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Abstract: Technological advances that allow multiple outcomes to be routinely

collected have brought a high demand for valid statistical methods that can sum-

marize and study the latent variables underlying them. Outcome data with con-

tinuous and ordinal components present statistical challenges. We develop here a

new class of semiparametric latent variable transformation models to summarize

the multiple correlated outcomes of mixed types in a data-driven way. We propose

a series of estimating equation-based and likelihood-based procedures for estima-

tion and inference. The resulting estimators are shown to be n1/2-consistent (even

for nonparametric link functions) and asymptotically normal. Simulations suggest

robustness as well as high efficiency, and the proposed approach is applied to assess

the effectiveness of recombinant tissue plasminogen activator on ischemic stroke

patients.
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1. Introduction

Multiple outcomes, measuring diverse aspects of patients’ health status, pro-

vide more complete and reliable information than traditional single endpoints in

clinical studies. Complications arise when observed outcomes consist of compo-

nents of such mixed types as continuous, binary, and ordinal.

A natural approach, common in the social and biological sciences, is to

treat multiple measures as surrogates of an underlying latent variable, and to

directly regress the latent variable on the covariates of interest, e.g. treatment.

A vast literature has been devoted to continuous multiple outcome data; see

OBrien (1984), Pocock, Geller, and Tsiatis (1987), Legler, Lefkopoulou, and

Ryan (1995), Sammel, Lin, and Ryan (1999), Sammel and Ryan (1996), Browne

(1984), and Bentler (1983). In contrast, models for mixed-type outcomes are

underdeveloped. The related literature has focused primarily on joint models

for binary and continuous outcomes in a joint normal framework (Catalano and
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Ryan (1992); Cox and Wermuth (1992); Fitzmaurice and Laird (1995); Sammel,

Ryan, and Legler (1997); Regan and Catalano (1999); Dunson (2000); Roy and

Lin (2000); Gueorguieva and Agresti (2001); Song, Xia, and Lee (2009)), and

in a generalized linear model setting (GLLVM, Moustaki (1996); Sammel, Ryan,

and Legler (1997); Bartholomew and Knott (1999); Moustaki and Knott (2000);

Dunson (2003); Huber, Ronchetti, and Victoria-Feser (2004); Zhu, Eickhoff, and

Yan (2005)).

One common theme of existing methods is that the link function relating the

observed outcomes to the latent variables is prespecified. For example, the joint

normal framework assumes a linear and probit form to combine the continuous

and binary outcomes, whereas the generalized linear models typically assume a

logit or log function for ordinal outcomes. These parametric assumptions are

restrictive and misspecifications can result in improper inference. For example,

in our motivating stroke study, ordinal and continuous outcomes are measured,

and the traditional joint normal model with a linear link function fails to detect

treatment benefit. As elaborated in Section 7, a data-driven link function can

establish such benefit.

We develop a semiparametric normal transformation latent variable model

to summarize multiple correlated outcomes with continuous and ordinal com-

ponents. Our method is a flexible yet systematic way of integrating multiple

outcomes allowing an unspecified link function. To fix ideas, we consider a case

without covariates. As in Muthén (1984), we link the ordinal outcomes to under-

lying continuous variables. For a continuous variables Yj with distribution func-

tion Fj , Φ
−1(Fj(Yj))≡̂Hj(Yj) has a standard normal distribution, Φ the normal

distribution function. We combine the p−dimensional outcomes Y1, . . . , Yp by

using functions H1, . . . , Hp that are data-driven. We propose a series of estimat-

ing equation-based and likelihood-based procedures for estimation and inference.

Our estimator does not require nonparametric smoothing. We show that the re-

sulting estimators are n1/2-consistent, even for the nonparametric link functions,

and asymptotically normal. Finite sample performance of the proposed approach

is assessed via simulations, and an application to the effectiveness of recombinant

tissue plasminogen activator in a stroke study.

The remainder of the article is organized as follows. The proposed latent

variable transformation model is introduced in Section 2. A two-stage estimation

procedure is described in Section 3. The asymptotic properties and the variance

estimation are considered in Sections 4 and 5, respectively. Simulation results

are shown in Section 6, while the analysis results of the ischemic stroke trial are

reported in Section 7. We conclude the paper with remarks in Section 8, and

defer the technicalities to the Appendix.
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2. Models

Suppose there are n randomly selected subjects with p distinct outcomes.

For subject i, i = 1, . . . , n, we observe the covariate vectors Xi1, . . . ,Xip corre-

sponding to a vector of outcomes Yi = (Yi1, . . . , Yip)
T . We also observe Zi, a

vector containing covariates for comparisons, e.g. a treatment indicator. The el-

ements of Yi are ordered such that the first p1 elements are continuous while the

remaining p2 = p−p1 are ordinal. To facilitate joint modeling, we link the ordinal

outcomes to underlying continuous variables as in Muthén (1984). Formally, let

Yij = gj(Y
∗
ij ; cj) for j = 1, . . . , p, where Y ∗

ij is a continuous variable underlying Yij .

For the continuous outcomes, we have Yij = Y ∗
ij , for j = 1, . . . , p1. For the dis-

crete outcomes, with Yij ∈ {1, . . . , dj}, we have Yij =
∑dj

l=1 lI(cj,l−1 < Y ∗
ij ≤ cj,l)

for j = p1 + 1, . . . , p, where cj = (cj,0, . . . , cj,dj )
T are thresholds satisfying

−∞ = cj,0 < cj,1 < · · · < cj,dj = ∞, dj is the number of categories of the

jth outcome. Here, dj can be arbitrarily large as n → ∞, so our method can

accommodate count data. All of the values of cj are unknown. We relate the

underlying continuous variables to the latent variable through a semiparametric

linear transformation model of the form

Hj(Y
∗
ij) = XT

ijβj + αT
j ei + εij , j = 1, . . . , p, (2.1)

where β = (βT
1 , . . . ,β

T
p )

T is a vector of regression coefficients, α = (α1, . . . , αp)
T

are the factor loadings, ei is a vector of latent variables summarizing the treat-

ment effect for subject i, and εi = (εi1, . . . , εip)
T is a vector of independently

error distributed as N(0,diag(σ21, . . . , σ
2
p)). The H1, . . . , Hp here are unknown

increasing transformation functions satisfying Hj(−∞) = −∞ and Hj(∞) = ∞
for j = 1, . . . , p. The last requirement ensures that Φ{a +Hj(−∞)/b} = 0 and

Φ{a+Hj(∞)/b} = 1 for any finite a and b > 0. If the support of Hj(·) is (aj ,∞)

or (−∞, bj), we write Hj(−∞) = −∞ or Hj(∞) = ∞. This is proper with the

monotonicity of Hj .

