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Abstract: We develop a probability model for evaluating long-term effects due to

regular screening. People who take part in cancer screening are divided into four

mutually exclusive groups: True-early-detection, No-early-detection, Overdiagnosis,

and Symptom-free-life. For each case, we derive the probability formula. Simulation

studies using the HIP (Health Insurance Plan for Greater New York) breast cancer

study’s data provide estimates for these probabilities and corresponding credible

intervals. These probabilities change with a person’s age at study entry, screen-

ing frequency, screening sensitivity, and other parameters. We also allow human

lifetime to be subject to a competing risk of death from other causes. The model

can provide policy makers with important information regarding the distribution

of individuals participating in a screening program who eventually fall into one of

the four groups.

Key words and phrases: Overdiagnosis, sensitivity, sojourn time, symptom free life,

transition probability, true early detection.

1. Introduction

Cancer screening programs can be effective in detecting tumors early, before

symptoms are present. A challenge remains as to how to evaluate the long-term

effects due to continued screening. For example, how should the probability of

true early detection be estimated in regular screening? Will regular screening

exams result in a greater chance of overdiagnosis? How should the probabilities

of no-early-detection and the probability of overdiagnosis be estimated?

Some research has been done in the area of overdiagnosis, the diagnosis of

cancer that never would have become symptomatic during a person’s lifetime

(Badgwell et al. (2008), Duffy et al. (2008), Davidov and Zelen (2004), Gotzsche

et al. (2009), Jorgensen and Gotzsche (2009), Zahl, Mahlen, and Welch (2008)).

Most of the research has been based on observational studies, however; results

from the research may be biased due to inadequate probability modeling. The es-

timated percentage of breast cancer overdiagnosis in women varies widely, from

7% (Zackrisson et al. (2006)) to 52% (Jorgensen and Gotzsche (2009)). With
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Table 1. Definition of long-term outcomes/events in screening.

ultimate lifetime disease status
diagnosis status

no symptom before death symptoms before death
not-screen-detected Symptom-free-life No-early-detection
screen-detected Over-diagnosis True-early-detection

controversy concerning the benefit of regular screening, we need a better under-

standing of the factors affecting the risk of overdiagnosis.

Instead of modeling the effect of overdiagnosis alone, we want to address

the long-term effect attributable to regular screening for the whole cohort. We

assume that a woman is asymptomatic and without a history of breast cancer

before she takes her first screening exam, and we divide all women into four mu-

tually exclusive groups: True-early-detection, No-early-detection, Overdiagnosis,

and Symptom-free-life based on their diagnosis status and whether symptoms

would have appeared before death, see Table 1. Eventually every participant

falls into one of the four groups, and here are the definitions.

• Group 1: Symptom-free-life (SympF). A woman in Group 1 took part

in screening exams, but breast cancer was never detected and ultimately she

died of other causes.

• Group 2: No-early-detection (NoED). A woman in Group 2 took part in

screening exams, but disease manifested itself clinically and was not detected

by scheduled screening exams.

• Group 3: True-early-detection (TrueED). A woman in Group 3 was di-

agnosed with breast cancer at a scheduled screening exam and her clinical

symptoms would have appeared before her death.

• Group 4: Overdiagnosis (OverD). A woman in Group 4 was diagnosed

with breast cancer at a scheduled screening exam but her clinical symptoms

would NOT have appeared before her death.

The more familiar term “interval case” falls in Group 2; however, as defined

above, Group 2 includes all possible interval cases with the lifetime being treated

as a random variable.

The remainder of the paper is organized as follows. In Section 2 we propose a

probability model and derive the probabilities for each of the four cases, treating

the duration of human lifetime as a random variable, with the cause of death

subject to other competing risks. In Section 3, we present extensive simulation

results for different scenarios, and in Section 4, we apply our method to the

Health Insurance Plan for Greater New York (HIP) breast cancer screening data,

and present simulation results for different screening schedules. Policy makers
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may use these probabilities to help assess different screening strategies, such

as changing screening frequencies, determining age to start screening, etc. We

conclude with a discussion in Section 5.

