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Abstract: Large and moderate deviation probabilities play an important role in

many applied areas, such as insurance and risk analysis. This paper studies the

exact moderate, and large deviation asymptotics in non-logarithmic form for linear

processes with independent innovations. The linear processes we analyze are general

and they include the long memory case. We give an asymptotic representation for

the probability of the tail of the normalized sums and specify the zones in which it

can be approximated either by a standard normal distribution or by the marginal

distribution of the innovation process. The results are then applied to regression

estimates, moving averages, fractionally integrated processes, linear processes with

regularly varying exponents, and functions of linear processes. We also consider

the computation of value at risk and expected shortfall, fundamental quantities in

risk theory and finance.
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1. Introduction and Notations

Let (ξi)i∈Z be a sequence of independent and identically distributed centered

random variables with finite second moment, and cni a sequence of constants.

This paper focuses on the moderate and large deviations in non-logarithmic form

for the linear process

Sn =

kn∑
i=1

cniξi. (1.1)

This class of linear processes is versatile enough to help analyze regression es-

timates, moving averages that include long memory processes, linear processes

with regularly varying coefficients and fractionally integrated processes.

Our goal is to find an asymptotic representation for the tail probabilities

of the normalized sums defined by (1.1). Estimations of deviation probabili-

ties occur in a natural way in many applied areas, including insurance and risk

analysis.
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We aim to find a function Nn(x) such that, as n → ∞,

P(Sn ≥ xσn)

Nn(x)
= 1 + o(1), where σ2

n = ∥Sn∥22 = Eξ21
kn∑
i=1

c2ni. (1.2)

If x ≥ 0 is fixed, then (1.2) is the central limit theorem by letting Nn(x) =

1 − Φ(x), where Φ(x) is the standard normal distribution function. We call

P(Sn/σn ≥ x) the moderate or large deviation probabilities depending on the

speed of convergence x = xn → ∞. These tail probabilities of rare events can be

very small. Here we call (1.2) the exact approximation, which is more accurate

than the logarithmic version

logP(Sn/σn ≥ x)

logNn(x)
= 1 + o(1), (1.3)

which is often used in the literature in the context of large or moderate deviation.

For example, if P(Sn/σn ≥ x) = 10−4 and Nn(x) = 10−5, then their logarithmic

ratio is 0.8, not very different from 1, while the ratio for the exact version (1.2) is

as big as 10. A multiplicative factor of this order can cause substantially different

industrial standards in designing projects that can survive natural disasters.

As early as 1929, Khinchin considered the problem of moderate and large

deviation probabilities in non-logarithmic form for independent Bernoulli ran-

dom variables. The first large deviation probability result appeared in Nagaev

(1965). Nagaev (1969) studied large deviation probabilities of i.i.d. random vari-

ables with regularly varying tails. Mikosch and Nagaev (1998) applied the large

deviation probabilities for heavy-tailed random variables to insurance mathemat-

ics. The review work on this topic can be found in Nagaev (1979) and Rozovski

(1993). Rubin and Sethuraman (1965), Slastnikov (1978), and Frolov (2005)

considered the moderate or large deviations for arrays of independent random

variables. Nagaev (1979) presented a useful result: in (1.1) assume kn = n,

cni ≡ 1, and that ξi has a regularly varying right tail,

P(ξ0 ≥ x) =
h(x)

xt
as x → ∞ for some t > 2, (1.4)

where h(x) is a slowly varying function (Bingham, Goldie, and Teugels (1987)).

Here limx→∞ h(λx)/h(x) = 1 for all λ > 0. If, in addition, for some p > 2 ξ0 has

absolute moment of order p, then

P(
n∑

i=1

ξi ≥ xσn) = (1− Φ(x))(1 + o(1)) + nP(ξ0 ≥ xσn)(1 + o(1)) (1.5)

for n → ∞ and x ≥ 1. Note that (1.5) implies (1.2) with

Nn(x) = (1− Φ(x)) + nP(ξ0 ≥ xσn). (1.6)
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Hence if 1 − Φ(x) = o[nP(ξ0 ≥ xσn)] (resp. nP(ξ0 ≥ xσn) = o(1 − Φ(x))), then
in (1.2) we can also choose Nn(x) = 1− Φ(x) (resp. Nn(x) = nP(ξ0 ≥ xσn)).