What distinguishes our model from existing methods lies in nonparametric

link functions that are data-driven and do not need to be known a priori. We

also remark that, with dummy variables, our method encompasses categorical

responses.

We relate a latent variable to Zi, which records treatment assignment and

other covariates for the sake of comparisons, via

ei = γZi + ϵi, (2.2)

where γ is an unknown regression coefficient matrix characterizing the treatment

effect in a population, ϵi is the random error distributed as N(0,Σe), Σe =
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diag(σ2e1, . . . , σ
2
e,q), with Zi and ϵi independent. In general, the number of the

latent variables q is less than the number of outcomes p.

Our model is comprehensive and encompasses many well-known models as

special cases. To see this, we write ε̃ij = αjei + εij , and rewrite the model for

the j-th outcome as

Hj(Y
∗
ij) = XT

ijβj + ε̃ij . (2.3)

This model belongs to a rich family of semiparametric transformation models.

For example, when Hj is a power function, (2.3) reduces to a familiar Box-

Cox transformation model (Box and Cox (1964); Bickel and Doksum (1981)). If

Hj(y) = y andHj(y) = log(y), (2.3) reduces to the additive and multiplicative er-

ror models, respectively. More parametric transformation models can be found in

Carroll and Ruppert (1988). Han (1987), Cheng, Wei, and Ying (1995), Doksum

(1987), Dabrowska and Doksum (1988), Chen, Jin, and Ying (2002), Horowitz

(1996), Ye and Duan (1997), Chen (2002), Zhou, Lin, and Johnson (2009), and

Lin and Zhou (2009) have proposed regression coefficients and transformation

estimators for the model (2.3) with unknown transformation function.

In contrast with the existing semiparametric transformation models, two

additional technical difficulties arise for statistical inference based on (2.1) and

(2.2): unobserved latent variables ei are involved, and some outcomes, such as

Y ∗
ij , j = p1 + 1, . . . , p, are not completely observed. We address these issues in

the next section.

3. Estimation

Models (2.1) and (2.2) can be rewritten as

Hj(Y
∗
ij) = XT

ijβj + αT
j γZi + αT

j ϵi + εij , j = 1, . . . , p. (3.1)

Hence, given ϵi, H1(Y
∗
i1), . . . ,Hp(Y

∗
ip) are independent and distributed as Hj(Y

∗
ij)

∼ N(XT
ijβj + αT

j γZi + αT
j ϵi, σ

2
j ) for j = 1, . . . , p. For each given j > p1, the

discrete components, we can only estimate Hj(cj,1), . . . , Hj(cj,dj−1), as the cj
and Hj are unidentifiable separately. To go forward, for each given j > p1, we

define a nondecreasing step function Gj with jumps only at 1, . . . , dj − 1, and

Gj(m) = Hj(cj,m) for any m ∈ {1, . . . , dj − 1}, where cj,m is the unknown upper

limit of Y ∗
ij when Yij = m. We also write Gj = Hj for j ≤ p1, so the estimation

of Hj , j = 1, . . . , p, is transferred to the estimation of Gj for j = 1, . . . , p.

Equations (3.1) continue to hold if Hj , βj , αj , and σj are replaced by Hj/c,

βj/c, αj/c and σj/c for any c > 0. Here we use σ2j = 1, j = 1, . . . , p, for scale

indentification. In addition, we assume that Zi and Xij do not contain intercept

term for location normalization. As only αγ and αΣeα
T are identifiable, we

take σ2e,j = 1 and αjk = 0 for all j < k, where j = 1, . . . , p, k = 1, . . . , q. Let
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Θ = {β,α, γ} andG = {G1, . . . , Gp}; Θ andG are the unknown parameters and

functions to be estimated in the semiparametric latent variable transformation

models (2.1) and (2.2).

3.1. Estimation of Θ

Let Xi = diag(XT
i1, . . . ,X

T
ip), H

[1]
i = (H1(Y

∗
i1), . . . ,Hp1(Y

∗
i,p1

))T ,

H
[2]
i = (Hp1+1(Y

∗
i,p1+1), . . . ,Hp(Y

∗
ip))

T , and H[2]
i =

p∏
j=p1+1

[Gj(Yij − 1), Gj(Yij)].

H
[1]
i is completely observed and H

[2]
i is observed to be belonged to H[2]

i . Since

Hi ≡ (H
[1]T

i ,H
[2]T

i )T ∼ N(Xiβ +αγZi,Σ22),

where Σ22 = ααT + Ip×p, the likelihood for the observed data is

L(Θ;G) ∝ |Σ22|−n/2
n∏

i=1

∫
x[2]∈H[2]

i

exp

{
− 1

2

((
H

[1]
i

x[2]

)
−Xiβ−αγZi

)T

Σ−1
22

((
H

[1]
i

x[2]

)
−Xiβ−αγZi

)}
dx[2]. (3.2)

The likelihood function involves the infinite dimensional parameterGj , j = 1, . . . , p,

so a direct maximization can be prohibitive, especially in the presence of a high

dimensional integral. We resort to a two-stage approach. First, we use a series of

estimating equations to estimate the transformation functions Gj , j = 1, . . . , p.

The parameter Θ is then estimated by maximizing a pseudo-likelihood, the like-

lihood function L(Θ;G) with G replaced by its estimated value. We repeat the

procedure until convergence.

3.2. Estimation of the transformation function

We first estimate the transformation functions for a given Θ. For any given

j ≤ p, we take yj ∈ R if j ≤ p1 and yj ∈ {1, . . . , dj} for j > p1, and consider the

“marginal” probability for the event of Yij ≤ yj . Then

Pr(Yij ≤ yj |Xij ,Zi) = Pr(Hj(Y
∗
ij) ≤ Hj(yj)|Xij ,Zi), if j ≤ p1,

P r(Yij ≤ yj |Xij ,Zi) = Pr(Hj(Y
∗
ij) ≤ Gj(yj)|Xij ,Zi), if j > p1,

both of which are equal to∫
x
Φ
(
Gj(yj)−

(
XT

ijβj + αT
j γZi + αT

j x
))
ϕ(x)dx,
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under the convention that Gj = Hj for j ≤ p1. Here ϕ(·) denotes the density

function for a q−dimensional standard normal random vector. This leads to a

series of estimating equations

n∑
i=1

{
I (Yij ≤ yj)− Φ

(Gj(yj)−
(
XT

ijβj + αT
j γZi

)
√
αT
j αj + 1

)}
= 0, (3.3)

for j = 1, . . . , p.

Due to the monotonicity of Φ, the estimator Ĝj(·) of Gj(·) is a nondecreasing

step function with jumps only at the observed Yij , i = 1, . . . , n, j = 1, . . . , p. Then

solving the system of estimating equations (3.3) is equivalent to solving a finite

number of equations and, in contrast with traditional nonparametric approaches,

our approach does not involve nonparametric smoothing.

