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Abstract: Methods for handling missing data depend strongly on the mechanism

that generated the missing values, such as missing completely at random (MCAR)

or missing at random (MAR), as well as other distributional and modeling assump-

tions at various stages. It is well known that the resulting estimates and tests may

be sensitive to these assumptions as well as to outlying observations. In this paper,

we introduce various perturbations to modeling assumptions and individual obser-

vations, and then develop a formal sensitivity analysis to assess these perturbations

in the Bayesian analysis of statistical models with missing data. We develop a ge-

ometric framework, called the Bayesian perturbation manifold, to characterize the

intrinsic structure of these perturbations. We propose several intrinsic influence

measures to perform sensitivity analysis and quantify the effect of various pertur-

bations to statistical models. We use the proposed sensitivity analysis procedure

to systematically investigate the tenability of the non-ignorable missing at random

(MNAR) assumption. Simulation studies are conducted to evaluate our methods,

and a dataset is analyzed to illustrate the use of our diagnostic measures.

Key words and phrases: Influence measure, missing data mechanism, perturbation

manifold, sensitivity analysis.

1. Introduction

It is common to have missing data in surveys, clinical trials, and longitudi-

nal studies. Various statistical methods have been developed to handle missing

data. These methods depend on the missing data mechanism that generates

the missing values and other modeling assumptions at various stages, and the

resulting estimates and tests can be sensitive to these assumptions. Sensitivity

analyses are commonly performed to perturb the model assumptions and/or in-

dividual observations to check the sensitivity of a specific influence measure (e.g.,

a parameter of interest). There is an extensive literature on sensitivity analy-

sis for missing data problems in frequentist analysis (Copas and Eguchi (2005),

Little and Rubin (2002), Zhu and Lee (2001), Copas and Li (1997), van Steen,

Molenberghs, and Thijs (2001), Troxel (1998), Jansen et al. (2006), Jansen et

al. (2003), Verbeke et al. (2001), Troxel, Ma, and Heitjan (2004), Shi, Zhu, and

Ibrahim (2009), Hens et al. (2006), Daniels and Hogan (2008)).
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The literature on influence measures include Copas and Eguchi (2005), Zhu

and Lee (2001), Troxel, Ma, and Heitjan (2004), Copas and Li (1997), van Steen,

Molenberghs, and Thijs (2001), Troxel (1998), Jansen et al. (2006), Jansen et al.

(2003), Hens et al. (2006), Verbeke et al. (2001), Shi, Zhu, and Ibrahim (2009),

and Daniels and Hogan (2008). For instance, in frequentist analysis, Copas and

Eguchi (2005) developed a general formulation for assessing the bias of maximum

likelihood estimates in the presence of small model perturbations for missing data

problems. The local influence method in Cook (1986) was successfully applied to

carry out sensitivity analyses for various statistical models with missing data (van

Steen, Molenberghs, and Thijs (2001), Troxel (1998), Jansen et al. (2006), Hens

et al. (2006), Jansen et al. (2003), Verbeke et al. (2001)). Shi, Zhu, and Ibrahim

(2009) further systematically investigated the local influence methods proposed

in Zhu et al. (2007) for GLMs with missing at random (MAR) covariates as well

as missing not at random (MNAR) covariates, often referred to as nonignorable

missing covariates.

In contrast, in the Bayesian literature, several analogues of Cook’s local in-

fluence (Cook (1986)) were developed to carry out model assessment by using

either the curvature of some influence measures (Millar and Stewart (2007)),

Linde (2007), Lavine (1991)) or the Fréchet derivative of the posterior with re-

spect to the prior (Dey, Ghosh, and Lou (1996), Gustafson (1996a,b), Berger

(1994)). Daniels and Hogan (2008) examined several global and local sensitivity

methods in the Bayesian analysis of pattern mixture models (Little (1994), An-

dridge and Little (2011)). Recently, Zhu, Ibrahim, and Tang (2011) developed a

general framework of Bayesian influence analysis for assessing various perturba-

tion schemes to the data, the prior and the sampling distribution for a class of

statistical models without missing data.

The aim of this paper is to develop a formal Bayesian sensitivity analysis

framework in statistical models with missing data. We introduce various pertur-

bations to the modeling of the missing data mechanism, individual observations,

and the prior. We develop a geometric framework, called the Bayesian perturba-

tion manifold, to characterize the intrinsic structure of these perturbations. We

examine several influence measures for sensitivity analysis and for quantifying

the effect of various perturbations to statistical models with missing data.

We develop a Bayesian perturbation manifold for a large class of statistical

models with missing data; examine three Bayesian influence measures including

the ϕ-divergence, the posterior mean distance, and the Bayes factor; focus on

assessing the missing data mechanism, while simultaneously perturbing other

distributional assumptions, the prior, and individual observations.

To motivate our methodology, we consider data on 1,116 female sex workers

in Philippine cities from a study of the relationship between Acquired Immune
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Deficiency Syndrome (AIDS) and the use of condoms (Morisky et al. (1998)),

which is discussed in more detail in Section 3. The data contains items about

knowledge of AIDS, attitudes toward AIDS, belief, and self efficiency of condom

use. Nine variables in the original data set (items 33, 32, 31, 43, 72, 74, 27h,

27e, and 27i in the questionnaire) were taken as responses. The primary interest

here was to find how the threat of AIDS is associated with aggressiveness of the

sex worker and the fear of contracting AIDS. The responses and covariates are

missing at least once for 361 workers (32.35%). In Section 3, we carry out a

Bayesian analysis of a structural equations model with both missing covariates

and responses to analyze this data set, and present a formal Bayesian sensitivity

analysis.

The rest of this paper is organized as follows. In Section 2, we construct

a Bayesian perturbation manifold to characterize various perturbations to sta-

tistical models with missing data and derive its associated geometric quantities.

We propose global and local influence measures to quantify the effects of per-

turbing the missing data mechanism, while simultaneously perturbing the data,

the prior, and other modeling assumptions on posterior quantities of interest.

In Section 3, we present simulation studies and a data analysis to illustrate the

importance of the proposed method in assessing the missing data mechanism and

other potential misspecifications.

2. Bayesian Sensitivity Analysis

2.1. Statistical models with missing data

Let zobs = (z1,o, . . . , zn,o) and zmis = (z1,m, . . . , zn,m) be the observed and

missing data, respectively, and zcom = (z1,c, . . . , zn,c) = (zmis, zobs) be the com-

plete data, where zi,c = (zi,o, zi,m) for i = 1, . . . , n. In applications, the dimen-

sions of zi,c, zi,o and zi,m may be different across i. For instance, the number of

observations may vary across clusters for clustered data.

For missing data problems, we consider a statistical model p(zcom | θ) for the
complete data such that p(zcom | θ) is the product of a model for the observed

data p(zobs | θ) and a model for the missing data given the observed data p(zmis |
zobs,θ). This class of statistical models for missing data includes generalized

linear models with missing covariates and/or responses, generalized linear mixed

models, nonlinear models, parametric survival models, and many others. To

carry out Bayesian inference, we usually use Markov chain Monte Carlo (MCMC)

methods to simulate samples from the posterior distribution of the observed data,

given by

p(θ | zobs) ∝ p(zobs | θ)p(θ) ∝
∫
p(zcom | θ)p(θ)dzmis. (2.1)
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Example 1 (Missing Covariate Data). Consider n independent observations

zcom = {zi,c = (xi, ci, ri, yi), i = 1, . . . , n}, where yi is the response variable,

xi is a p1 × 1 vector of completely observed covariates, and ci = (ci,m, ci,o)

is a p2 × 1 vector of partially observed covariates, where ci,m and ci,o denote

the missing and observed components of ci, respectively. Let ri be a p2 × 1

vector whose jth component, rij , equals 1 if the jth component of ci, denoted

by cij , is observed, and 0 if cij is missing. We assume that p(xi, ci, ri, yi|θ) =

p(yi|xi, ci,θ)p(xi, ci|θ) p(ri|yi,xi, ci,θ), where θ denotes the vector of unknown

parameters. In this case, zi,m = ci,m and zi,o = (xi, ci,o, ri, yi) for all i.