The study of moderate and large deviation probabilities in non-logarithmic
form for dependent random variables is still in its initial stage. Ghosh (1974)

considered moderate deviations for m-dependent random variables. Chen (2001)
obtained a moderate deviation result for Markov processes. Grama (1997) and

Grama and Haeusler (2006) investigated the martingale case. Mikosch and
Samorodnitsky (2000) obtained the limit limx→∞ P(Xk > x)/P(|ξ0| ≥ x), where
Xk =

∑∞
j=−∞ ak−jξj , ξj are i.i.d. with mean 0 satisfying the regular varia-

tion and tail balance conditions for index t > 1 and coefficients aj satisfying∑∞
j=−∞ |jaj | < ∞. Wu and Zhao (2008) studied moderate deviations for sta-

tionary processes which applies to many time series models. However the results
in the latter two papers can only be applied to linear processes with short memory
and/or their transformations.

For analyzing linear processes with long memory and for obtaining other
interesting applications, we study processes of type (1.1). Under mild conditions

on the coefficients, we point out the zones in which the deviation probabilities
can be approximated either by a standard normal distribution or by using the

distribution of ξ0. Our main result is that (1.5) holds in our case with

Nn(x) = (1− Φ(x)) +

kn∑
i=1

P(cniξ0 ≥ xσn).

The paper has the following structure. Section 2 presents a general moderate and
large deviation result and various applications. Section 3 illustrates the results

of a numerical study. The proofs are given in the supplementary Material of this
paper (Peligrad et al. (2013)).

We introduce here the notation that will be used throughout this paper:

an ∼ bn means that limn→∞ an/bn = 1, an = O(bn) and also an ≪ bn mean
lim supn→∞ an/bn < ∞; an = o(bn) if limn→∞ an/bn = 0. By ∥X∥p we denote

(E|X|p)1/p. The notation l(·), h(·), and ℓ(·) denote slowly varying functions. By
convention, 0/0 is interpreted as 0.

2. Main Results

Throughout, we assume the following,

Condition A. (ξi)i∈Z, are i.i.d. centered random variables with finite second
moment, σ2 = Eξ20 .

2.1. General linear processes

Our first results apply to general linear processes of type (1.1) with i.i.d.
innovations. For cni > 0 and t > 0, let
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Bnt =

kn∑
i=1

ctni, (2.1)

σ2
n = var(Sn) = Bn2Eξ20 , (2.2)

Dnt = B
−t/2
n2 Bnt. (2.3)

Our basic assumption is the uniform asymptotic negligibility of the variance of

individual summands,
max

1≤i≤kn
c2ni/σ

2
n → 0. (2.4)

Our first theorem extends Nagaev’s result in (1.5) to general linear processes.

Theorem 1. Assume that (ξi)i∈Z satisfies Condition A and, for a certain t > 2,

the right tail condition (1.4). Suppose for a certain p > 2, ∥ξ0∥p < ∞, that

cni > 0, and (2.4) is satisfied. Let (xn)n≥1 be any sequence such that for some

c > 0 we have xn ≥ c for all n. Then, as n → ∞,

P (Sn ≥ xnσn) = (1 + o(1))

kn∑
i=1

P(cniξ0 ≥ xnσn) + (1− Φ(xn))(1 + o(1)). (2.5)

Remark 1. In (2.5), as well as in (2.6) and (2.7) below, by o(1) we understand

a function, that depends on xn and on the underlying distribution, with the

property that its limit as n → ∞ is zero. The sequence (xn)n≥1 may be bounded

or may converge to infinity.