For iteratively estimating Θ and Gj(·), we propose a procedure for choosing

initial values. Denote by γj = γTαj for j = 1, . . . , p. An application of the double

expectation theorem yields

E{XijI(Yij ≤ yj)} = EXijΦ

(Gj(yj)−
(
XT

ijβj + γTj Zi

)
√
αT
j αj + 1

)
,

E{ZiI(Yij ≤ yj)} = EZiΦ

(Gj(yj)−
(
XT

ijβj + γTj Zi

)
√
αT
j αj + 1

)
.

Let Y(1j) < · · · < Y(dj ,j) be the set of distinct points of Yij , i = 1, . . . , n. Then

the initial values of βj , γj , and Gj(·), j = 1, . . . , p, can be obtained by solving the

equations

n∑
i=1

{
I (Yij ≤ yj)− Φ

(Gj(yj)−
(
XT

ijβj + γTj Zi

)
√
αT
j αj + 1

)}
= 0,

for yj = Y(1j), . . . , Y(dj ,j),

n∑
i=1

dj∑
k=1

Xij

{
I
(
Yij ≤ Y(kj)

)
− Φ

(Gj(Y(kj))−
(
XT

ijβj + γTj Zi

)
√
αT
j αj + 1

)}
= 0,

n∑
i=1

dj∑
k=1

Zi

{
I
(
Yij ≤ Y(kj)

)
− Φ

(Gj(Y(kj))−
(
XT

ijβj + γTj Zi

)
√
αT
j αj + 1

)}
= 0,

for j = 1, . . . , p. We set the starting values for αj , j = 1, . . . , p, to be the one

satisfying αT
j αj = 1. The detailed iterative algorithm is provided in Appendix

A.
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4. Inference in Large Samples

We present the large sample properties of the estimators derived in Section

3. Let Θ̂ and Ĝj , j = 1, . . . , p, denote the estimators of Θ and Gj , j = 1, . . . , p.

Throughout, we use the subscript “0” for the true value; for example, Gj0 is the

true value of Gj . Let

B = E

(
∂2 logLi(Θ0;G0)

∂Θ∂ΘT
+

p∑
j=1

∂2 logLi(Θ0;G0)

∂Θ∂Gj(Yij)
dTj (Yij)

+

p∑
j=p1+1

∂2 logLi(Θ0;G0)

∂Θ∂Gj(Yij − 1)
dTj (Yij − 1)

)
,

where Li(Θ;G) is the contribution of subject i to the likelihood (3.2),

dj(y) =

Eϕ
(
Gj0(y)−Wij(Θ)√

αT
j αj+1

){
∂Wij(Θ)

∂Θ +[Gj0(y)−Wij(Θ)]
∂ log(

√
αT
j αj+1)

∂Θ

}
Eϕ
(
Gj0(y)−Wij(Θ)√

αT
j αj+1

) ∣∣∣∣∣
Θ=Θ0

,

and Wij(Θ) = XT
ijβj + αT

j γZi.

To facilitate matters, we first assume that B is negative definite, ensuring

the uniqueness of Θ̂. We assume that the covariates Xi and Zi have bounded

supports, and that H is a monotone function.

Theorem 1. As n→ ∞, Θ̂ and Ĝj(yj) are unique and uniformly consistent for

Θ0 and Gj0(yj) over yj ∈ [aj , bj ] if j ≤ p1, and yj ∈ {1, . . . , dj − 1} if j > p1.

Theorem 2. As n→ ∞, we have

n1/2(Θ̂−Θ0) → N
(
0,B−1A(B−1)T

)
, (4.1)

where A is defined in Appendix B.

Theorem 3. As n→ ∞, we have

n1/2
(
Ĝj(y)−Gj0(y)

)
→ N(0,∆j(y)),

for any y ∈ [aj , bj ] if j ≤ p1, and y ∈ {1, . . . , dj − 1} if j > p1, where ∆j(y) is

defined in Appendix B.

We find here that the nonparametric function Gj0(·) can be estimated with

the parametric convergent rate n−1/2. Similar conclusions in different contexts
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can be seen in Horowitz (1996), Chen (2002), Ye and Duan (1997) and Zhou,
Lin, and Johnson (2009).

5. Estimation of Asymptotic Variance of Θ̂

As involved computation prohibits the direct usage of the asymptotic vari-
ance of Θ̂, we propose to use a resampling scheme proposed by Jin, Ying,
and Wei (2001). Specifically, we first generate n exponential random variables
ξi, i = 1, . . . , n with mean 1 and variance 1. Fixing the data at their observed
values, we solve the following ξi-weighted estimation equations and denote the
solutions as Θ∗ and G∗

j (y), j = 1, . . . , p, for any y:

n∑
i=1

ξi
∂

∂Θ
log


∫
x

p1∏
j=1

ϕ
(
Gj(Yij)−

(
XT

ijβj + αT
j γZi + αT

j x
))

×
p∏

j=p1+1

[
Φ
(
Gj(Yij)−

(
XT

ijβj + αT
j γZi + αT

j x
))

−Φ
(
Gj(Yij − 1)−

(
XT

ijβj + αT
j γZi + αT

j x
))]

ϕ(x)dx
}
= 0, (5.1)

n∑
i=1

ξi

{
I (Yij≤y)− Φ

(Gj(y)−
(
XT

ijβj+α
T
j γZi

)
√
αT
j αj + 1

)}
= 0, for j = 1, . . . , p. (5.2)

The estimates Θ∗ and G∗
j (·), j = 1, . . . , p can be obtained using the iterative

algorithm described in Appendix A. Following Jin, Ying, and Wei (2001), and
using the asymptotic expansion (D.4) in Appendix D, we establish the validity
of the proposed resampling method.

Proposition. Under the conditions given in Section 4, the conditional distri-
bution of n1/2(Θ∗ − Θ̂), given the observed data, converges almost surely to the
asymptotic distribution of n1/2(Θ̂−Θ0).

Thus we can obtain a large number of realizations of Θ∗, the empirical
variance of which can be used to approximate the variance of Θ̂.

6. Simulation

We investigate the robustness and the efficiency of the proposed method, in
comparison with two “extreme” methods. The first method uses (2.1) and (2.2)
with misspecified transformation functions, called the MT method; the second
uses (2.1) and (2.2) with the correctly specified transformation functions, the CT
method. The MT estimator is used to investigate the robustness of the proposed
method; the CT estimator is the gold standard by which we evaluate the effi-
ciency of the proposed method. In each case we evaluate the variance estimators
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described in Section 5. We assess the performance of the various estimators in

terms of bias, standard deviation(SD), and root mean square error(RMSE).