We assume the generalized linear model (GLM)

p(yi|xi, ci,β, τ) = exp[a−1
i (τ){yiηi(β)− b1(ηi(β))}+ b2(yi, τ)] (2.2)

for i = 1, . . . , n, where ai(·), b1(·), and b2(·, ·) are known functions, ηi = η(µi)

and µi = g((x′
i, c

′
i)β), in which g(·) is a known link function, β = (β1, . . . , βp)

′,

and p = p1 + p2. We assume that

p(xi, ci|α) = p(cip2 |ci,p2−1, . . . , ci1,xi,α2p2)× · · · × p(ci1|xi,α21)p(xi|α1). (2.3)

Similarly, we model the missing-data mechanism as

p(ri|yi,xi, ci, ξ) = p(rip2 |ri,p2−1, . . . , ri1, yi,xi, ci, ξp2)× · · · × p(ri1|yi,xi, ci, ξ1).
(2.4)

To carry out a full Bayesian analysis, we need to specify a prior for θ.

We can take independent priors for the components of θ such that p(θ) =

p(τ)p(β)p(ξ)p(α). For τ and β, we can take τ ∼ gamma(α0/2, λ0/2) and

β ∼ N(µ0,Σ0), where α0, λ0, µ0 (p× 1), and Σ0 (p× p positive definite matrix)

are pre-specified hyperparameters. If λmin(Σ0) converges to ∞, then N(µ0,Σ0)

tends to an improper prior. In contrast, if λmax(Σ0) is very small, thenN(µ0,Σ0)

tends to a strongly informative prior. For α, we can take a prior of the form

p(α) = p(α1)p(α21) · · · p(α2p2). To make valid Bayesian inferences about β, we

need an appropriate prior p(θ) and the correct specification of the sampling dis-

tributions (2.2)−(2.4), therefore, it is crucial to assess the robustness of both

the prior and the sampling distribution with respect to posterior estimate of β.

Particularly, there is a growing awareness of the need for formal methods for

investigating the sensitivity of inferences to the missing-data mechanism (Copas

and Eguchi (2005), Little and Rubin (2002), Zhu and Lee (2001), Troxel, Ma,

and Heitjan (2004), Copas and Li (1997), van Steen, Molenberghs, and Thijs

(2001), Troxel (1998), Jansen et al. (2006), Jansen et al. (2003), Verbeke et al.

(2001), Shi, Zhu, and Ibrahim (2009), Daniels and Hogan (2008), Ibrahim et al.

(2005)).
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Example 2 (Missing Response Data). We consider n independent observations

zcom = {zi,c = (xi, ri,yi), i = 1, . . . , n}, where yi = (yi,m,yi,o) is a py × 1

response vector, in which yi,m and yi,o denote the missing and observed com-

ponents of yi, respectively, and xi is a px × 1 vector of completely observed

covariates. Moreover, ri is a py × 1 vector, whose jth component, rij , equals 1 if

the jth component of yi, denoted by yij , is observed, and 0 if yij is missing. It is

common to model the joint distribution of (yi, ri) given xi as

p(yi, ri|xi,θ) = p(yi,m,yi,o|xi,θI)p(ri|yi,m,yi,o,xi,θN ), (2.5)

where θI is the vector of parameters of interest and θN includes all parameters

in the missing data mechanism p(ri|yi,m,yi,o,xi,θN ). In this case, zi,m = yi,m
and zi,o = (xi,yi,o, ri) for all i.

To carry out a full Bayesian analysis, we need to specify a prior for θ and

the missing data mechanism. For instance, a well-known ignorability condition

(Rubin, 1976) is commonly used to carry out posterior inference on θI without

specifying the missing data mechanism. Specifically, a missing data mechanism is

said to be ignorable if it is MAR, (2.5) is true and p(θ) = p(θI)p(θN ). Although

it is computationally easier to assume the ignorability condition, most missing

data mechanisms are nonignorable (Daniels and Hogan (2008)). An alternative

method for nonignorable missing data is to use the extrapolation factorization

p(yi, ri|xi,θ) = p(yi,m|yi,o, ri,xi,θN )p(yi,o, ri|xi,θI). (2.6)

In this case, p(yi,m|yi,o, ri,xi,θN ) is an extrapolation model and cannot be iden-

tifiable by the observed data, while p(yi,o, ri|xi,θI) is an observed data model.

Here, the components in θN are called sensitivity parameters (Daniels and Hogan

(2008)).

2.2. Bayesian perturbation manifold

We introduce a perturbation vector ω = ω(zcom,θ) in a set Ω to perturb the

complete-data model p(zcom,θ) = p(θ)p(zcom | θ). To ensure that the pertur-

bation ω is meaningful and sensible, we require the following. (1) p(zcom,θ | ω)

is the probability density of (zcom,θ) for the perturbed model as ω varies in

a set Ω; (2) There is an ω0 ∈ Ω such that p(zcom,θ | ω0) = p(zcom,θ) and

p(zobs,θ | ω0) =
∫
p(zcom,θ | ω0)dzmis = p(zobs,θ) for all (z,θ). The ω0 can be

regarded as the ‘central point’ of Ω representing no perturbation. See Gustafson

(2006) and Daniels and Hogan (2008) for general discussions of model expansion

from a Bayesian viewpoint.
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Example 1 (Continued). We are interested in perturbing the missing-data mech-

anism p(ri|yi,xi, ci, ξ) in (2.4). For instance, when (2.4) is assumed to be MAR,

we can consider a general perturbation scheme

p(ri|yi,xi, ci, ξ,ω)

= p(rip2 |ri,p2−1, . . . , ri1, yi,xi, ci, ξp2 ,ω) · · · p(ri1|yi,xi, ci, ξ1,ω), (2.7)

where ω = (ω1, . . . ,ωm)
T is anm×1 vector. The perturbation (2.7) is commonly

used to perturb the given GLM with MAR covariates in the direction of MNAR

(Shi, Zhu, and Ibrahim (2009), Verbeke et al. (2001)). We can also consider the

individual-specific infinitesimal perturbation (Verbeke et al. (2001), Hens et al.

(2006), Jansen et al. (2006), Jansen et al. (2003))

p(ri|yi,xi, ci, ξ,ωi)
= p(rip2 |ri,p2−1, . . . , ri1, yi,xi, ci, ξp2 ,ωi) · · · p(ri1|yi,xi, ci, ξ1,ωi). (2.8)

Large effects of ωi in (2.8) can provide insight into which cases have large influ-

ence. Influence measures developed for the perturbation (2.8) are closely related

to Bayesian case influence measures, such as the Conditional Predictive Ordinate

(CPO) (Geisser (1993), Gelfand, Dey, and Chang (1992)).

