random samples were generated with the

same sample size as the corresponding sequential design without replacement,

and the unbiased estimator is denoted by µ̂SRS. The result in Table 3 shows that

the proposed design obtains 44.4% variance reduction compared with simple

random sampling.

6. Summary and Concluding Remarks

We focus on experimental design for a specific type of irregular region called

slid-rectangular region, where the desirable range of one factor depends on the

level of another factor. For slid-rectangular regions, we introduce a sequential

design procedure that achieves space-filling properties for design points chosen

without replacement. This procedure provides flexibility on the size of the exper-

iment so that it can be determined according to the objective of the experiment.

Unbiased estimators are introduced for the procedure and improvements are ob-

tained by the Rao-Blackwell Theorem. An unbiased estimator is recommended

which is efficient and easy to compute. Examples show significant improvement

in variance reduction over existing approaches.

The computation of P (s0) can be intensive when N is large because it re-

quires the consideration of N ! permutations. The approach is mainly recom-

mended for the experiments in which observations of interest are usually clus-

tered in a few locations; if the number of network with size greater than one in

the sample is small, computation is reduced. We are currently developing algo-

rithms to efficiently evaluate P (s0) under a general setting. The results will be

reported elsewhere.
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Appendix A: Derivation of (3.7) and (3.8)

Because S is the sample space containing all possible initial samples, we have
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µ̂RB = E(µ̂M | D = d), which can be written as

µ̂RB =
∑
s′0∈S

µ̂MP (S = s′0 | D = d) =
∑
s′0∈S

µ̂M
I(g(s′0) = d)∑

s′0∈S
I(g(s′0) = d)

. (A.1)

We decompose µ̂M into a part that excludes the sample edge units and another

that includes the sample edge units. With ei the indicator variable taking value

1 if the initial sample i is an edge point and e∗i =
∑

j∈Ψi
ej , we have

N∑
i=1

P (s0|i)
P (s0)

y∗i =

N∑
i=1

P (s0|i)
P (s0)

y∗i (1− e∗i ) +

N∑
i=1

P (s0|i)
P (s0)

y∗i ei

=
N∑
i=1

P (s0|i)
P (s0)

y∗i (1− e∗i ) +
∑

i∈s0, ei=1

P (s0|i)
P (s0)

yi. (A.2)

The first term on the right side of (A.2) is fixed given D = d, so based on (A.1)

and (A.2) we have

µ̂RB =
(∑

j

cj

)−1
{ N∑

i=1

P (s0|i)
P (s0)

y∗i (1− e∗i )

+L−1
∑
s′0∈S

[
I(g(s′0) = d)

∑
i∈s′0, ei=1

P (s′0|i)
P (s′0)

yi

]}
,

where L =
∑

s′0∈S
I(g(s′0) = d).

The variance of µ̂RB can be easily derived as var(µ̂RB) − E[(µ̂M − µ̂RB)
2],

details are omitted.

Appendix B: Derivation of (3.10) and (3.11)

The easy to compute unbiased estimator is

µ̂∗ = E(µ̂M | D∗ = d∗) =
∑
s′0∈S

µ̂MP (S = s′0 | D∗ = d∗). (B.1)

Similar to Appendix A, we decompose µ̂M as

N∑
i=1

P (s0|i)
P (s0)

y∗i =

N∑
i=1

P (s0|i)
P (s0)

y∗i (1− e∗i ) +

N∑
i=1

P (s0|i)
P (s0)

y∗i ei. (B.2)

With tl(i) an indicator variable taking 1 if the unit i belongs to level l in factor
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x1 and 0 otherwise, the second term on the right side of (B.2) can be written as

N∑
i=1

P (s0|i)
P (s0)

y∗i ei =
∑
l∈V

[ N∑
i=1

P (s0|i)
P (s0)

y∗i eitl(i)

]
=

∑
l∈V

∑
i∈s0, ei=1

P (s0|i)
P (s0)

yitl(i).

The first term on the right side of (B.2) remains the same givenD∗ = d∗, therefore

we have

∑
s′0∈S

( N∑
i=1

P (s0|i)
P (s0)

y∗i

)
I(g(s′0) = d∗)∑

s′0∈S
I(g(s′0) = d∗)

=

N∑
i=1

P (s0|i)
P (s0)

y∗i (1−e∗i )+(
1

L∗ )
∑
s′0∈S

{
I(g(s′0)=d∗)

∑
l∈V

[ ∑
i∈s′0, ei=1

P (s′0|i)
P (s′0)

yitl(i)

]}

=

N∑
i=1

P (s0|i)
P (s0)

y∗i (1−e∗i )+(
1

L∗ )
∑
l∈V

{ ∑
s′0∈S

I(g(s′0)=d∗)

[ ∑
i∈s′0, ei=1

P (s′0|i)
P (s′0)

yitl(i)

]}
.

(B.3)

Because each edge point with the same level of x1 has an equal probability of be-

ing selected as the first unit, and only one is selected, we have P (s′0|x1 = l)/P (s′0)

the same given l and D∗ = d∗. Denote this value by P (s0|x1 = l)/P (s0). Hence,

the second term on the right side of (B.3) can be written as

(
1

L∗ )
∑
l∈V

P (s0|x1 = l)

P (s0)

{ ∑
s′0∈S

I(g(s′0) = d∗)

[ ∑
i∈s′0, ei=1

yitl(i)

]}

and since ∑
s′0∈S

I(g(s′0) = d∗)

[ ∑
i∈s′0, ei=1

yitl(i)

]
=

L∗

esl

∑
i∈s, ei=1

yitl(i)

=
L∗

esl

∑
i∈s

eiyitl(i),

we have

µ∗ =
(∑

j

cj

)−1
{ N∑

i=1

P (s0|i)
P (s0)

y∗i (1− e∗i ) +
∑
l∈V

P (s0|x11 = l)

P (s0)

∑
i∈s

eiyitl(i)

esl

}
,
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where s is the final sample and esl represents the total number of edge points

with level l in x1 in the sample. Therefore, (3.10) holds.

For the variance, we have

var(µ̂∗) = var(µ̂M )− E[(µ̂M − µ̂∗)2]

= var(µ̂M )−
∑

d∗∈D∗

P (d∗)

L∗

∑
s′0∈S

I(g(s′0) = d∗)(µ̂M − µ̂∗)2

= var(µ̂M )−
∑

d∗∈D∗

P (d∗)

L∗

∑
s′0∈S

{
I(g(s′0) = d∗)

[∑
l∈V

( ∑
i∈s′0, ei=1

P (s′0|i)
P (s′0)

yitl(i)−
P (s′0|x11 = l)

P (s′0)

∑
i∈s

eiyitl(i)

esl

)]2}
.
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