Simulation 1. We simulated 500 datasets, each with 300 subjects. For each

subject i, Yi1 and Yi2 continuous, and Yi3 and Yi4, discrete, were generated from

the transformation models

Hj(Yij) = XT
i βj + αjei + ϵij , j = 1, 2, 3, 4, (6.1)

where H1(y) = log(y), H2(y) = (y0.5 − 1)/0.5, H3(y) = y, H4(y) = y3. Here Y ∗
i3

and Y ∗
i4 are the underlying continuous variables for Yi3 and Yi4, respectively, with

Yi3 =
∑5

l=1 lI(cl−1,3 < Y ∗
i3 < cl,3) and Yi4 =

∑2
l=1(l − 1)I(cl−1,4 < Y ∗

i4 < cl,4),

where (c0,3, c1,3, c2,3, c3,3, c4,3, c5,3) = (−∞, 1, 2, 3, 4,∞) and (c0,4, c1,4, c2,4, c3,4) =

(−∞, 0, 1,∞). With Xi = (X1i, X2i)
T , X1i and X2i were generated indepen-

dently from the uniform distribution over [0, 1]. The regression coefficients were

β1 = (β11, β12)
T = (1.5, 1.5)T , β2 = (β21, β22)

T = (1, 1)T , β3 = (β31, β32)
T =

(2, 2)T , and β4 = (β41, β42)
T = (1, 1)T . The loading was α1 = α2 = α3 = α4 =

0.5, and the ϵij were independent standard normal. The latent variable ei was

generated from ei = Ziγ + ϵi, where Zi was uniform on [0, 1], γ = 3 and ϵi
standard normal.

Table 1 gives the bias and the standard deviation (SD) of the estimators for

the parameters using the proposed method, the CT method, and the MT method

with the transformation functions misspecified as H1(y) = H2(y) = H3(y) =

H4(y) = y. The results from the MT method were based on 259 replications

from the 500 simulation runs, as the Newton-Raphson algorithm failed on 241

replications. Table 1 indicates that the MT estimators have large biases and

variances, suggesting that the misspecification of the link function leads to biased

and unstable estimates for all the parameters, even for the parameters in the

models for the discrete responses where the transformation functions H3 and H4

do not matter. In contrast, our method yielded estimates close to the true values,

with variances that were very close to those for the CT estimators, suggesting

that our procedure is robust with little loss of efficiency.

For each simulated dataset, we also obtained the estimates of the transfor-

mations H1 and H2 and the threshold parameters. Table 2 presents the average,

the standard deviation (SD), and the root of the mean square errors (RMSE)

for the threshold parameters. The MT estimator here is severely biased, where

our approach yields unbiased estimators with variances close to those of the CT

estimators. Figure 1 displays the averaged estimated transformation functions

and their 95% empirical pointwise confidence limits based on the 500 simulated

datasets; it shows that the proposed estimates of the transformation functions

are close to the true transformation functions.
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Table 1. Results of the parameter estimation for Simulation 1.

Proposed CT MT Proposed CT MT
β11 Bias 0.019 -0.013 5.405 β21 Bias 0.022 0.001 2.283

SD 0.190 0.188 3.425 SD 0.195 0.187 0.475
β12 Bias 0.035 0.004 5.662 β22 Bias 0.027 0.005 2.297

SD 0.186 0.180 3.439 SD 0.198 0.191 0.430
β31 Bias -0.005 -0.005 -2.328 β41 Bias 0.022 0.027 -12.072

SD 0.193 0.190 0.773 SD 0.281 0.283 4.800
β32 Bias 0.009 0.007 -2.306 β42 Bias 0.012 0.014 -12.526

SD 0.196 0.191 0.771 SD 0.286 0.284 10.064
α1 Bias -0.003 -0.010 3.893 α2 Bias -0.003 -0.011 -0.181

SD 0.068 0.061 1.530 SD 0.069 0.062 0.084
α3 Bias -0.011 -0.007 -0.439 α4 Bias -0.003 0.002 0.453

SD 0.071 0.070 0.052 SD 0.101 0.100 5.792
γ Bias 0.125 0.095 -1.804

SD 0.448 0.408 0.742

Table 2. The estimates of thresholds for Simulation 1.

Proposed CT MT Proposed CT MT
G3(1) Bias -0.004 -0.008 -2.568 G3(2) Bias 0.005 0.003 -2.832

SD 0.149 0.139 0.841 SD 0.128 0.119 0.792
G3(3) Bias 0.008 0.006 -3.110 G3(4) Bias 0.010 0.009 -3.380

SD 0.129 0.119 0.752 SD 0.136 0.130 0.709
G4(1) Bias -0.002 -0.002 -18.437 G4(2) Bias 0.021 0.023 -15.122

SD 0.214 0.211 13.311 SD 0.204 0.201 8.500

Table 3. True and estimated standard errors for Simulation 1.

SD SEave SD SEave

β11 0.190 0.200 β12 0.186 0.220
β21 0.195 0.201 β22 0.198 0.212
β31 0.193 0.193 β32 0.196 0.212
β41 0.281 0.255 β42 0.286 0.250
α1 0.068 0.074 α2 0.069 0.083
α3 0.071 0.071 α4 0.101 0.090
γ 0.448 0.419

We also tested the accuracy of the estimation of the standard error given

in Section 5. The standard deviations, SD in Tables 1 and 2, based on the 500

simulations, worked well there. To test their accuracy, we took three samples

that attained 25%, 50%, and 75% of ASE = ∥Θ̂−Θ0∥, respectively, of the 500

simulations. The average of three estimated standard errors based on the 500

realizations of Θ∗, denoted by SEave, summarizes the overall performance of the

standard error estimator, see Table 3.
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Figure 1. The estimated transformation functions (dotted-lined—true func-
tion; solid—95% confidential limit; dashed—average of the estimated trans-
formation function).

Simulation 2 Our method requires Gaussian error. To investigate the sensitivity

of our method to this, we generated data according to settings similar to those in

Simulation 1, except that we took the outcomes Yi1 and Yi3 and generated εi1 and

εi3 from the centralized and scaled gamma distribution (Gamma(τ, 1)− τ)/
√
τ ,

which approaches the standard normal as τ increases. We took τ = 100, 10, 5, 3,

and 1. Table 4 presents the bias and SD for the parameters.

The results of the case with τ = 1, marked by *, are based on 418 replications

as the algorithm failed to converge in 82 simulations. A useful rule to evaluate

the severity of bias, as suggested by Olsen and Schafer (2001), is to check whether

the standardized bias (bias over standard deviation) exceeds 0.4. When τ ≥ 10,

both skewness and excess kurtosis are less than one, the proposed estimators are

nearly unbiased. When both skewness and excess kurtosis are around 1 to 2, the

proposed estimators are acceptable although they are slightly biased. Only when

both the skewness and excess kurtosis are larger than 2 and the error distribution

is severely nonnormal, the estimators are biased.