We develop a geometric framework, called a Bayesian perturbation manifold,

to delineate the effect of introducing each perturbation ω in Ω. Under some mild

conditions, M = {p(zcom,θ | ω) : ω ∈ Ω} is a Riemannian Hilbert manifold

(Lang (1995)). On M, we consider a smooth curve C(t) given by

C(t) =
{
p(zcom,θ | ω(t)) : [−ϵ, ϵ] → M, C(0) = p(zcom,θ | ω), and∫

ℓ̇(zcom,θ | ω(t))2p(zcom,θ | ω(t))dzcomdθ <∞
}
, (2.9)

in which ℓ̇(zcom,θ | ω(t)) = d log p(zcom,θ | ω(t))/dt is called the tangent (or

derivative) vector. The tangent vectors for all possible curves of the form C(t)

form the tangent space of M at ω, denoted by TωM. The inner product of any

two tangent vectors v1(ω) and v2(ω) in TωM is given by

< v1,v2 > (ω) =

∫
{v1(ω)v2(ω)}p(zcom,θ | ω)dzcomdθ. (2.10)

It can be shown that the length of the curve C(t) from t1 to t2 is

SC(ω(t1),ω(t2)) =

∫ t2

t1

√
< ℓ̇(zcom,θ | ω(t)), ℓ̇(zcom,θ | ω(t)) > dt. (2.11)

We consider the concept of a geodesic as a direct extension of the straight

line in Euclidean space on M. For a real function f(ω) defined on M, we take
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df [v](ω) = limt→0 t
−1(f [p(zcom,θ | ω(t))] − f [p(zcom,θ | ω(0))]) as the direc-

tional derivative of f at the perturbation distribution p(zcom,θ | ω) in the direc-

tion of v(ω) ∈ TωM. For any two smooth vector fields u(ω) and v(ω) in TωM,

we define the directional derivative du[v](ω) = limt→0 t
−1{u(ω(t)) − u(ω(0))}

of a vector field u(ω), called the connection, at the perturbation distribution in

the direction of v(ω). The popular Levi-Civita connection, denoted by ∇vu(ω),

is

du[v](ω)−0.5
{
u(ω)v(ω)p(zcom,θ | ω)−

∫
u(ω)v(ω)p(zcom,θ | ω)dzcomdθ

}
.

(2.12)

A geodesic on the manifold M is a smooth curve γ(t) = p(zcom,θ | ω(t)) on M
with ℓ̇(zcom,θ | ω(t)) = v(ω(t)) such that ∇vv(ω(t)) = 0. The geodesic is (lo-

cally) the shortest path between points on M. Finally, based on these geometric

quantities of M, we define (M, < u,v >,∇vu) as the Bayesian perturbation

manifold (BPM) with an inner product < u,v > and the Levi-Civita connection

∇vu.

Compared to existing sensitivity analysis methods, a key advantage of using

the BPM is that it provides a framework for quantifying simultaneous perturba-

tions to the prior, the missing data mechanism, other distributional assumptions,

and individual observations. Such simultaneous perturbations can be important,

since it can allow one to disentangle the uncertainty about unverifiable missing

data mechanism assumptions from the misspecification of the prior and other

distributional assumptions, as well as detect the presence of outliers. Accord-

ing to the best of our knowledge, no methods currently exist for handling such

simultaneous perturbations.

Example 1 (Continued). Consider the simultaneous perturbation model

p(θ|ωθ)
n∏
i=1

{p(yi|xi, ci,β, τ,ωiy)p(xi, ci|α,ωic)p(ri|xi, ci, yi, ξ,ωir)}, (2.13)

where ω includes ωθ and ωi = (ωTiy,ω
T
ic,ω

T
ir) for all i and all components of ω

are assumed to be independent of zcom and θ. The three terms on the right hand

side of (2.13) are assumed to be probability densities and ωθ, ωiy, ωic, and ωir
for all i have no components in common. In this case, the BPM is given by

M =
{
p(θ|ωθ)

n∏
i=1

p(xi, ci, ri, yi|θ,ωi) : (ωθ,ω1, . . . ,ωn) ∈ Ω
}
, (2.14)

where p(xi, ci, ri, yi|θ,ωi) denotes the product of the three terms on the right

hand side of (2.13). Consider ω(t) as a vector of smooth functions of t and vh =

dω(0)/dt. It follows from the arguments in Zhu, Ibrahim, and Tang (2011) that
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TωM is spanned by the functions ∂ωθ
log p(θ | ωθ), ∂ωiy log p(yi|xi, ci,β, τ,ωiy),

∂ωic log p(xi, ci|α,ωic), and ∂ωir log p(ri|xi, ci, yi, ξ,ωir), where ∂ω = ∂/∂ω . By

using the chain rule, we have

v(ω(0)) = vh∂ωℓ(zcom,θ | ω(0)) and < v,v > (ω(0)) = vThG(ω(0))vh, (2.15)

where

G(ω(0)) =

∫
[∂ωℓ(zcom,θ | ω(0))]⊗2p(zcom,θ | ω)dzcomdθ (2.16)

is the Bayesian Fisher information matrix with respect to ω (Daniels and Hogan

(2008)). Geometrically, ωθ, ωiy, ωic, and ωir are orthogonal to each other with

respect to the inner product defined in (2.10) (Cox and Reid (1987)). Similar to

Zhu et al. (2007), one can easily separate out the influence of the missing data

mechanism from that of the data, the prior, and other distributional assumptions.

Example 2 (Continued). The sensitivity parameters in (2.6) can be either fixed

at a range of values, or assigned an appropriate distribution (Daniels and Hogan

(2008)). Here, we take the first approach and treat θN or its parametrization as

a perturbation vector. Generally, we consider a simultaneous perturbation model

p(θ|ωθ)
n∏
i=1

{p(yi,m|yi,o, ri,xi,ωN )p(yi,o, ri|xi,θI ,ωI)}, (2.17)

where ω includes ωθ, ωN , and ωI , which represent the perturbation vectors to

the prior, the extrapolation model, and the observed data model, respectively.

For simplicity, we assume that ωθ, ωN , and ωI do not share any common compo-

nents and are independent of zcom and finite dimensional parameters. Moreover,

it is assumed that p(θ|ωθ), p(yi,m|yi,o, ri,xi,ωN ), and p(yi,o, ri|xi,θI ,ωI) are

probability densities for all i. Generally, it is possible that ωN and ωI may

depend on zcom and vary across i.

Consider ω(t) as a vector of smooth functions of t and vh = dω(0)/dt. In this

case, TωM is spanned by ∂ωθ
log p(θ | ωθ),

∑n
i=1 ∂ωN log p(yi,m|yi,o, ri,xi,ωN ),

and
∑n

i=1 ∂ωI log p(yi,o, ri|xi,θI ,ωI). Subsequently, we can calculate the

Bayesian Fisher information matrix G(ω(0)) according to (2.16). Geometrically,

ωθ, ωN , and ωI are also orthogonal to each other with respect to the inner

product defined in (2.10) (Cox and Reid (1987)).

2.3. Intrinsic influence measures

As the purpose of a sensitivity analysis is to assess the uncertainty of the

parameter of interest as ω varies in Ω given the data at hand, we take an Intrinsic

Influence Measure (IFM) to be a functional of p(θ | zobs,ω) as ω varies in Ω,

where p(θ | zobs,ω) is the perturbed posterior distribution of θ given zobs and
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ω. Generally, let IF(ω) = IF(p(θ | zobs,ω)) be the intrinsic influence measure.

Three common intrinsic influence measures are the ϕ-divergence function, the

posterior mean, and the Bayes factor (Kass, Tierney, and Kadane (1989), Kass

and Raftery (1995)).