2. Probability and Calculations

We propose a probability model and derive the probability for cases in each

of the four groups. We assume the commonly followed disease progression model

in which the disease develops through three states S0 → Sp → Sc: S0 refers

to the disease-free state or the state in which the disease cannot be detected;

Sp refers to the preclinical disease state, in which an asymptomatic individual

unknowingly has disease that a screening exam can detect; and Sc refers to the

disease state at which the disease manifests itself in clinical symptoms.

Consider a cohort of initially asymptomatic individuals who enroll in a

screening program. Let β(t) be the sensitivity at age t, the probability that

the screening exam is positive given that the individual is in the preclinical state.

Take w(t)dt as the probability of a transition from S0 to Sp during (t, t + dt).

Let q(x) be the probability density function (pdf) of the sojourn time in Sp, and

let Q(z) =
∫∞
z q(x)dx be the survivor function of the sojourn time. Throughout,

the time variable t represents an individual’s age at time of screening, and T

represents a person’s lifetime, a continuous random variable with a probability

density function fT (t). Let

A = {A woman is asymptomatic of breast cancer before and at t0}.

We can calculate the conditional probability that no breast cancer was found

before age t0, given that one’s lifetime T exceeds t0, which can arise as one of

only two mutually exclusive events: either (i) she remains in the disease-free state

through age t0, the probability of which is 1−
∫ t0
0 w(x)dx; or (ii) she enters state

Sp before t0 but remains in Sp long enough that no symptoms present before t0,

the probability of which is
∫ t0
0 w(x)Q(t0 − x)dx. Then, the probability of A is

the sum of the two probabilities (i) and (ii):

P (A|T ≥ t0) = 1−
∫ t0

0
w(x)dx+

∫ t0

0
w(x)Q(t0 − x)dx. (2.1)

Keeping in mind that a woman is asymptomatic at t0 (event A), we first derive the

probability of each case when there is only one screening exam during a woman’s

lifetime, given that the lifetime T = t is a fixed value; then we extend this model

to the case when her lifetime is a random variable, T ∼ fT (t). Finally, we derive

the general results for these probabilities when there are multiple screening exams

and the lifetime T is a random variable.
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2.1. The probability of cases in each group: one exam only

Suppose a woman undergoes one screening exam at age t0. We first derive

the conditional probability of each case given her (fixed) lifetime T = t(> t0).

For a Group 1 case, a woman who never has detectable breast cancer during

her lifetime can follow one of three trajectories: (a) she never progressed out of

the disease-free state S0 throughout her lifetime; (b) she entered the preclinical

state Sp before t0, her cancer was not detected, and her sojourn time was so

long that no clinical symptom appeared before her death; (c) she entered the

preclinical state Sp after t0 and had a long sojourn time, so that no symptom

appeared before her death. Hence the conditional probability given her lifetime

T = t(> t0) is:

P (Case 1: SympF, A|T = t)

= 1−
∫ t

0
w(x)dx+ (1− β0)

∫ t0

0
w(x)Q(t− x)dx+

∫ t

t0

w(x)Q(t− x)dx. (2.2)

We are assuming that the sojourn time distribution does not depend on the age

of entry into Sp.

For a Group 2 case, a woman whose cancer became symptomatic and was

thereby found in (t0, T ), either (a) she entered Sp before t0 and was missed by

the screening exam, or (b) she entered the preclinical state after t0. In either

situation, her sojourn time in Sp was shorter than (t − x), where x is her age

entering Sp. Hence the conditional probability is

P (Case 2: NoED, A|T = t)

= (1− β0)

∫ t0

0
w(x)[Q(t0 − x)−Q(t− x)]dx+

∫ t

t0

w(x)[1−Q(t− x)]dx. (2.3)

For a Group 3 case, a woman is truly detected early by taking scheduled

exam, her cancer must have been diagnosed at t0, and her symptoms would have

appeared before death. That is, she must have entered Sp at some age x before

t0, and her sojourn time was between (t0 − x) and (T − x). Hence,

P (Case 3: TrueED, A|T = t) = β0

∫ t0

0
w(x)[Q(t0 − x)−Q(t− x)]dx. (2.4)