Corollary 1. Under the conditions of Theorem 1, for xn ≥ a(lnD−1
nt )

1/2 with

a > 21/2 we have

P(Sn ≥ xnσn) = (1 + o(1))

kn∑
i=1

P(cniξ0 ≥ xnσn) as n → ∞. (2.6)

If 0 < xn ≤ b(lnD−1
nt )

1/2 with b < 21/2, we have

P (Sn ≥ xnσn) = (1− Φ(xn))(1 + o(1)) as n → ∞. (2.7)

Remark 2. Here (2.6) and (2.7) assert different approximations for the tail

probability P(Sn ≥ xσn): moderate behavior for x = xn smaller than a threshold;

large deviation type of behavior for x larger than another threshold. The behavior

at the boundary
√
2(lnD−1

nt )
1/2 is more subtle and depends on the slowly varying

function h(·). For the special case limx→∞ h(x) → h0 > 0, we have

P(Sn ≥ xσn)

Nn(x)
= 1 + o(1), where Nn(x) = (1− Φ(x)) +

h0
(σx)t

Dnt. (2.8)

If x ≥ a(lnD−1
nt )

1/2 with a > 21/2, then Nn(x) ∼ h0Dnt/(σx)
t.
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The proofs of these results are of independent interest. We shall see in the

next two theorems that a result similar to (2.6) holds without the assumption

of the finite moment of order p > 2 while the moderate deviation (2.7) does not

require a regularly varying right tail.

Theorem 2. Assume that (ξi)i∈Z satisfies Condition A and, for a certain t > 2,

(1.4). If cni > 0 is a sequence of constants satisfying (2.4), then for any sequence

xn ≥ Ct(lnD
−1
nt )

1/2 with Ct > et/2(t+ 2)/
√
2, (2.6) holds.

Theorem 3. Assume that (ξi)i∈Z satisfies Condition A and, for a certain p > 2,

∥ξ0∥p < ∞. If (2.4) is satisfied and x2n ≤ 2 ln(D−1
np ), then (2.7) holds.

2.2. Applications to linear regression estimates

Many statistical procedures, such as estimation of regression coefficients,

produce linear statistics of type (1.1). See for instance Chapter 9 in Beran

(1994), for the case of parametric regression, or the paper by Robinson (1997),

where kernel estimators are used for nonparametric regression. Here we consider

the simple parametric regression model Yi = βαi+ ξi, where ξi are i.i.d. centered

errors with Eξ21 = σ2, (αi) is a sequence of positive real numbers, and β is the

parameter of interest. The least squares estimator β̂n of β, based on a sample of

size n, satisfies

Sn := β̂n − β =
1∑n

i=1 α
2
i

n∑
i=1

αiξi, (2.9)

so the representation (1.1) holds with cni = αi/(
∑n

i=1 α
2
i ). Let Ant =

∑n
i=1 α

t
i.

Notice that var(Sn) = σ2/An2 and assume that

lim
n→∞

A−1
n2 max

1≤i≤n
α2
i = 0. (2.10)

Corollary 2. (i) Assume that (ξi)i∈Z and x = xn satisfy the conditions in The-

orem 1. Under (2.10) we have

P
(
β̂n − β ≥ xσ

A
1/2
n2

)
= (1 + o(1))

n∑
i=1

P
(
ξi ≥

xσA
1/2
n2

αi

)
+ (1 + o(1))(1− Φ(x)).

(ii) If x > 0 and x2 ≤ 2 ln(A
t/2
n2 /Ant), under the conditions in Theorem 1 we have

P
(
β̂n − β ≥ xσ

A
1/2
n2

)
= (1 + o(1))(1− Φ(x)).

(iii) If x > 0 and x2 ≥ C2
t ln(A

t/2
n2 /Ant) with C2

t > 2, under the conditions in

Theorem 1,
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P
(
β̂n − β ≥ xσ

A
1/2
n2

)
= (1 + o(1))

n∑
i=1

P
(
ξi ≥

xσA
1/2
n2

αi

)
.

Similar results as in Theorems 2 and 3 can also be easily formulated.

Theorems 1, 2 and 3 are applicable to the nonlinear regression model yi =

g(xi) + ξi, 1 ≤ i ≤ n, where g(x) is an unknown function and ξi is the noise. Let

xi be the deterministic design points. Then the Nadaraya-Watson estimate ĝn
satisfies

ĝn(x)− Eĝn(x) =
n∑

i=1

cni(x)ξi

where, letting K be a kernel function and hn be bandwidths,

cni(x) =
K ((xi − x)/hn)∑n
i=1K ((xi − x)/hn)

.