For the missing data mechanism, one can fix an ω0 ∈ Ω corresponding to

MAR and then develop a Relative Intrinsic Influence Measure (RIFM) as a func-

tional of p(θ | zobs,ω) and p(θ | zobs,ω0),

RI(ω,ω0) = RI(p(θ | zobs,ω), p(θ | zobs,ω0)). (2.18)

For instance, RI(ω,ω0) can be the total variation distance of p(θ | zobs,ω
0)

and p(θ | zobs,ω) (Dey, Ghosh, and Lou (1996)). One can take RI(ω,ω0) =

IF(ω)− IF(ω0) as the difference between IFMs at ω and ω0. See more examples

in Section 2.4.

We also suggest rescaling RI(ω,ω0) by using the minimal geodesic distance

between p(zcom,θ | ω) and p(zcom,θ | ω0), g(ω,ω0), on the BPM M. Thus,

we define the intrinsic influence measure for comparing p(θ | zobs,ω) to p(θ |
zobs,ω0) as

IGIRI(ω,ω0) =
RI(ω,ω0)

2

g(ω,ω0)2
. (2.19)

The proposed IGIRI(ω,ω0) can be interpreted as the ratio of the change of the

objective function relative to the minimal distance p(zcom,θ | ω) and p(zcom,θ |
ω0) on M. In practice, one can identify the most influential ω in Ω, denoted by

ω̂I , which maximizes IGIRI(ω,ω0) for all ω ∈ Ω.

We consider the local behavior of RI(ω(t),ω0) as t approaches zero along

all possible smooth curves p(zcom,θ | ω(t)) passing through ω(0) = ω0. Since

RI(ω(t),ω0) is a function from R to R, it follows from a Taylor’s series expansion

that

RI(ω(t),ω0) = RI(ω(0),ω0) + ∂RI(ω(0))t+ 0.5∂2RI(ω(0))t2 + o(t2),

where ∂RI(ω(0)) and ∂2RI(ω(0)) denote the first- and second order derivatives

of RI(ω(t),ω0) with respect to t evaluated at t = 0. We need to distinguish

between ∂RI(ω(0)) ̸= 0 for some smooth curves ω(t) and ∂RI(ω(0)) = 0 for all

smooth curves ω(t). For the case ∂RI(ω(0)) ̸= 0, ∂RI(ω(0)) = d(RI)[v](ω(0)) is

the directional derivative of RI in the direction of v ∈ Tω(0)M (Lang (1995)).

The first-order local influence measure is defined as

FIRI [v](ω(0)) = lim
t→0

IGIRI(ω(0),ω(t)) =
{d(RI)[v](ω(0))}2

< v,v > (ω(0))
. (2.20)

We use the tangent vector vFI,max in Tω(0)M that maximizes FIRI [v](ω(0)), to

carry out a sensitivity analysis.
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For the case ∂RI(ω(0)) = 0, we use ∂2RI(ω(0)) to assess the second-order
local influence of ω to a statistical model (Zhu et al. (2007)). The second-order

influence measure in the direction v ∈ Tω(0)M is defined as

SIRI [v](ω(0)) =
∂2RI(ω(0))

< v,v > (ω(0))
. (2.21)

Geometrically, SIRI [v](ω(0)) is invariant to scalar transformations and smooth
transformations. To carry out a sensitivity analysis, we use the tangent vector

vS,max in Tω(0)M that maximizes SIRI [v](ω(0)) for all v ∈ Tω(0)M.

2.4. Bayesian sensitivity analysis

Our sensitivity analysis consists of four steps.

1. Introduce a Bayesian perturbation manifold based on p(zcom,θ | ω).

2. Calculate the geometric metric < v,v > (ω0) of the perturbation manifold.

3. Choose an intrinsic influence measure IF(ω). If ∂RI(ω(0)) ̸= 0, then we
calculate vFI,max to assess local influence of minor perturbations to the model.

If ∂RI(ω(0)) = 0, then we compute vS,max. We inspect vFI,max (or vS,max)
in order to detect the most influential components of ω.

4. For the most influential subcomponents of ω, we calculate IGIRI(ω,ω0) and
ω̂I = argmaxω∈ΩIGIRI(ω,ω0).

In practice, we iteratively perform the four-step influence analysis as de-

scribed above. We start with a simultaneous perturbation to zcom, p(θ) and
p(zcom|θ). We decide on a set of parametric perturbations characterized by a
finite dimensional ω such that the perturbed model is large enough to cover a

large class of candidate models for the data set. With parametric perturbations,
it is computationally simple to carry out the Bayesian sensitivity analysis, and a
perturbation model with a large number of perturbations can approximate most

of the interesting perturbation models. We start with a local influence analysis
to examine the sensitivity of all components, and then focus on a few influential
components using an intrinsic influence analysis. For instance, if a few influential

hyperparameters to the prior are identified, one further perturbs their associated
prior distributions using the additive ϵ-contamination class and then carries out
an intrinsic influence analysis. After combining the information learned from our

influence analysis, we might choose a new sampling distribution and/or a new
prior. This procedure can be run iteratively until a certain degree of satisfaction

is reached.

2.5. Examples of Bayesian influence measures

We focus on assessing the influence of a perturbation scheme ω to the pos-
terior distribution based on ϕ−divergence, the posterior mean distance, and the
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Bayes factor. The Bayes factor, the ϕ-divergence, and the posterior mean quan-

tify the effects of introducing ω on the overall assumed model, on the overall

posterior distribution, and on the posterior mean of θ, respectively. Since the

Bayes factor measures the overall difference between p(zobs|ω) and p(zobs|ω0),

it can be more sensitive to some discrepancies between the assumed model and

the observed data. As the ϕ-divergence measures the overall difference between

p(zmis,θ|zobs,ω) and p(zmis,θ|zobs,ω0), and such a difference may include the

mean, median, etc. It can be more sensitive to some changes of the posterior dis-

tributions, but the posterior mean distance is more sensitive to a subtle change

in the posterior mean.

Example 3 (Bayes factor). The logarithm of the Bayes factor for comparing ω

with ω0 is

BF(ω,ω0) = log(p(zobs | ω))− log(p(zobs | ω0))

= log
(∫

p(zcom | θ,ω)p(θ | ω)dzmisdθ
)
−log

(∫
p(zcom | θ)p(θ)dzmisdθ

)
.

The value of BF(ω,ω0) can be regarded as a statistic for testing hypotheses of

ω against ω0 (Kass and Raftery (1995)). Under some smoothness conditions,

BF(ω,ω0) is a continuous map from M to R.

We set RI(ω,ω0) = BF(ω,ω0), where ω(t) is a smooth curve on M with

ω(0) = ω0 and dt log p(zcom,θ | ω(t)) |t=0= v(ω0) ∈ Tω(0)M, where dt = d/dt.

It can be shown that

∂RI(ω(0)) = E{dt log p(zcom,θ | ω(t)) | zobs,ω(t)} |t=0,

where the conditional expectation is taken with respect to p(zmis,θ | zobs,ω(t)).

We can use MCMC methods to draw samples {(θ(s), z
(s)
mis) : s = 1, . . . , S0}

from p(zmis,θ | zobs) and then approximate ∂RI(ω(0)) by using S−1
0

∑S0
s=1 dt log

p(zobs, z
(s)
mis,θ

(s) | ω0).

We consider a simultaneous perturbation to both the prior and the sampling

distribution. We have

FIBF [v](ω(0)) =
E{dt log p(zcom,θ | ω(0)) | zobs,ω0}2

< v,v > (ω0)
.