For a Group 4 case, the case of overdiagnosis, she was diagnosed at t0 but

her symptoms would not have appeared before death. That is, she must have

entered Sp at some age x(< t0), but her sojourn time extended to beyond time

(T − x). Hence,

P (Case 4: OverD, A|T = t) = β0

∫ t0

0
w(x)Q(t− x)dx. (2.5)



LONG-TERM EFFECTS IN CANCER SCREENING 819

The probability of each case when the lifetime T is a random variable and

T ≥ t0 can be obtained as

P (Case i, A|T ≥ t0) =

∫ ∞

t0

P (Case i, A|T = t)fT (t|T ≥ t0)dt, i = 1, 2, 3, 4.

(2.6)

where the conditional pdf fT (t|T ≥ t0) is

fT (t|T ≥ t0) =

{
fT (t)

P (T>t0)
= fT (t)

1−FT (t0)
, if t ≥ t0,

0, otherwise.
(2.7)

By adding(2.2) to (2.5), one can verify that for any t > t0,

4∑
i=1

P (Case i, A|T = t) = 1−
∫ t0

0
w(x)dx+

∫ t0

0
w(x)Q(t0−x)dx = P (A|T ≥ t0).

(2.8)

Since the right hand side of (2.8) does not depend on t, we have

4∑
i=1

P (Case i, A|T ≥ t0) =

∫ ∞

t0

[
4∑

i=1

P (Case i, A|T = t)]fT (t|T ≥ t0)dt

= P (A|T ≥ t0). (2.9)

This implies
4∑

i=1

P (Case i|A, T ≥ t0) =
4∑

i=1

P (Case i, A|T ≥ t0)

P (A|T ≥ t0)
= 1. (2.10)

2.2. The probability of cases in each group: multiple exams

We generalize this idea to any number of screening exams. Suppose an

initially asymptomatic individual undergoes K screening exams, occurring at

ages t0 < t1 < · · · < tK−1. We define t−1 = 0. The conditional probability of a

case in any one of the four groups, given that her lifetime is T = tK(> tK−1),

can be generalized as follows.

A Group 1 case where clinical breast cancer never occurs in her lifetime, can

arise as any one of (K + 2) disjoint events: (a) she remained in the disease-free

state S0 throughout her lifetime, the probability of which is 1 −
∫ tK
0 w(x)dx.

(b) she entered the preclinical state Sp when she was between ages tj−1 and

tj , j = 0, . . . ,K − 1, was not detected by the following (K − j) exams, and had a

long sojourn time, so no symptom appeared before her death (K disjoint events).

(c) she entered Sp after tK−1 with no symptoms before her death. When we add

the probability of these events together, the probability is
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P (Case 1, A|T = tK)

= 1−
∫ tK

0
w(x)dx+

∫ tK

tK−1

w(x)Q(tK − x)dx

+

K−1∑
j=0

(1− βj) · · · (1− βK−1)

∫ tj

tj−1

w(x)Q(tK − x)dx. (2.11)

For a Group 2 case, we calculate the probability of no early detection by
defining IK,j as the probability of being an interval case in the interval (tj−1, tj)
in a sequence of K screening exams. Thus

P (Case 2, A|T = tK) = IK,1 + IK,2 + · · ·+ IK,K , (2.12)

where

IK,j =

j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)]dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)]dx, for all j = 1, . . . ,K. (2.13)

For more details, see Wu, Rosner, and Broemeling (2007).
A Group 3 case, true early detection, can arise as one of K disjoint events

depending on her age at diagnosis by screening, namely, at tj , j = 0, 1, . . . ,K−1.
If she is diagnosed at tj , then she must have entered the preclinical state Sp

before tj , and missed the previous exams, and her sojourn time must have been
at least (tj − x) and at most (tK − x), where x represent the onset time of the
preclincal state. Therefore

P (Case 3, A|T = tK)