7. Analysis of a Stroke Trial

We analyze an example from a clinical trial to evaluate the effectiveness of an

intravenous administration of recombinant tissue plasminogen activator (t-PA)

for ischemic stroke (NINDS (1995)). A total of 624 patients were enrolled between

January 1991 and October 1994 and were equally randomized to receive either
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Table 4. Results of the parameter estimation under different cases for Simulation 2.

normal τ = 100 τ = 10 τ = 5 τ = 3 τ = 1∗

Skewness 0 0.2 0.63 0.89 1.15 2
Excess kurtosis 0 0.06 0.6 1.2 2 6

β11 bias 0.013 0.010 0.026 0.038 0.054 0.107
SD 0.188 0.188 0.188 0.184 0.187 0.206

β12 bias 0.021 0.018 0.027 0.025 0.027 0.111
SD 0.187 0.188 0.181 0.186 0.193 0.200

β31 bias 0.002 -0.013 -0.009 0.024 0.018 0.074
SD 0.199 0.206 0.195 0.192 0.196 0.201

β32 bias 0.004 0.013 0.008 0.004 0.012 0.065
SD 0.206 0.194 0.190 0.192 0.196 0.211

α1 bias -0.000 -0.006 -0.019 -0.032 -0.032 -0.050
SD 0.085 0.090 0.083 0.078 0.084 0.090

α3 bias -0.006 -0.014 -0.024 -0.046 -0.043 -0.070
SD 0.087 0.089 0.086 0.075 0.081 0.084

γ bias 0.116 0.180 0.243 0.344 0.363 0.652
SD 0.598 0.636 0.635 0.571 0.650 0.692

t-PA or a placebo. Two primary outcomes the modified Rankin scale (RAN) and

NIHSS, were measured three months after the trial began. RAN is a simplified

overall assessment of function, a score of 0 indicates the absence of symptoms

and a score of 6, severe disability; NIHSS, a measure of neurologic deficit, is

on a continuous scale. Baseline blood pressure(BP, X1), age(X2), gender(X3,

1 = female), CT finding Edema indicator (X4, 1 = Edema), CT finding Mass

indicator (X5, 1 = Mass), weight(X6), and treatment(Z, 1 = t − PA) were

included as predictor. The original study (NINDS (1995)) separately compared

the difference in each of the outcomes and obtained marginally significant results.

Accounting for the intrinsic relationship between RAN and NIHSS, we fit the

models

H1(Y1) =XTβ1 + α1e+ ε1,
(7.1)

H2(Y
∗
2 ) =XTβ2 + α2e+ ε2,

where Y1 is the NIHSS, continuous, and Y2 is RAN, ordinal. Y ∗
2 is the underlying

continuous variable for Y2, with the link Y2 =
∑7

l=1(l−1)I(cl−1 < Y ∗
2 < cl), where

c0 = −∞ and c7 = ∞. X = (X1, X2, X3, X4, X5, X6)
T . The latent variable e is

used to evaluate the treatment and is modelled as e = Zγ + ϵ.

The resulting estimates of the parameters and standard errors are listed in

Tables 5 and 6. The calculation of the standard errors was carried out using

the method described in Section 5, based on 1,000 simulations. For comparison

purposes, we also applied the traditional joint normal model (JNM) (7.1), with

H1 and H2 set to be linear functions. For the JNM method, about 50% of the
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Figure 2. (a) The estimate (Solid) and its 95% confidence limits (dashed)
of the transformation function H1 for the NIHSS; (b) The empirical quan-
tiles of the estimated residuals {ε̂i1} against the normal theoretical quantiles
when the transformation functions are estimated by the proposed method
for the NIHSS; (c) The empirical quantiles of the estimated residuals {ε̃i2}
against the normal theoretical quantiles when the transformation function
is logarithm function for the NIHSS.

runs for the estimation of the variance failed to converge; among the remaining

461 convergent cases, approximately 10% converged to values far away from the

estimated parameter values. The standard deviation of the JNM estimator was

based on the selected 416 replicates that were the closest to the estimated pa-

rameter values over 1,000 replicates. Even with the biased repeated samples that

favored the JNM method, our method yielded smaller p-values, suggesting that

the proposed method may be more parsimonious in detecting signals. To ascer-

tain the proper transformation function, we display in Figure 2(a) the estimated

transformation function and its 95% pointwise confidence limits.

Our analysis revealed that the baseline blood pressure(BP), age, and treat-

ment have significant effects on both the NIHSS and RAN; gender and weight

have significant effects on the NIHSS but not on RAN; edema and Mass do not

have significant effects on either NIHSS and RAN. The highly significant p-value

(0.007) for γ showed that the disease condition is significantly improved after t-

PA treatment, where the JNM method failed to detect its benefit, p=0.093. Our

proposed method confirmed the results that the t-PA treatment is beneficial, as

published in the original report.
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Table 5. The estimation results of the regression coefficients for the
NINDS data using the proposed method and the JNM model. The SDs
are based on 1,000 replicates, 416 of which are used to produce the results
marked by ∗.

Proposed JNM*
β1 β2 β1 β2

BP Est. 0.047 0.006 -0.103 -0.016
p-value 0.000 0.046 0.036 0.347

Age Est 0.116 0.029 0.345 0.036
p-value 0.000 0.000 0.000 0.246

Gender Est. 0.830 0.183 -2.434 -0.335
p-value 0.000 0.175 0.252 0.389

Edema Est. 0.485 0.093 -1.175 0.379
p-value 0.440 0.854 0.724 0.588

Mass Est. 0.886 0.920 25.006 3.632
p-value 0.224 0.089 0.000 0.019

Weight Est. 0.055 0.006 0.002 -0.005
p-value 0.000 0.134 0.965 0.739

α1 α2 α1 α2

Treat. Est. -2.006 -1.247 -9.487 -1.255
SD 0.135 0.089 0.473 0.552

p-value 0.000 0.000 0.000 0.023
γ γ

Est. 0.236 0.407
SD 0.087 0.242

p-value 0.007 0.093

Table 6. The estimators of the cutpoints for the NINDS data using the pro-
posed method and the JNM model. The SDs are based on 1,000 replicates,
416 of which are used to produce the results marked by ∗.