For instance, for the perturbation to the prior given by p(θ; t) = p(θ)+ t{g(θ)−
p(θ)}, it can be shown that

FIBF [v](ω(0)) =
E{g(θ)/p(θ) | zobs}2

varP {g(θ)/p(θ)}
=

{pg(zobs)/p(zobs)}2

varP {g(θ)/p(θ)}
,
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where p(zobs) =
∫
p(zcom|θ)p(θ)dzmisdθ and pg(zobs) =

∫
p(zcom|θ)g(θ)dzmisdθ.

Since the ratio of pg(zobs) to p(zobs) is the Bayes factor in favor of g(θ) against

p(θ), the first-order local influence measure is the square of the normalized Bayes

factor of g(θ) against p(θ).

Example 4 (ϕ−divergence). The ϕ−divergence between two posterior distribu-

tions for ω0 and ω is

ΦRI(ω,ω0) =

∫
ϕ(R(zmis,θ | ω,ω0))p(zmis,θ | zobs,ω0)dzmisdθ,

where R(zmis,θ | ω,ω0) = p(zmis,θ | zobs,ω)/p(zmis,θ | zobs,ω0) and ϕ(·) is a

convex function with ϕ(1) = 0, such as the Kullback-Leibler divergence or the

χ2-divergence (Kass, Tierney, and Kadane (1989)).

We set RI(ω,ω0) = ΦRI(ω,ω0), where ω(t) is a smooth curve on M with

ω(0) = ω0 and dt log p(zcom,θ | ω(t)) |t=0= v(ω0) ∈ Tω(0)M. It can be shown

that ∂RI(ω(0)) = 0 and

∂2RI(ω(0))= ϕ̈(1)

∫
[dt log p(zmis,θ |zobs,ω(t))]2p(zmis,θ |zobs,ω0)dzmisdθ |t=0,

where ϕ̈(t) = d2ϕ(t)/dt2. Here, we need a computational formula. Note that

dt log p(zmis,θ|zobs,ω(t))

= dt log p(zcom,θ | ω(0))−
∫

[dt log p(zcom,θ | ω(0))]p(zmis,θ | zobs,ω0)dzmis.

In practice, we use MCMC methods to draw samples {(θ(s), z
(s)
mis) : s = 1, . . . , S0}

from p(θ, zmis | zobs,ω0) and then approximate ∂2RI(ω(0)) using

ϕ̈(1)S−1
0

S0∑
s=1

[
dt log p(z

(s)
mis, zobs,θ

(s) |ω(0))−S−1
0

S0∑
s′=1

dt log p(z
(s′)
mis, zobs,θ

(s′) |ω(0))
]2
.

For perturbation schemes to the prior distribution, it can be shown that

< v,v > (ω(0)) =

∫
[dt log p(θ | ω(0))]2p(θ | ω(0))dθ

and ∂2RI(ω(0)) = ϕ̈(1)var[dt log p(θ | ω(0)) | zobs,ω0], which are, respectively,

the Fisher information matrices of ω(t) based on the prior and posterior distri-

butions, where var(· | zobs,ω0) denotes the posterior variance. For instance, for

p(θ | ω(θ)) = p(θ) + t{g(θ)− p(θ)}, we can show that

SIΦRI
[v]{ω(0)} =

ϕ̈(1)var{g(θ)/p(θ) | zobs}
varP {g(θ)/p(θ)}

,

where varP (·) denotes the prior variance.
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Example 5 (Posterior mean distance). We measure the distance between the

posterior means of h(θ) for ω0 and ω (Kass, Tierney, and Kadane (1989),

Gustafson (1996b)). The posterior mean of h(θ) after introducing ω is

Mh(ω) =

∫
h(θ)p(zmis,θ | zobs,ω)dzmisdθ.

Cook’s posterior mean distance for characterizing the influence of ω is then

CMh(ω,ω0) = {Mh(ω)−Mh(ω0)}TGh{Mh(ω)−Mh(ω0)}, (2.22)

where Gh is a positive definite matrix. Henceforth, Gh is the inverse of the

posterior covariance matrix of h(θ) for p(θ | zobs,ω0).

We set RI(ω,ω0) = CMh(ω,ω0), where ω(t) is a smooth curve on M with

ω(0) = ω0 and dt log p(zcom,θ | ω(t)) |t=0= v(ω0) ∈ Tω(0)M. It can be shown

that ∂RI(ω(0)) = 0 and ∂2RI(ω(0)) = Ṁh(v)
TGhṀh(v), where

Ṁh(v) = dtMh(ω(0)) = Cov{h(θ), dt log p(zcom,θ | ω(t)) | zobs,ω0} |t=0 .

We can use MCMC methods to approximate Ṁh(v) and Gh.

2.6. A simple theoretical example

We consider a simple example involving missing responses (Daniels and

Hogan (2008)). Consider a data set zcom = ((y1, r1), . . . , (yn, rn))
T, where ri = 1

if yi is observed and 0 if yi is missing. We focus on perturbing the missing-data

mechanism.

First, we fit a pattern mixture model for (yi, ri) such that

yi|ri = 1 ∼ N(µ1, σ
2), yi|ri = 0 ∼ N(µ0, σ

2), ri ∼ Ber(ϕ). (2.23)

Model (2.23) assumes that the observed and missing responses differ in their

mean but share the same variance. Since the observed data do not contain any

information on µ0, we assume µ0 = µ1 + ωµ.

Here ωµ can be regarded as a perturbation and θ = (µ1, σ
2, ϕ). The complete

-data likelihood function is

p(zcom,θ|ωµ) = ϕ
∑

i ri(1−ϕ)n−
∑

i ri
{ ∏
i,ri=0

p(yi|µ1+ωµ, σ2)
}{ ∏

i,ri=1

p(yi|µ1, σ2)
}
,

where p(y|µ, σ2) denotes the normal density function with mean µ and variance

σ2. Regardless of the prior for θ, it can be shown that G(ωµ) =
∑n

i=1(1−ri)/σ2,
which is independent of ωµ, and thus M is flat and g(ωµ,1, ωµ,2) = c|ωµ,1 −
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ωµ,2|, where c is a scalar (Zhu et al. (2007)). Moreover, since the observed-

data likelihood function
∫
p(zcom,θ|ωµ) dzmis does not depend on ωµ, all IFs

and IFMs based on p(θ|zobs, ωµ) are zero. This indicates that varying ωµ does

not influence the posterior inferences on θ given zobs. Instead, if we consider the

posterior mean µ1+(1−ϕ)ωµ, the marginal mean of yi, as the influence measure,

then we have

IF(ωµ) = E[µ1 + (1− ϕ)ωµ|zobs] = E[µ1|zobs] + {1− E[ϕ|zobs]}ωµ,

IGIRI(ωµ,1, ωµ,2) =
[IF(ωµ,1)− IF(ωµ,2)]

2

g(ωµ,1, ωµ,2)2
=

{1− E[ϕ|zobs]}2σ2∑n
i=1(1− ri)

,

where E[·|zobs] denote the expectation taken with respect to p(θ|zobs). In this

case, IF(ωµ) does not belong to any of the three Bayesian influence measures con-

sidered in Section 2.4, but our invariant influence measure is applicable. More-

over, the constant IGIRI(ωµ,1, ωµ,2) indicates that any inferences about the mea-

sure of yi are completely driven by the assumptions regarding the size of ωµ.