=
K−1∑
j=1

βj

{ j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)[Q(tj − x)−Q(tK − x)]dx

+

∫ tj

tj−1

w(x)[Q(tj−x)−Q(tK−x)]dx
}
+β0

∫ t0

0
w(x)[Q(t0−x)−Q(tK−x)]dx.(2.14)

A Group 4 case, overdiagnosis, also can arise as one of K disjoint events. She
might have been diagnosed at the jth exam, but her symptoms did not appear
before her death. Hence,

P (Case 4, A|T = tK)

=

K−1∑
j=1

βj

{ j−1∑
i=0

(1− βi) · · · (1− βj−1)

∫ ti

ti−1

w(x)Q(tK − x)dx

+

∫ tj

tj−1

w(x)Q(tK − x)dx
}
+ β0

∫ t0

0
w(x)Q(tK − x)dx. (2.15)
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We can verify that for any screening number K ≥ 1, it is still true that

4∑
i=1

P (Case i, A|T = tK) = 1−
∫ t0

0
w(x)dx+

∫ t0

0
w(x)Q(t0−x)dx = P (A|T ≥ t0).

(2.16)

For an individual currently at age t0, her lifetime is not fixed but random,

so it is unrealistic to consider the future number of exams K to be a fixed value.

However, if she plans to follow a future screening schedule, such as t0 < t1 < . . . ,

then K = n if tn−1 < T < tn, the screening number K = K(T ) is a random

variable, changing with the lifetime T . The probability of each case when her

lifetime T is longer than t0 can be obtained as the weighted average

P (Case i, A|T ≥ t0)=

∫ ∞

t0

P (Case i, A|K=K(T ), T = t)fT (t|T ≥ t0)dt, i=1, 2, 3, 4,

(2.17)

here fT (t|T ≥ t0) was defined in (2.7). The probability P (Case i, A|K = K(T ),

T = t) was derived in (2.11)−(2.15).

Again, it is easy to verify by (2.16) that for any future screening schedule

when the lifetime T is random,
4∑

i=1

P (Case i|A, T ≥ t0) = 1. (2.18)

3. Simulation Study

We conducted extensive simulation studies using the method derived in Sec-

tion 2. Since the probability of each case is a function of age at the initial

screening, the screening interval, the sensitivity, the sojourn time in the preclini-

cal state, the transition probability from the disease-free to the preclinical state,

and the human lifetime, we want to explore the effects of these factors on the

probability of each outcome, and also explore how the proportion of true-early-

detection and over-diagnosis change among the screen-detected cases due to these

factors. We selected the following scenarios for simulation: age at initial screen-

ing t0 = 40, 50, 60, screening interval ∆ = 6, 12, 24 months, screening sensitivity

β = 0.3, 0.7, 0.9, we picked β = 0.3 assuming some screening test has very low

sensitivities (Davidov and Zelen (2004)). The transition probability density were

chosen to be either a Gamma or a log Normal pdf, with a single mode at about

60 years old and an upper limit of 20%, which is applicable to different kinds of

cancer. The sojourn time distribution were chosen to be either an exponential or

a log-logistric pdf, the parameters were carefully chosen so that the mean sojourn

time was 2, 5, 10, and 20 years.
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The number of screens K = K(T ) = ⌈(T − t0)/∆⌉ (the largest integer that

is less than or equal to (T − t0)/∆) is a function of the lifetime T , and hence

is a random vaiable in the simulation. For the lifetime distribution, we used

the acturial life table from the Social Security Administration (SSA), published

online at http://www.ssa.gov/OACT/STATS/table4c6.html. The Period Life

Table was made available in 2006, and was reviewed and updated on April 19,

2010. It is based on mortality, and it provides the probability of death within

one year from age 0 to age 119 for both males and females. We derived the

conditional lifetime distribution fT (t|T > t0) based on the current life table (See

Section 4 and Figure 1 in Wu et al. (2012)).