Proposed JNM*
G2(1) G2(2) G2(3) G2(1) G2(2) G2(3)

Est. 1.255 2.369 2.798 -1.828 -0.654 -0.199
SD 0.236 0.217 0.215 3.107 2.875 2.810

G2(4) G2(5) G2(6) G2(4) G2(5) G2(6)
Est. 3.369 4.135 4.502 0.413 1.252 1.668
SD 0.220 0.231 0.244 2.746 2.679 2.652

We checked validity of (7.1) by examining the agreement of the distribution

of the estimated residual with that of the normal. Figure 2(b) displays the plot

of the empirical quantiles of the estimated residuals, {ε̂i1 = Ĥ1(Yi1)−XT
i β̂1, i =

1, . . . , n}, against the normal quantiles. The linearity of the points in Figure

2(b) suggests that the estimated residuals are normally distributed, justifying

the assumption of (7.1).
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To see whether Ĥ1(y) is the logarithmic function c log(y), we first obtained

c = 1.27 by regressing Ĥ1(Y1i) on log(Y1i), and computed residuals {ε̃i2 =

c log(Yi1) − XT
i β̂1, i = 1, . . . , n}. Figure 2(c) displays the empirical quantiles

of {ε̃i2} against the normal theoretical quantiles. The approximate linearity of

the points in Figure 2(c) suggests that the estimated transformation Ĥ1(y) is

close to a logarithmic function.

8. Discussion

We envision that our method can be extended to accommodate clustered

data, such as those arising from repeated measurements in a longitudinal study.

Models for multivariate clustered data are complex because they involve two

types of correlations: correlation among different outcomes and correlation among

repeated measures. We propose to discuss a general methodology for modeling

clustered multivariate responses in elsewhere.
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Appendix A: Implementation

We outline the algorithm for estimating Θ and Gj(·), j = 1, . . . , p as fol-

lows.

Step 0. Choose initial values of the functions G(0)(y) = (G
(0)
1 (y1), . . . , G

(0)
p (yp))

for y = Y1, . . . ,Yn.

Step 1. Given G(y) at y = Y1, . . . ,Yn, estimate Θ by maximizing (3.2). When

p−p1 is large, the computation may be difficult because high-dimensional

numerical integration is involved. Note that the dimension of the latent

variable in general ei is low, and rewrite (3.2) as

n∏
i=1

∫
x

p1∏
j=1

ϕ
(
Gj(Yij)−

(
XT

ijβj + αT
j γZi + αT

j x
))

×
p∏

j=p1+1

[
Φ
(
Gj(Yij)−

(
XT

ijβj + αT
j γZi + αT

j x
))

−Φ
(
Gj(Yij − 1)−

(
XT

ijβj + αT
j γZi + αT

j x
))]

ϕ(x)dx, (A.1)
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which is a low-dimensional integration. Replacing the integral with the

sampling mean, estimate Θ by maximizing the likelihood

n∏
i=1

R∑
k=1

{ p1∏
j=1

ϕ
(
Gj(Yij)−

(
XT

ijβj + αT
j γZi + αT

j yk
))

×
p∏

j=p1+1

[
Φ
(
Gj(Yij)−

(
XT

ijβj + αT
j γZi + αT

j yk
))

−Φ(Gj(Yij − 1)−
(
XT

ijβj + αT
j γZi + αT

j yk
)
)]

}
, (A.2)

where y1, . . . , yR are independent standard normal random variables.

Step 2. Given Θ, estimate G(y) at y = Y1, . . . ,Yn using (3.3).

Step 3. Repeat Steps 1 and Step 2 until convergence.

Step 4. For every y in the range of Y, the estimates of G(y), Ĝ(y), are obtained

by solving (3.3) for Gj(yj), j = 1, . . . , p, by replacingΘ with its estimator

from the iteration described here.

Appendix B: Notation

Let σ̃j =
√
αT
j αj + 1, Wij(Θ) = XT

ijβj + αT
j γZi,

ψ(yj) = Eϕ
(Gj0(yj)−Wij(Θ0)

σ̃j0

)
,

ξij(y) = I (Yij ≤ y)− Φ

(
Gj0(y)−Wij(Θ0)

σ̃j0

)
,

φkj1 = E

{
∂2 logLi(Θ0;G0)

∂Θ∂Gj(Yij)

σ̃j0
ψ(Yij)

ξkj(Yij)|Yk,Xk,Zk

}
,

φkj2 = E

{
∂2 logLi(Θ0;G0)

∂Θ∂Gj(Yij − 1)

σ̃j0
ψ(Yij − 1)

ξkj(Yij − 1)|Yk,Xk,Zk

}
.

Let ϖi =
∂ logLi(Θ0;G0)

∂Θ +
∑p

j=1 φij1 +
∑p

j=p1+1 φij2, A = E
(
ϖ⊗2

i

)
.

Take

∆j(y) =
αT
j0αj0 + 1

ψ2(y)
E
{
ξij(y) +DT (y)B−1ϖi

}2
,

D(y) = Eϕ

(
Gj0(y)−Wij(Θ)

σ̃j

){
[Gj0(y)−Wij(Θ)]

∂σ̃−1
j

∂Θ
− ∂Wij(Θ)

σ̃j∂Θ

}∣∣∣∣∣
Θ=Θ0

.



SEMIPARAMETRIC LATENT VARIABLE TRANSFORMATION MODELS 849

Appendix C: Proof of Theorem 1

It follows from the Uniform Law of Large Numbers and the monotonicity of

H0 that for any η ≥ 0, ζ > 0, uniformly in yj ∈ R ≡ (−∞,∞), j = 1, . . . , p, and

Θ ∈ Dη = {Θ : ∥Θ−Θ0∥ ≤ η},

1

n

n∑
i=1

{
I (Yij ≤ yj)− Φ

(
Gj0(yj)−Wij(Θ)

σ̃j
− ζ

)}
→ E

{
Φ

(
Gj0(yj)−Wij(Θ0)

σ̃j0

)
− Φ

(
Gj0(yj)−Wij(Θ)

σ̃j
− ζ

)}
, (C.1)

almost surely as n→ ∞, where Wij(Θ) = XT
ijβj +αT

j γZi. Uniform convergence

follows from empirical process techniques. Indeed, as
Gj0(yj)−Wij(Θ)

σ̃j
can be re-

garded as a linear function class on Rd and is thus VC, by the monotonicity of

Φ, Φ
(
Gj0(yj)−Wij(Θ)

σ̃j
− ζ
)
is also VC. Moreover, as the indictor function class is

VC and both the indictor function and Φ
(
Gj0(yj)−Wij(Θ)

σ̃j
− ζ
)
are bounded by

1, the uniform convergence of (C.1) follows from Van de Geer (2000).