Second, we fit a selection model for (yi, ri) such that

yi ∼ N(µ1, σ
2), ri ∼ Ber(ϕi) with logit(ϕi) = ξ1 + ωξyi, (2.24)

where logit(·) denotes the logistic function. In (2.24), ωξ = 0 corresponds to

MAR, whereas ωξ ̸= 0 corresponds to MNAR. In this case, ωξ can be regarded

as a perturbation and θ = (µ1, σ
2, ξ1). The complete-data likelihood function is

p(zcom,θ|ωξ) = ϕ
∑

i ri
i (1− ϕi)

n−
∑

i ri

n∏
i=1

p(yi;µ1, σ
2).

If p(θ) is the prior for θ, it can be shown that

G(ωξ) = n

∫
y2

exp(ξ1 + ωξy)

[1 + exp(ξ1 + ωξy)]2
p(y;µ1, σ

2)p(θ)dydθ,

which does not have a simple form. Moreover, since the observed-data likelihood

function
∫
p(zcom,θ|ωξ)dzmis does depend on ωξ, all IFs and IFMs based on

p(θ|zobs, ωξ) can be numerically calculated according to the formulas given in

Sections 2.3−2.4. Generally, in the selection model, varying ωξ does not influence

the posterior inferences about θ given zobs.

3. Simulation Study

We consider a two-level model. We assume that the data are obtained from

N individuals nested within J groups, with group j containing nj individuals,

where N =
∑J

j=1 nj . The level-1 units are the individuals and the level-2 units
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are the groups. At level-1, for each group j (j = 1, . . . , J), the within-group

model is given by

yij = xTijβj + εij , i = 1, . . . , nj , (3.1)

where yij is the outcome variable, xij is a q-vector with explanatory variables

(including a constant), βj is a q-vector of regression coefficients, and εij is the

residual. At level-2, we further assume βj to be a vector of random regression

coefficients,

βj = Zjγ + uj , (3.2)

where Zj is a q × r matrix with explanatory variables (including a constant)

obtained at the group level, γ is an r-vector containing fixed coefficients, and uj
is a q-vector of residuals. Assume that uj is independent of εij , uj ∼ Nq(0,Σ),

and εij ∼ N(0, σ2ε). We assume that the covariates xij and Zj are completely

observed for i = 1, . . . , nj and j = 1, . . . , J , but the responses yij may be missing.

We simulated a data set according to (3.1)−(3.2). We set J = 100, q = 2,

and r = 3, and then we chose varying values of nj in order to create a scenario

with different cluster sizes. Specifically, we set n1 = . . . = n10 = 3, n91 =

. . . = n100 = 20, and ni ∈ {5, 7, 8, 10, 12, 13, 15, 17} for i = 11, . . . , 90. We

independently generated all components (except the intercept) of xij and Zj as

U(0, 1). We assumed that the yij ’s were MAR with missing data mechanism

Pr(rij = 1 | xij , φ) =
exp(φ0 + φTxxij)

1 + exp(φ0 + φTxxij)
, (3.3)

where φ = (φ0, φx), rij = 1 if yij is missing and rij = 0 if yij is observed.

We set φ0 = −2.0, φx = (0.5, 0.5)T , γ = (0.8, 0.8, 0.8)T , Σ = 0.5121
T
2 + 0.5I2,

and σ2ε = 1.0. The missing data fraction of the responses is about 18.4%. To

add some outliers, we modified the simulated data set by generating new {yij :
j = 1, 99, 100; i = 1, . . . , nj} from a N(xTijZjγ + xTijuj , σ

2
ε) distribution with

uj ∼ N(5.612, 1.96I2 + 0.3Σ) (j = 1, 99, 100).

We fit (3.1)−(3.3) to the simulated data set and used MCMC sampling to

carry out the Bayesian influence analysis (Chen, Shao, and Ibrahim (2000)). We

took

p(γ)
D
= N(γ0,H0ε), p(σ−2

ε )
D
= Γ(α0ε, β0ε), p(Σ)

D
= IWq(ρ0, R

0),

where γ0,H0ε, α0ε, β0ε, R
0, and ρ0 are hyperparameters whose values are pre-

specified. We assumed that p(φ)
D
= N(φ0,H0φ), where φ

0 and H0φ are the given

hyperparameters. Furthermore, we set γ0 = (0.8, 0.8, 0.8)T , R0 = 2I2 + 2121
T
2 ,

φ0 = (−2.0, 0.5, 0.5)T , H0φ = I3, αε0 = 10.0, βε0 = 8.0, ρ0 = 10, and H0ε =

diag(0.2, 0.2, 0.2).
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We simultaneously perturbed the distributions of uj and the prior distri-

butions of γ, Σ, and σ2ε , whose perturbed complete-data joint (unnormalized)

log-posterior density is given by

ℓ(zcom,θ | ω)=
J∑
j=1

1

2

{
−q log

(2π
ωj

)
− log | Σ | −ωju

T
j Σ

−1uj

}

+
1

2

{
−r log

( 2π

ωγ

)
− log | H0ε | −ωγ(γ − γ0)TH−1

0ε (γ − γ0)

}
−(ρ0−q−1) log

| Σ |
2

− 1

2
ωΣtr(R

0Σ−1)− 1

2
qρ0 log(2)

+ρ0 log
|ωΣR0|

2
−log Γq

(ρ0
2

)
+log[p(σ−2

ε )+ωσ{g(σ−2
ε )−p(σ−2

ε )}],

where g(σ−2
ε ) is the density of a Gamma (α0ε + 3, β0ε + 1) distribution and

ω = (ω1, . . . ,ωJ ,ωγ ,ωΣ,ωσ)
T . In this case, ω0 = (1, 1, . . . , 1, 0)′ represents

no perturbation. By differentiating ℓ(zcom,θ | ω) with respect to ω, after some

calculations, we have

G(ω0) = diag
[
q
IJ
2
,
r

2
, varΣ

{tr(R0Σ−1)}
4

, varσ2
ε

{g(σ−2
ε )

p(σ−2
ε )

}]
,

where varΣ and varσ2
ε
denote the variance with respect to the priors of Σ and σ2ε ,

respectively. Then, we chose a new perturbation scheme ω̃ = ω0+G(ω0)1/2(ω−
ω0) and calculated the associated local influence measures vF,max = argmaxFIBF
[v]{ω̃(0)}, SIΦIR

[ej ], and SICMh
[ej ], in which ϕ(·) was chosen to be the Kullback-

Leibler divergence divergence and h(θ) = θ. Note that the numbers of observa-

tions in groups 1, 99, and 100 were, respectively, 3, 20, and 20. Groups 1, 99 and

100 were detected to be influential by all our local influence measures. Selected

results for SIΦIR
[ej ] are presented in Figure 1(a).

We used the same setup, except that we employed a perturbed prior distri-

bution for γ: p(γ)
D
= N(4γ0,H0ε), and then applied the same MCMC method,

perturbation scheme, and local influence measures. Groups 1, 99, and 100 and

the perturbed prior distribution of γ were identified to be influential by all our

local influence measures. Selected results for SIΦD
[ej ] are presented in Figure

1(b).

Next, we explored the potential deviations of the MAR mechanism in the

direction of MNAR. We simulated a data set using the same setup except that

the missing data mechanism for yij was

Pr(rij = 1 | xij , yij , φ, φy) =
exp(φ0 + φTxxij + φyyij)

1 + exp(φ0 + φTx sxij + φyyij)
, (3.4)
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(a) (b)

Index Index

Figure 1. Simulation Study: group index plots of local influence measures
for simultaneous perturbation: (a) SIΦIR [ej ] can detect the three influential
groups (1, 99, and 100); (b) SIΦIR

[ej ] can simultaneously detect the three
influential groups (1, 99, and 100) and the perturbed prior distribution p(γ).

with φy = 0.5 to make the missing data fraction approximately equal to 25%.