The results for different initial age group are very similar, so we only report

the case of t0 = 50. The results are also similar if the transition probability

density is a Gamma or a log Normal pdf, so we only report the case of log

Normal. The results have little difference when using male or female lifetime

density, so we reported the case of females here. However, there were obvious

differences when the sojourn time was an exponential or a log logistic pdf, even

though the mean sojourn times were the same. We report the results in Tables

1 and 2 in the appendix in the supplementary website, the corresponding results

when the sojourn time distribution is either the log logistic or the exponential.

In the simulation results, we can see clearly that the mean sojourn time

plays the most important rule in the case of overdiagnosis. For example, in the

last column of Table 1, the proportion of overdiagnosis could be as high as 38%

among the screen-diagnosed cases if the mean sojourn time is 20 years long, and

it is around 20% if the mean sojourn time is 10 years long, and it is only about

4-9% when the mean sojourn time changes from 2 to 5 years. In Table 2 in the

web-appendix, when the sojourn time is exponentially distributed this pattern is

more dramatic, the probability of overdiagnosis could be as high as 43%.

The screening sensitivity affects the ratio of the no-early-detection and the

true-early-detection: when sensitivity is higher, the probability of true-early-

detection is highter, and the probability of no-early-detection is lower. However,

the sensitivity only has a small effect in the percentage of true-early-detection

and overdiagnosis among the screen-detected cases, when the sojourn times are

the same: the percentage of overdiagnosis increases slightly (<0.1%) when the

sensitivity increases from 0.3 to 0.9.

The screening interval also plays a role in these proabilities: when the screen-

ing interval is longer, the probability of no-early-detection is larger, the proba-

bility of true-early-detection is smaller, and the probability of overdiagnosis is

slightly smaller (<0.1% in 5th column). The case of symptom-free-life is pretty

stable in all the simulations, it is about 86-88% for the whole population.

The transition proability density w(t) is surely important, but in this sim-

ulation, we limit it to the situation where the density has a single peak around

http://www.ssa.gov/OACT/STATS/table4c6.html
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age 60, based on common sense. We consider the log logistic pdf a more suitable

candidate for the sojourn time distribution compared with the exponential, be-

cause the exponential density has its mode at 0 and with a constant hazard rate

that is not realistic.

4. A Projection of Benefits Using the HIP Data

We applied our method to the Health Insurance Plan for the Greater New

York (HIP) data (Shapiro et al. (1988)).

4.1. Bayesian inference of the probability

The probability for each of the four cases is a function of the sensitivity

β(t), the transition probability density w(t), the sojourn time distribution q(t), a

person’s age at first screening t0, and her future screeing interval ∆, according to

the results in Section 2. The age-dependent sensitivity β(t), the age-dependent

transition probability w(t), and the sojourn time distribution q(·) were estimated

from the HIP data in Wu, Rosner, and Broemeling (2005). The parametric

models for β(t), w(t), and q(x) were

β(t) =
1

1 + exp{−b0 − b1(t−m)}
, (4.1)

w(t) =
0.2√
2πσt

exp

{
−(log t− µ)2

2σ2

}
, (4.2)

q(x) =
κxκ−1ρκ

[1 + (xρ)κ]2
, κ > 0, ρ > 0, (4.3)

wherem is the average age of women at the study entry. The 0.2 in the w(t) is the

upper limit of making a transition from the disease-free state to the preclinical

state. The unknown parameters in this model are θ = (b0, b1, α1, α2, κ, ρ). We

generated a posterior random sample of 2000 by Markov Chain Monte Carlo

(MCMC) from the posterior distribution (Wu, Rosner, and Broemeling (2005)).

We used these Bayesian posterior samples (θ∗j ) in the inference.

Using the HIP data, the posterior predictive probability of each case can be

estimated as

P (Case i|T ≥ t0, A,HIP ) =

∫
P (Case i, θ|T ≥ t0, A,HIP )dθ

=

∫
P (Case i|T ≥ t0, A, θ)f(θ|HIP )dθ

≈ 1

n

n∑
j=1

P (Case i|T ≥ t0, A, θ∗j ), (4.4)
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Table 2. A projection of breast cancer screening effects using the HIP data.