Therefore it is of the type (1.1).

2.3. Application to moving averages

We consider the sum Sn =
∑n

k=1Xk, where

Xk =
∞∑

j=−∞
ak−jξj . (2.11)

We assume that
∑

i∈Z a
2
i < ∞, the necessary and sufficient condition for the

existence of X1. Now Sn =
∑∞

i=−∞ bniξi is of form (1.1) with

bni = a1−i + · · ·+ an−i (2.12)

and kn = ∞. Assume bni > 0 for all i and let

Unt =
(∑

i

b2ni

)−t/2∑
i

btni. (2.13)

Set σ2
n = Eξ20

∑
i b

2
ni. We know from Peligrad and Utev (1997) that under the

assumption σ2
n → ∞ we have

σ−2
n sup

i
b2ni → 0 as n → ∞. (2.14)

Therefore (2.4) is automatically satisfied.

Corollary 3. Assume that (Xn)n≥1 is defined by (2.11) and σ2
n → ∞.
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(i) If (ξi)i∈Z and xn satisfy the conditions of Theorem 1 and bni > 0, then (2.5)

holds.

(ii) Let (ξi)i∈Z be as in Theorem 2. Assume bni > 0. Then (2.6) holds for the

sequence xn ≥ Ct(lnU
−1
nt )

1/2 with Ct > et/2(t+ 2)/
√
2.

(iii) If (ξi)i∈Z is as in Theorem 3, then (2.7) holds for x2n ≤ 2 ln(U−1
np ).

This corollary applies to general linear processes including the long memory

processes with
∑

i |ai| = ∞. Asymptotic properties for long memory processes

can be quite different from those of processes with short memory, partially be-

cause the variance of the partial sum goes to infinity at an order different than n;

see for example, Ho and Hsing (1997), Robinson (2003), Doukhan, Oppenheim,

and Taqqu (2003), among others. Hall (1992) gave a Berry-Esseen bound for the

convergence rate in the central limit theorem.

We apply the corollary to the important case of causal long-memory processes

with

ai = l(i+ 1)(1 + i)−r, i ≥ 0, with 1/2 < r < 1, and ai = 0 otherwise. (2.15)

Here l(·) is a slowly varying function so the results can be given in a more precise

form. In this case,

Xk =
k∑

j=−∞
ak−jξj . (2.16)

Let a0 = 1. Long memory linear processes cover the fractional ARIMA processes

(cf., Granger and Joyeux (1980); Hosking (1981)), which play an important role in

financial time series modeling and application. As a special case, let 0 < d < 1/2

and B be the backward shift operator with Bεk = εk−1, and consider

Xk = (1−B)−dξk =
∑
i≥0

aiξk−i, where ai =
Γ(i+ d)

Γ(d)Γ(i+ 1)
.

Here limn→∞ an/n
d−1 = 1/Γ(d). These processes have long memory because∑

j≥0 |aj | = ∞.

Corollary 4. Assume (2.15). If (ξi)i∈Z satisfies the conditions of Theorem 1

then (2.5) holds. In particular (2.6) holds for xn ≥ c1(lnn)
1/2 with c1 > (t−2)1/2,

while (2.7) holds if 0 < xn ≤ c2(lnn)
1/2 with c2 < (t− 2)1/2.

Corollary 5. (i) Let (ξi)i∈Z be as in Theorem 2. Then (2.6) holds for xn >

c1(lnn)
1/2 with c1 > (t− 2)1/2et/2(t+ 2)/2.

(ii) Let (ξi)i∈Z be as in Theorem 3. Then (2.7) holds if x2n ≤ (p− 2) lnn.
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2.4. Application to risk measures

In risk theory and finance, value at risk (VaR) and expected shortfall (ES)
play a fundamental role; see Jorion (2006), Holton (2003), McNeil, Frey, and
Embrechts (2005), Acerbi and Tasche (2002), among others. Mathematically,
they are equivalent to quantiles and tail conditional expectations. In practice one
is most interested in their extremal behavior which corresponds to tail quantiles.
Despite their importance, however, their computation can be quite difficult and
the related asymptotic justification is far from trivial.