It follows from (C.1) that for large n, yj∈R,Θ∈Dη, and sufficiently large ζ,

1

n

n∑
i=1

{
I (Yij ≤ yj)− Φ

(
Gj0(yj)−Wij(Θ)

σ̃j
− ζ

)}
> 0, (C.2)

1

n

n∑
i=1

{
I (Yij ≤ yj)− Φ

(
Gj0(yj)−Wij(Θ)

σ̃j
+ ζ

)}
< 0. (C.3)

This together with the monotonicity and continuity of Φ implies that there exists

a unique Ĝj(yj ;Θ) such that

1

n

n∑
i=1

{
I (Yij ≤ yj)− Φ

(
Ĝj(yj ;Θ)−Wij(Θ)

σ̃j

)}
= 0. (C.4)

By differentiating both side of (C.4) with respect to Θ, we obtain the identity

∂Ĝj(yj ;Θ)

∂Θ

=

∑n
i=1 ϕ

(
Ĝj(yj ;Θ)−Wij(Θ)

σ̃j

){
∂Wij(Θ)

∂Θ +
[
Ĝj(yj ;Θ)−Wij(Θ)

]
∂ log σ̃j

∂Θ

}
∑n

i=1 ϕ
(
Ĝj(yj ;Θ)−Wij(Θ)

σ̃j

) . (C.5)

When Θ = Θ0, (C.2) and (C.3) hold for any ζ > 0, and we have that Ĝj(yj ;Θ0)
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→ G0(yj) uniformly in yj ∈ R. Hence

∂Ĝj(yj ;Θ0)

∂Θ
→

Eϕ
(
Gj0(yj)−Wij(Θ)

σ̃j

){
∂Wij(Θ)

∂Θ +[Gj0(yj)−Wij(Θ)]
∂ log σ̃j

∂Θ

}
Eϕ
(
Gj0(yj)−Wij(Θ)

σ̃j

) ∣∣∣∣
Θ=Θ0

=̂ dj(yj). (C.6)

To show the existence and uniqueness of Θ̂, we let W (Θ;G) = ∂ logL(Θ;G)
∂Θ

and S(Θ) = W (Θ; Ĝ(Θ))/n, which is W (Θ;G) with Gj(·), j = 1, . . . , p, re-

placed by Ĝj(·;Θ), j = 1, . . . , p. It follows from (C.5), and Ĝj(yj ;Θ0) → Gj0(yj)

uniformly in yj ∈ R, that

∂S(Θ0)

∂ΘT
=

1

n

{
∂W (Θ;G)

∂ΘT
+

n∑
i=1

( p∑
j=1

∂2 logLi(Θ0;G)

∂Θ∂Gj(Yij)

∂Ĝj(Yij ;Θ)

∂ΘT

+

p∑
j=p1+1

∂2 logLi(Θ0;G)

∂Θ∂Gj(Yij − 1)

∂Ĝj(Yij − 1;Θ)

∂ΘT

)}∣∣∣∣∣
G=Ĝ(Θ),Θ=Θ0

→ B,

where B is defined in Section 4. Now, because S(Θ0) → 0 and B is negative

definite, there exists a unique solution Θ̂ to the equation S(Θ) = 0 in a neigh-

borhood of Θ0. The foregoing proof also implies that Θ̂ is strongly consistent

and that Ĝj(yj) = Ĝj(yj ; Θ̂) → Gj0(yj) almost surely uniformly in yj ∈ R. Thus

Theorem 1 follows.

Appendix D: Proof of Theorem 2

By the consistency of Θ̂ and a Taylor series expansion of S(Θ̂) around Θ0,

we get

Θ̂−Θ0 ≈ −B−1S(Θ0). (D.1)

Note that

S(Θ0) =
{
n−1∂ logL(Θ0;G0)

∂Θ
+n−1∂ logL(Θ0; Ĝ(Θ0))

∂Θ
−n−1∂ logL(Θ0;G0)

∂Θ

}
≈ n−1∂ logL(Θ0;G0)

∂Θ

+n−1
n∑

i=1

{ p∑
j=1

∂ logLi(Θ0;G0)

∂Θ∂Gj(Yij)

(
Ĝj(Yij ;Θ0)−Gj0(Yij)

)
+

p∑
j=p1+1

∂ logLi(Θ0;G0)

∂Θ∂Gj(Yij − 1)

(
Ĝj(Yij − 1;Θ0)−Gj0(Yij − 1)

)}
. (D.2)
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Because of (C.4), we have

Ĝj(yj ;Θ0)−Gj0(yj) =
σ̃j0

nψ(yj)

n∑
i=1

{
I (Yij ≤ yj)− Φ

(
Gj0(yj)−Wij(Θ0)

σ̃j0

)}
+op(n

−1/2), (D.3)

where ψ(yj) is defined in Section 4. Substituting (D.3) into (D.2) and exchanging
the summations, we get

S(Θ0) ≈ n−1∂ logL(Θ0;G0)

∂Θ
+ n−1

n∑
i=1

{ p∑
j=1

φij1 +

p∑
j=p1+1

φij2

}
.

Hence, by (D.1), we have

Θ̂−Θ0 ≈ −n−1B−1
n∑

i=1

{∂ logLi(Θ0;G0)

∂Θ
+

p∑
j=1

φij1 +

p∑
j=p1+1

φij2

}
. (D.4)

The proof of Theorem 2 is completed.

Appendix E: Proof of Theorem 3

Because of (C.4), for any y ∈ R we have

1

n

n∑
i=1

{
I (Yij ≤ y)− Φ

(Gj0(y)−Wij(Θ0)

σ̃j0

)}
+
1

n

n∑
i=1

{
Φ
(Gj0(y)−Wij(Θ0)

σ̃j0

)
− Φ

(Gj0(y)−Wij(Θ̂)√
α̂T
j αj + 1

)}

+
1

n

n∑
i=1

{
Φ
(Gj0(y)−Wij(Θ̂)√

α̂T
j αj + 1

)
− Φ

(Ĝj(y)−Wij(Θ̂)√
α̂T
j αj + 1

)}
= 0,

hence

1

n

n∑
i=1

ξij(y)−DT (y)
(
Θ̂−Θ0

)
− ψ(y)

σ̃j0

(
Ĝj(y)−Gj0(y)

)
= op(n

−1/2),

where D(y) is defined in Appendix B. Substituting (D.4) into the equation above
we obtain

Ĝj(y)−Gj0(y)

=
σ̃j0
nψ(y)

n∑
i=1

{
ξij(y) +DT (y)B−1

(∂ logLi(Θ0;G0)

∂Θ
+

p∑
j=1

φij1 +

p∑
j=p1+1

φij2

)}
+op(n

−1/2). (E.1)

The proof of Theorem 3 is completed.



852 HUAZHEN LIN, LING ZHOU, ROBERT M. ELASHOFF AND YI LI

References

Bartholomew, D. J. and Knott, M. (1999). Latent Variable Models and Factor Analysis. Arnold,

London.

Bentler, P. M. (1983). Some contributions to efficient statistics for structural models: Specifi-

cation and estimation of moment structures. Psychometrika 48, 493-517.

Bickel, P. J. and Doksum, K. A. (1981). An analysis of transformations revisited. J. Amer.

Statist. Assoc. 76, 296-311.

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. J. Roy. Statist. Soc. Ser.

B B 26, 211-252.

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance

structures. British J. Math. Statist. Psych. 37, 62-83.