∆a Pb(SympF) P(NoED) P(TrueED) P(OverD)

Age at initial screen t0 = 40
6 mo. 89.66(1.34) 0.99(0.47) 8.83(1.58) 0.37(0.25)
12 mo. 89.71(1.35) 2.48(0.70) 7.34(1.31) 0.32(0.24)
18 mo. 89.75(1.35) 3.79(0.94) 6.03(1.01) 0.28(0.23)
24 mo. 89.78(1.35) 4.77(1.12) 5.04(0.80) 0.25(0.22)
30 mo. 89.81(1.36) 5.51(1.25) 4.31(0.67) 0.23(0.21)

Age at initial screen t0 = 50
6 mo. 91.15(1.28) 0.74(0.47) 7.70(1.46) 0.38(0.25)
12 mo. 91.21(1.28) 1.95(0.71) 6.49(1.25) 0.33(0.24)
18 mo. 91.25(1.29) 3.06(0.91) 5.38(0.99) 0.29(0.23)
24 mo. 91.28(1.29) 3.91(1.07) 4.52(0.81) 0.26(0.22)
30 mo. 91.30(1.29) 4.55(1.18) 3.88(0.69) 0.23(0.21)

Age at initial screen t0 = 60
6 mo. 93.15(1.02) 0.52(0.43) 5.90(1.16) 0.39(0.26)
12 mo. 93.21(1.02) 1.39(0.63) 5.03(1.02) 0.33(0.25)
18 mo. 93.25(1.02) 2.21(0.78) 4.21(0.85) 0.29(0.24)
24 mo. 93.28(1.02) 2.86(0.89) 3.57(0.72) 0.26(0.23)
30 mo. 93.30(1.03) 3.34(0.96) 3.08(0.63) 0.24(0.22)
a∆ = ti − ti−1 is the time interval between screens.
bThe mean probability and its standard error (in parenthesis) are

reported as percentages in the table.

where θ∗j is the random sample drawn from the posterior distribution f(θ|HIP )
and n is the posterior sample size (Wu, Rosner, and Broemeling (2005)). The
last step is the Monte Carlo simulation.

4.2. Results

We applied (4.4) to the 2000 MCMC posterior samples, to conduct Bayesian
inference in the case of a program consisting of periodic screening exams for three
hypothetical cohorts of asympomatic women. The three cohorts had initial ages
of 40, 50, and 60 in the first screening exam.

For each group, we examined various screening frequencies, with screening
interval ∆ = 6, 12, 18, 24, and 30 months. The number of screens K = K(T ) =
⌈(T − t0)/∆⌉ is again a function of the lifetime T , therefore it is a random
variable in the simulation. For the lifetime distribution, we used the conditional
lifetime density derived from the acturial life table from the SSA for females as in
Section 3. The conditional probabilities of each of the four cases P (Case i|A, T ≥
t0,HIP ) are reported in Table 2.

For all three age groups the probability of “Overdiagnosis” is very small.
For the 12-month screening interval, it is 0.32%, 0.33%, and 0.33%, respectively,
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for ages at first screening exam 40, 50, and 60 years old. This probability barely

changes when age at initial screening exam increases. It decreases as the screening

time interval (∆) increases.

The probability of “True-early-detection” is 7.34%, 6.49%, and 5.03% respec-

tively for these cohorts, if screening is annual. This probability also decreases as

the screening time interval increases. The probability of “True-early-detection”

is slightly lower when the initial screen age is 60; however, there is very little

difference for the other age groups.

The probability of “No-early-detection” is 2.48%, 1.95%, and 1.39% for the

12-month screening schedule if the woman initiates screening at ages 40, 50, and

60. It increases as the screening interval increases; it decreases slightly when age

at the initial screen increases.

The probability of “Symptom-free-life” is very high. It increases from about

89% to 93% when the initial screening age increases from 40 to 60. It is compara-

tively stable when the screening interval changes within each age group. Overall,

the difference of the corresponding probabilities is smaller between the age groups

40 and 50 than that between the age groups 50 and 60.