Similar to sensitivity analysis methods in missing data problems (Molen-

berghs and Kenward (2007), Little and Rubin (2002)), we fit the model (3.1)−(3.2)

and (3.4), with φy fixed at a value ωy, to the simulated data set. When ωy = 0,

the missing data is MAR and hence the missing data mechanism in (3.4) is ignor-

able. Thus, by varying ωy in an interval Ω1, we can treat ωy as a perturbation

scheme to the sampling distribution and then calculate the associated local in-

fluence measures. Specifically, we chose ω = (ωy) and obtained a curve C(t) on

M at t = ω.

We used the same prior distributions for γ, φ, σ2ε , and Σ as before and used

MCMC sampling to carry out the Bayesian influence analysis. We calculated

the intrinsic influence measures IGIf (ω
0,Ω1) for ΦD(ω) and Mh(θ), in which we

chose ϕ(·) as the Kullback-Leibler divergence, set h(θ) = γ and treated ω0 = 0

as no perturbation. We set Ω1 = [−2.0, 2.0] and approximated Ω1 via K0 = 41

grid points ωg,(k) = −2.0 + 0.1k for k = 0, . . . , 40. For a given ω ∈ Ω1, d(ω
0,ω)

was calculated via a composite trapezoidal rule.

Figures 2 (a) and 2 (b) present plots of IGIIR(ω
0,ω) against ω ∈ Ω1 for

ΦIR(ω) and Mh(ω), respectively. The intrinsic influence measures reach max-

ima near the true value of φy = 0.5. This indicates that the nonignorable missing

data mechanism is tenable for the simulated data. We also followed a standard

sensitivity analysis to compute the posterior means and standard deviations of γ
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(a) (b)

ω ω

Figure 2. Simulation Study: plots of IGIIR(ω
0,ω) against ω ∈ Ω1 for (a)

ΦIR(ω) and (b) Mh(ω), in which h(θ) = γ.

Table 1. Table 1. Posterior means (PMs) and standard errors (SDs) of γ at
different values of φy

True γ0 = (0.8, 0.8, 0.8)T

γ1 γ2 γ3
PM SD PM SD PM SD

φy = 0.5 0.831 0.174 0.721 0.251 0.809 0.255
φy = 0.3 0.777 0.170 0.697 0.249 0.786 0.247
φy = 0.15 0.738 0.167 0.661 0.243 0.776 0.249
φy = 0.0 0.697 0.177 0.622 0.247 0.749 0.250

for different φy in Table 1. Although we observed that the posterior distribution

of γ varies with φy, it is hard to tell why φy = 0.5 is more meaningful. We also

carried out a local influence analysis under this MNAR setting (not presented

here) and observed that the proposed local influence method can pick up anoma-

lous features of the data that are not necessarily associated with the missing data

mechanism (Jansen et al. (2006)).

4. Real Data Example

We consider a small portion of a data set from a study of the relationship

between acquired immune deficiency syndrome (AIDS) and the use of condoms

(Morisky et al. (1998)). This subset contains 11 items on such topics as knowledge

about AIDS and beliefs, behaviors and attitudes towards condom use collected

from 1,116 female sex workers. Nine items, denoted by y = (y1, . . . , y9)
T , were
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taken as responses. Items (y1, y2, y3) are related to a latent variable, η, which

can be roughly interpreted as the threat of AIDS, while items (y4, y5, y6) and

(y7, y8, y9) are, respectively, related to latent variables ξ1 and ξ2, that can be

interpreted as aggressiveness of the sex worker and the worry of contracting

AIDS (Lee and Tang (2006)). All response variables were treated as continuous.

A continuous item x1, on the duration as a sex worker, and an ordered categorical

item x2, on the knowledge about AIDS, were taken as covariates. The response

variables and covariates are missing at least once for 361 subjects (32.35%) (see

Table 4 of Lee and Tang (2006)). The covariate x2 is completely observed.

Let yi = (yi1, . . . , yi9)
T and ϖi = (ηi, ξi1, ξi2)

T . We considered the measure-

ment and structural equations model given by

yi = µ+ Λϖi + εi,

ηi = b1xi1 + b2xi2 + γ1ξi1 + γ2ξi2 + δi, for i = 1, . . . , 1116,

where µ = (µ1, . . . , µ9)
T and

ΛT =

 1.0∗ λ21 λ31 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 1.0∗ λ52 λ62 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 0.0∗ 1.0∗ λ83 λ93

 ,

in which 0.0∗ and 1.0∗ are regarded as fixed values to identify the scale of the

latent factor. We took εi distributed as N(0,Ψ), where Ψ = diag(ψ1, . . . , ψ9),

and ϖi and εi are independent. In the structural equation, Γ = (b1, b2,γ1,γ2)

is a vector of unknown parameters, ξi = (ξi1, ξi2)
T is distributed as N(0,Φ), δi

is distributed as N(0, ψδ), and ξi and δi are independent.

We assumed the missing data are MNAR, and hence the missingness mecha-

nism of the response variables is non-ignorable (Ibrahim and Molenberghs (2009)).

Let ryij = 1 if yij is missing and ryij = 0 if yij is observed. For the missing

data mechanism of the response variables, we took logit{pr(ryij = 1 | yi)} =

φ0 + φ1yi1 + . . . + φ9yi9, where φ = (φ0, φ1, . . . , φ9)
T . We also assumed that

the covariate xi1 is MNAR. Let rxi1 = 1 if xi1 is missing and rxi1 = 0 if xi1 is

observed. It was assumed that xi1 has a N(0, τ2x) distribution and logit{pr(rxi1 =
1 | φx)} = φx0+ωxi1.When ω = 0, the missingness mechanism reduces to MAR.

We fitted the proposed structural equation models to the AIDS data set and

used MCMC sampling to carry out the Bayesian influence analysis. We specified

the prior distributions for µ, Λ, Ψ, Γ, ω, Φ, ψδ, φ, φx0, and τx as those in Lee

and Tang (2006). A total of 40, 000 MCMC samples was used to compute the

intrinsic and local influence measures.

By varying ω in an interval [−2, 2], we can treat ω as a perturbation pa-

rameter to the sampling distribution. In this case, ω0 = 0 represents no pertur-

bation. We calculated two intrinsic influence measures for the Kullback-Leibler
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(a) (b)

ω ω

Figure 3. AIDS data analysis results: plots of IGIRI(ω
0,ω) against ω ∈

[−2, 2] for (a) ΦRI(ω) and (b) Mh(ω), in which h(θ) = Γ.

divergence and the posterior mean distance, denoted by CMh(ω). Specifically,

CMh(ω,ω
0) = {Mh(ω) − Mh(ω

0)}TCh{Mh(ω) − Mh(ω
0)}, where Mh(ω) =∫

h(θ)p(θ | z,ω)dθ, in which h(θ) = Γ, and Ch is the posterior covariance

matrix of Γ based on p(Γ | z,ω0). We calculated IGIRI(ω
0,ω) at 41 evenly

spaced grid points in [−2, 2] (Figure 3). An inspection of Figure 3 shows that the

largest IGIRI(ω
0,ω) values are close to 0.1 for both the Kullback-Leibler diver-

gence and Mh(ω). This indicates that the nonignorable missing data mechanism

may be tenable for the AIDS data. We also carried out a standard sensitivity

analysis and computed posterior means and standard deviations of Γ at different

values of ω, as shown in Figure 4. Although we observe that the posterior means

and standard deviations of Γ vary with ω, it is difficult to make any meaningful

inference here.