Carroll, R. J. and Ruppert, D. (1988). Transformation and Weighting in Regression. Chapman

and Hall.

Catalano, P. J. and Ryan, L. M. (1992). Bivariate latent variable models for clustered discrete

and continuous outcomes. J. Amer. Statist. Assoc. 87, 651-658.

Chen, K., Jin, Z., and Ying, Z. (2002). Semiparametric analysis of transformation models with

censored data. Biometrika 89, 659-668.

Chen, S. (2002). Rank estimation of transformation models. Econometrica 70, 1683-1697.

Cheng, S. C., Wei, L. J., and Ying, Z. (1995). Analysis of transformation models with censored

data. Biometrika 82, 835-845.

Cox, D. R. and Wermuth, N. (1992). Response models for mixed binary and quantitative vari-

ables. Biometrika 79, 441-461.

Dabrowska, D. M. and Doksum, K. A. (1988). Partial likelihood in transformation models with

censored data. Scand. J. Statist. 15, 1-23.

Doksum, K. A. (1987). An extension of partial likelihood methods for proportional hazard

models to general transformation models. Ann. Statist. 15, 325-345.

Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes. J. Roy.

Statist. Soc. Ser. B 62, 355-366.

Dunson, D. B. (2003). Dynamic latent trait models for multidimensional longitudinal data. J.

Amer. Statist. Assoc. 98, 555-563.

Fitzmaurice, G. M. and Laird, N. M. (1995). Regression models for a bivariate discrete and

continuous outcome with clustering. J. Amer. Statist. Assoc. 90, 845-852.

Gueorguieva, R. V. and Agresti, A. (2001). A correlated probit model for joint modelling of

clustered binary and continuous responses. J. Amer. Statist. Assoc. 96, 1102-1112.

Han, A. K. (1987). Non-parametric analysis of a generalized regression model, J. Econom. 35,

303-316.

Horowitz, J. L. (1996). Semiparametric estimation of a regression model with an unknown

transformation of the dependent variables. Econometrica 64, 103-137.

Huber, P., Ronchetti, E., and Victoria-Feser, M. (2004). Estimation of generalized linear latent

variable models. J. Roy. Statist. Soc. Ser. B 66, 893-908.

Jin, Z., Ying, Z. andWei, L. J. (2001). A simple resampling method by perturbing the minimand.

Biometrika 88, 381-390.

Legler, J. M., Lefkopoulou, M., and Ryan, L. M. (1995). Efficiency and power of tests for

multiple binary outcomes. J. Amer. Statist. Assoc. 90, 680-693.



SEMIPARAMETRIC LATENT VARIABLE TRANSFORMATION MODELS 853

Lin, H. and Zhou, X. H. (2009). A semi-parametric two-part mixed-effects heteroscedastic trans-

formation model for correlated right-skewed semi-continuous data. Biostatistics 10, 640-

658.

Moustaki, I. (1996). A latent trait and a latent class model for mixed observed variables. British

J. Math. Statist. Psych. 49, 313-334.

Moustaki, I. and Knott, M. (2000). Generalized latent trait models. Psychometrika 65, 391-411.

Muthén, D. (1984). A general structural equation model with dichotomous, ordered categorical,

and continuous latent variable indicators. Psychometrika 49, 115-132.

National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (NINDS)

(1995). Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 333, 1581-

1587.

OBrien, P. C. (1984). Procedures for comparing samples with multiple endpoints. Biometrics

40, 1079-1087.

Olsen, M. K. and Schafer, J. (2001). A two-part random-effects model for semi-continuous

longitudinal data. J. Amer. Statist. Assoc. 96, 730-745.

Pocock, S. T., Geller, N. L., and Tsiatis, A. A. (1987). The analysis of multiple endpoints in

clinical trials. Biometrics 43, 487-498.

Regan, M. M., and Catalano, P. J. (1999). Likelihood models for clustered binary and continuous

outcomes: application to developmental toxicology. Biometrics 55, 760-768.

Roy, J., and Lin, X. (2000). Latent variable models for longitudinal data with multiple contin-

uous outcomes. Biometrics 56, 1047-1054.

Sammel, M. D., Lin, X., and Ryan, L. (1999). Multivariate linear mixed models for multiple

outcomes. Statist. Medicine 18, 2479-2492.

Sammel, M. D. and Ryan, L. M. (1996). Latent variable models with fixed effects. Biometrics

52, 650-663.

Sammel, M. D., Ryan, L. M., and Legler, J. M. (1997). Latent variable models for mixed discrete

and continuous outcomes. J. Roy. Statist. Soc. Ser. B 59, 667-678.

Song, X. Y., Xia, Y. M., and Lee, S. Y. (2009). Bayesian semiparametric analysis of structural

equation models with mixed continuous and unordered categorical variables. Statistics in

Medicine 28, 2253-2276.

Van de Geer, S. (2000). Empirical Processes in M-estimation. Cambridge Univ. Press.

Ye, J. M. and Duan, N. H. (1997). Nonparametric n−1/2-consistent estimation for the general

transformation models. Ann. Statist. 25, 2682-2717.

Zhou, X. H., Lin, H., and Johnson, E. (2009). Nonparametric heteroscedastic transformation

regression models for skewed data with an application to health care costs. J. Roy. Statist.

Soc. Ser. B 70, 1029-1047.

Zhu, J., Eickhoff, J. C., and Yan, P. (2005). Generalized linear latent variable models for

repeated measures of spatially correlated multivariate data. Biometrics 61, 674-683.

Center of Statistical Research, School of Statistics, Southwestern University of Finance and

Economics, Chengdu, Sichuan 611130, China.

E-mail: linhz@swufe.edu.cn

Center of Statistical Research, School of Statistics, Southwestern University of Finance and

Economics, Chengdu, Sichuan 611130, China.

E-mail: zhouling1003@126.com

linhz@swufe.edu.cn
zhouling1003@126.com


854 HUAZHEN LIN, LING ZHOU, ROBERT M. ELASHOFF AND YI LI

Department of Biomathematics, University of California at Los Angeles, Los Angeles CA 90095-

1772, USA.

E-mail: relashof@biomath.ucla.edu

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109-2029, USA.

E-mail: yili@umich.edu

(Received November 2012; accepted April 2013)

relashof@biomath.ucla.edu
yili@umich.edu

	1. Introduction
	2. Models
	3. Estimation
	3.1. Estimation of Theta
	3.2. Estimation of the transformation function

	4. Inference in Large Samples
	5. Estimation of Asymptotic Variance
	6. Simulation
	7. Analysis of a Stroke Trial
	8. Discussion
	Appendix A: Implementation
	Appendix B: Notation
	Appendix C: Proof of Theorem 1
	Appendix D: Proof of Theorem 2
	Appendix E: Proof of Theorem 3