Boxplots of the results for the probability of each case when t0 = 50 are

given in Figure 1. The boxplots for age groups 40 and 60 are very similar to

those in age 50, so we omit them. In Figure 1, we see that the probability of

“Symptom-free-life” and the probability of “Over-diagnois” are either stable, or

barely change with the screening time interval. The probability of “No-early-

detection” increases monotonically with the screening time interval; while the

probability of “True-early-detection” decreases monotonically with the length of

the screening time interval.

If we calculate the conditional probability for cases 2, 3, and 4, given that she

is a diagnosed cancer case, either an interval clinical incident case or a screen-

detected case, the percentage of overdiagnosis is 3.93%, 4.62%, and 6.02% for

the 6-months screening group if starting age is 40, 50, and 60. The conditional

probability of “True-early-detection” given it is a diagnosed case decreases dra-

matically when the screening interval ∆ increases; it changes from 86% to 43% in

the 40-year-old group, from 87% to 45% in the 50-year-old group, and from 86%

to 46% in the 60-year-old group. For the same screening interval, the probability

of “true-early-detection” slightly increases with the initial screening age. The

conditional probability of “No-early-detection” increases within each age group

as the screening interval increases, while the conditional probability of “Over-

diagnosis” decreases slightly within each age group. See Table 3 for details.

The probabilities and 95% HPD intervals of “True-early-detection” and

“Overdiagnosis” given it is a screen-detected case, are listed in Table 4. The

percentage of “Overdiagnosis” increases from 4.41% to 5.05% in the 40-year-old
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Figure 1. The boxplot of the estimated probability for each case with t0 = 50.

age group. This percentage increases from 5.09% to 5.69% in the group whose

initial screening exam is at age 50, and it increases from 6.56% to 7.08% in

the 60-year-old group. In summary, the probability of “Overdiagnosis” is much

lower than we had expected; while the probability of “True-early-detection” is

often above 93% and is higher than we had expected. The length of the 95%

HPD interval for these two probabilities (percentages) increases as the screening

interval increases.

5. Discussion

This study provides a way to assess the overall performance of the screening

program in the long-term. We separated all initially asymptomatic participants

in a screening program into four mutually exclusive groups: symptom-free-life,

no-early-detection, true-early-detection, and overdiagnosis. Analyses such as this

one can provide policy makers with estimates of the probability of true-early-

detection, overdiagnosis, and other outcomes that result from a periodic screening

program. We used a Bayesian approach, because this can incorporate uncertainty
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Table 3. The estimated probability given that it is a diagnosed cancer case.

∆ Pc(NoED|Dd) P(TrueED|D) P(OverD|D)

Age at initial screen t0 = 40
6 mo. 9.87 86.20 3.93
12 mo. 24.44 72.12 3.44
18 mo. 37.21 59.73 3.06
24 mo. 46.97 50.27 2.76
30 mo. 54.29 43.18 2.53

Age at initial screen t0 = 50
6 mo. 8.49 86.89 4.62
12 mo. 22.17 73.78 4.05
18 mo. 34.72 61.67 3.61
24 mo. 44.48 52.25 3.27
30 mo. 51.88 45.11 3.00

Age at initial screen t0 = 60
6 mo. 7.73 86.24 6.02
12 mo. 20.48 74.22 5.29
18 mo. 32.60 62.68 4.72
24 mo. 42.20 53.52 4.27
30 mo. 49.55 46.53 3.92

cThe estimated conditional probability was calculated as

p∗i /(p
∗
2 + p∗3 + p∗4), i = 2, 3, 4, for each of the 2,000 poste-

rior samples, then averaged. It is in percentage.
dThe event D = {Diagnosed cases: including both interval-

incident and screen-detected cases}.

easily, and make it easy to calculate the variations and the credible invervals of

the probability (or percentage).