Here we apply Theorem 1 and provide approximate formulae for extremal
quantiles and tail conditional expectations for Sn at (1.1). If limx→∞ h(x) →
h0 > 0, by (2.8) and Theorem 1,

P (Sn ≥ xσn) = (1 + o(1))
h0

(σx)t
Dnt + (1− Φ(x))(1 + o(1)).

Given α ∈ (0, 1), let qα,n satisfy P(Sn ≥ qα,n) = α. Elementary calculations show
that qα,n can be approximated by xασn in the sense that limn→∞ xασn/qα,n = 1,
where x = xα is the solution to the equation

h0
(σx)t

Dnt + (1− Φ(x)) = α.

In particular, if α ≤ h0Dnt((aσ)
2 lnD−1

nt )
−t/2 with a > 21/2, then, by Corollary 1,

we can approximate qα,n by σ−1(h0Dnt/α)
1/tσn = σ−1(Bnth0/α)

1/t. The approx-
imation is understood in the sense that σ−1(Bnth0/α)

1/t/qα,n → 1 as n → ∞,
and the tail conditional expectation or expected shortfall is computed as

E(Sn|Sn ≥ qα,n) =
qα,nP(Sn ≥ qα,n) +

∫∞
qα,n

P(Sn ≥ w)dw

P(Sn ≥ qα,n)

∼ qα,n +
qα,n
t− 1

=
tqα,n
t− 1

∼ σ−1B
1/t
nt

t(h0/α)
1/t

t− 1
.

Without the exact moderate deviation principle in Corollary 1, the validity of this
equivalence cannot be guaranteed. To the best of our knowledge, our example
might be the only case where one can obtain explicit asymptotic expressions for
VaR and ES for sums of dependent random variables.

2.5. Functionals of linear processes

In this subsection we use the result from (ii) of Corollary 5 to study the
moderate deviation for nonlinear transformations of linear processes. Let K be
a measurable transformation with EK(X0) = 0. Let

Hn =

n∑
i=1

K(Xi), where Xi is defined by (2.16).
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Thus, if K(X0) = I(X0 ≤ τ) − P(X0 ≤ τ), then Hn/n is the empirical process.

If Xi is short memory, ai absolutely summable, then we can apply the moderate

deviation principle in Wu and Zhao (2008), but it does not apply to long-range

dependent processes. The problem of moderate deviation under strong depen-

dence has been rarely studied in the literature.

Here we establish such a principle in the context of nonlinear transforms of

linear processes. Let Fn = (· · · , ξn−1, ξn) be the shift process and define the

projection operator Pi· = E(·|Fi)− E(·|Fi−1). Consider the truncated processes

Xn,k = E(Xn|Fk) and takeKn(w) = E[K(w+Xn−Xn,0)] andK∞(w) = E[K(w+

Xn)]. We consider transformations K with κ := K ′
∞(0) ̸= 0. Define

Sn,1 =

n∑
i=1

[K(Xi)− κXi] = Hn − κSn, where Sn =

n∑
i=1

Xi.

Then Hn = κSn + Sn,1. For a function g, let g(w;λ) = sup|y|≤λ |g(w + y)| be
the local maximal function. Denote the collection of functions with second order

partial derivatives by C2(R).

Condition B. For 2 ≤ q < p ≤ 2q, ∥ξ0∥p < ∞. With Kn ∈ C2(R) for all large
n, for some λ > 0,

2∑
i=0

∥K(i)
n−1(Xn,0;λ)∥q + ∥|ξ1|p/qKn−1(Xn,1)∥q + ∥ξ1K ′

n−1(Xn,1)∥q = O(1).

A version of Condition B with q = 2 is used in Wu (2006). We establish a

moderate deviation result. For 1/2 < r < 1 and 1/2 ≤ v < 1 define

χ(v, r) = vmax(r − r

v
,
1

2
− r, r − 1),

ω(r) = argmin
1/2≤v<1

χ(v, r) and ρ(r) = −χ(ω(r), r).