We also calculated the local influence measures of the Kullback-Leibler di-

vergence under a simultaneous perturbation scheme. The simultaneous pertur-

bation scheme ω includes variance perturbations ωc for individual observations,

perturbations ωs to coefficients in the structural equations model, perturbations

ωξ to the sampling distribution of ξi, perturbations ωµ to the prior distribution

of µ, perturbations ωΓ to the prior distribution of Γ, perturbations ωφ to the

prior distribution of φ, and perturbations ωx to the missing data mechanism.

The corresponding kernel of the joint log-posterior density of (z,θ) based on the



BAYESIAN SENSITIVITY ANALYSIS OF MISSING DATA MODELS 891

complete data is given by

log p(z,θ | ω) ≡ ℓ(z,θ | ω) = lc(ωc) + ls(ωs) + lξ(ωξ) + lµ(ωµ) + lΓ(ωΓ) (4.1)

+lφ(ωφ) + lx(ωx),

where

lc(ωc) =
1

2

{
− p

n∑
i=1

log
(2π
ωi

)
−

n∑
i=1

ωi(yi − µ− Λϖi)
TΨ−1(yi − µ− Λϖi)

}
,

ls(ωs) =
1

2

{
−

n∑
i=1

1

ψδ
(ηi − b1xi1 − b2xi2 − γ1ξi1 − γ2ξi2 − ωγ1ξ

2
i1 − ωγ2ξ

2
i2

−ωγ3ξi1ξi2)
2
}
,

lξ(ωξ) =
1

2

{
− nq2 log

(2π
ωξ

)
− n log | Φ | −ωξ

n∑
i=1

ξTi Φ
−1ξi

}
,

lµ(ωµ) =
1

2
{−p log

( 2π

ωµ

)
− log | Σ0 | −ωµ(µ− µ0)

TΣ−1
0 (µ− µ0)},

lΓ(ωΓ) =
1

2

{
− (s+ t) log

( 2π

ωΓ

)
− log | HΓ | −ωΓ(Γ− Γ0)TH−1

Γ (Γ− Γ0)
}
,

lφ(ωφ) =
1

2

{
− (p+ 1) log

( 2π

ωφ

)
− log | Hφ | −ωφ(φ− φ0)TH−1

φ (φ− φ0)
}
,

lx(ωx) =

n∑
i=1

[rxi1(φx0 + ωxxi1)− log{1.0 + exp(φx0 + ωxxi1)}].

In this case, ω0 = (ω0
c
T
,ω0T

s ,ω0
ξ ,ω

0
µ,ω

0
Γ, ω

0
φ,ω

0
x)
T represents no perturbation, in

which ω0
c = (1, . . . , 1)T , ω0

s = (0, 0, 0)T , ω0
ξ = ω0

µ = ω0
Γ = ω0

φ = 1 and ω0
x = 0.1.

We calculated ∂ωℓ(z,θ | ω) and then obtained its metric tensor as

G(ω0) = diag{Gc(ω0
c), Gs(ω

0
s), Gξ(ω

0
ξ), Gµ(ω

0
µ), GΓ(ω

0
Γ), Gφ(ω

0
φ), Gx(ω

0
x)},

where Gc(ω
0
c) = diag(p/2, . . . , p/2), Gξ(ω

0
ξ) = nq2/2, Gµ(ω

0
µ) = p/2, GΓ(ω

0
Γ) =

(s+t)/2, Gφ(ω
0
φ) = (p+1)/2, Gs(ω

0
s) = diag[3nEϕ,ψδ

(ϕ211/ψδ), 3nEϕ,ψδ
(ϕ222/ψδ),

nEϕ,ψδ
{(ϕ11ϕ22 +2ϕ212)/ψδ}], and Gx(ω

0
x) = Eφx0,rx,x1 [

∑n
i=1{rxi1 − exp(φx0 +

ω0
xxi1)/(1.0 + exp(φx0 + ω0

xxi1))}]2. The diagonal elements of the metric tensor

G(ω0) reveal that ωγ1, ωγ2, ωγ3, ωξ, and ωx have larger effects compared to

other perturbations (see Figure 5(a)). Then, we chose a new perturbation scheme

ω̃ = ω0+G(ω0)1/2(ω−ω0) and calculated the associated local influence measures

SIΦIR
[ej ] for the Kullback-Leibler divergence. The local influence measures based

on the ϕ-divergence are able to detect cases {14, 25, 28, 137, 175, 408, 985} as

influential observations (see Figure 5(b)), while ωγ1 and ωγ3 indicate that it
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Figure 4. AIDS data analysis results: plots of (posterior means-posterior
mean at ω = 0)/(posterior standard deviation at ω = 0) ((a),(c),(e),(g)) and
the ratio of posterior standard deviations divided by the posterior standard
deviation at ω = 0 ((b),(d),(f),(h)) of b1, b2, γ1, γ2 as a function of ω ∈
[−2, 2].
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Figure 5. AIDS data analysis results: index plots of (a) metric tensor gjj(ω
0)

and (b) local influence measures SIΦIR [ej ] for simultaneous perturbation.

may be important to include ξ2i1 and ξi1ξi2 in the structural model (see Figure

5(b)).

5. Discussion

We have developed Bayesian sensitivity analysis methods for assessing vari-

ous perturbations to statistical methods with missing data. We have developed

a Bayesian perturbation manifold to characterize the intrinsic structure of the

perturbation model and to quantify the degree of each perturbation in the per-

turbation model. We have developed global and local influence measures for

selecting the most influential perturbation based on various objective functions
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and their statistical properties. Finally, we have also examined a number of ex-

amples to highlight the broad spectrum of applications of this Bayesian influence

analysis method in missing data problems.

Many issues merit further research. Our Bayesian sensitivity analysis method

can be extended to more complex data structures (e.g., survival data) and other

parametric and semiparametric models with nonparametric priors. In further

research, we will generalize our methodology to the setting of estimating equa-

tions and empirical likelihood of generalized estimating equations for missing

data problems. We will develop Bayesian sensitivity analysis methods to deal

with the well-known masking and swamping effects in the diagnostic literature.

References

Andridge, R. R. and Little, R. J. A. (2011). Proxy pattern-mixture analysis for survey nonre-

sponse. Journal of Official Statistics 27, 153-180.

Berger, J. O. (1994). An overview of robust bayesian analysis. Test 3, 5-58.

Chen, M. H., Shao, Q. M. and Ibrahim, J. G. (2000). Monte Carlo Methods in Bayesian Com-

putation. Springer-Verlag, New York.

Cook, R. D. (1986). Assessment of local influence (with Discussion). J. Roy. Statist. Soc. Ser.

B 48, 133-169.

Copas, J. and Eguchi, S. (2005). Local model uncertainty and incomplete data bias (with

discussion). J. Roy. Statist. Soc. Ser. B 67, 459- 512.

Copas, J. B. and Li, H. G. (1997). Inference for non-random samples (with discussion). J. Roy.

Statist. Soc. Ser. B 59, 55-96.

Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference

(with discussion). J. Roy. Statist. Soc. Ser. B 49, 1-39.

Daniels, M. J. and Hogan, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for

Bayesian Modeling and Sensitivity Analysis. Chapman and Hall, London.

Dey, D. K., Ghosh, S. K. and Lou, K. R. (1996). On local sensitivity measures in bayesian

(with discussion). In Bayesian Robustness (Edited by J. O. Berger, B. Betrò, e. Moreno,
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