Theorem 4. Assume that Condition B holds with q = pω(r) and that the con-

ditions of Corollary 5 (ii) are satisfied. Let c be such that 0 < c ≤ p − 2 and

c < 2pρ(r). Then if x ≤ c lnn, we have

P(Hn ≥ |κ|σnx) = (1− Φ(x))(1 + o(1)) as n → ∞. (2.17)

Remark 3. As mentioned in the proof of Theorem 4 in the Supplementary Ma-

terial of this paper (Peligrad et al. (2013)), (2.17) is still valid if the normalizing

constant |κ|σn is replaced by
√

var(Hn).

Remark 4. Theorem 4 only asserts a moderate deviation with the Gaussian

range. It is unclear whether the approximation (2.6) holds. We pose it as an

open problem.
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Remark 5. An explicit form for ω(r) can be obtained. If r ≥ 3/4, then ω(r) = r.

If r < 3/4, then ω(r) = r/(2r − 1/2). If 2pρ(r) ≥ p − 2, then the moderate

deviation in (2.17) has the same range as for Sn. The latter happens, for example,

if r = 3/4 and 2 < p < 16/5, since in this case 2pρ(3/4) ≥ p− 2.

Example 1. As an application to empirical processes, let K(X) = I(X ≤ τ)−
P(X ≤ τ), where τ ∈ R is fixed. Let Xn = ξn +

∑∞
i=1 aiξn−i =: ξn + Yn−1, where

∥ξ0∥p < ∞, p > 2, and its density function fξ satisfies

sup
u
[fξ(u) + |f ′

ξ(u)|] < ∞. (2.18)

Then K1(w) = Fξ(τ − w) − FX(τ), where Fξ is the distribution function of ξi.

Under (2.18), we clearly have supw[|K ′
1(w)| + |K ′′

1 (w)|] < ∞. Observe that we

have the identity: for n ≥ 1,

Kn(w) = EK1(w + a1ξn−1 + a2ξn−2 + . . .+ an−1ξ1).

Hence supn supw[|K ′
n(w)|+ |K ′′

n(w)|] < ∞. So Condition B holds for any λ since

ξn ∈ Lp, p > 2.

3. A Numerical Study

In this section we report on a numerical study of the accuracy of the large

deviation (2.6), normal approximation (2.7), and the estimate (2.5). In partic-

ular, we studied the accuracy of the approximations in Corollary 4. In general

it is time-consuming to calculate tail probabilities by Monte-Carlo simulation,

especially if they are small. Here we approach the problem from a different

angle.

Let Xj =
∑∞

i=1 aiξj−i, where ξi, i ∈ Z, have Student’s t-distribution with

degree of freedom ν = 3, and ai = i−0.9. Let Sn =
∑n

i=1Xi with n = 300. The

characteristic function of ξi is

φ(t) =
(
√
ν|t|)ν/2Kν/2(

√
ν|t|)

Γ(ν/2)2ν/2−1
, (3.1)

where Kν/2 is the Bessel function (see Hurst (1995)). Then the characteristic

function of Sn is

φSn(t) =
∏
j∈Z

φ(bnjt)

and, by the inversion formula,

P(Sn ≤ x)− P(Sn ≤ x′) =
1

2π

∫ ∞

−∞

e
√
−1yx − e

√
−1yx′

√
−1y

φSn(y)dy.
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Figure 1. Tail approximation R(x) (dashed curve), Gaussian approximation
g(x) (solid curve) and their sum (dotted curve) for long-memory processes
with Student t(3) innovations.

Take x′ = 0. Since ξj is symmetric, P(Sn ≤ 0) = 1/2. In our numerical study we

use (3.1) to compute the probability P(Sn > x).

In Figure 1 we report the ratios R(x) :=
∑

i P(bniξ0 ≥ x)/P(Sn > x) and

g(x) := (1 − Φ(x/σn))/P(Sn > x); see (2.6) with cni = bni. We can interpret

R(x) (resp. g(x)) as a tail (resp. Gaussian) approximation. As expected from

Corollary 4, the Gaussian approximation is better if x is small, while the tail

probability R(x) approximation is better when x is large. In the intermediate

region we approximate by their sum.
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