In November 2009, the U.S. Preventive Services Task Force (USPSTF)

announced new recommendations regarding mammography screening: women

should start screening at age 50, rather than at age 40, and that women be-

tween the ages of 50-74 should undergo screening mammography every other

year, instead of every year. Based on the HIP study group data, our probabil-

ity of “Symptom-free-life” is very high, about 90% for all participants, while the

probability of “Over-diagnosis” is very low, less than 0.4% among all participants

(Table 2). The estimate of “Over-diagnosis” is 5.5% among those diagnosed early

in the 50-year-old cohort if screenings were taken every other year (Table 4, with

a 95% HPD interval of (1.45%, 21.84%). These estimates are based on the HIP

data, and the HIP study was carried out in the 1960s. The sensitivity of mam-

mography might well have been lower than with today’s screening modalities.

However, from our simulation study in Section 3, sensitivity only has a slight

effect on the percentage of over-diagnosis. The life expectancy of the US women
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Table 4. The estimated probability for the screen-detected cases (with 95%
credible interval).

∆ Pd(TrueED|ScrDe) P(OverD|ScrD)

Age at initial screen t0 = 40
6 mo. 95.59 (82.78, 98.62) 4.41 (1.38, 17.22)
12 mo. 95.47 (81.49, 98.76) 4.53 (1.24, 18.51)
18 mo. 95.29 (80.75, 98.79) 4.71 (1.21, 19.25)
24 mo. 95.12 (79.91, 98.79) 4.88 (1.21, 20.09)
30 mo. 94.95 (79.46, 98.78) 5.05 (1.22, 20.54)

Age at initial screen t0 = 50
6 mo. 94.91 (80.76, 98.34) 5.09 (1.66, 19.24)
12 mo. 94.84 (79.38, 98.53) 5.16 (1.47, 20.62)
18 mo. 94.68 (78.97, 98.57) 5.32 (1.43, 21.03)
24 mo. 94.50 (78.16, 98.55) 5.50 (1.45, 21.84)
30 mo. 94.31 (77.65, 98.52) 5.69 (1.48, 22.35)

Age at initial screen t0 = 60
6 mo. 93.44 (76.44, 97.74) 6.56 (2.26, 23.56)
12 mo. 93.43 (75.37, 97.97) 6.57 (2.03, 24.63)
18 mo. 93.28 (75.04, 98.04) 6.72 (1.96, 24.96)
24 mo. 93.10 (74.44, 98.05) 6.90 (1.95, 25.56)
30 mo. 92.92 (73.81, 98.04) 7.08 (1.96, 26.19)

dThe estimated conditional probability was calculated as

p∗i /(p
∗
3+p∗4), i = 3, 4, for each of the 2,000 posterior samples,

then averaged. It is a percentage.
eThe event ScrD = {Screen-detected case}.

in 2006 is 80.4 years, versus 73.1 in the 1960s. However, we cannot find similar

lifetable of the 1960s. We think that the over-diagnosis rate might be slightly

higher if the life expectancy is shorter. We hope to investigate this question with

data from more recent studies.

We checked the NIH SEER database, the lifetime risk for breast cancer for

both invasive and in-situ is 7.53% for all races, with a 95% CI (7.49%, 7.57%)

(National Institute of Health (2010)). Our esimated probability of “Symptom-

free-life” is close to one minus the lifetime risk. A generally accepted lifetime

risk of breast cancer is 1 in 9 (or 11%), with almost all the risk after age 40. Our

estimated probability of “Symptom-free-life” is about 89% for the 40-year-old

age group, which is compatible to the accepted lifetime risk.

We also did more simulations, with the upper limit as 0.3 for the w(t) in

(4.2). That is, assuming a 30% transition from the disease-free state to the

preclinical state, we first ran the MCMC using the HIP data, then applied our

probabilty model to the collected posterior samples. The results were similar to
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those in Table 2, suggesting that the model is reasonably robust to small changes

in w(t).

Zackrisson et al. (2006) compared the cumulative breast cancer incidence

rates in the screening and the control groups for the same 15-years follow-up

period in the Sweden breast cancer trial, and they estimated that overdiagnosis

is about 7% for invasive and 10% for both invasive and in situ. Our results are

comparable to theirs. Duffy et al. (2008) showed how complicated it is to estimate

the degree of overdiagnosis in breast cancer screening because of the lead time

bias and other factors. Jorgensen and Gotzsche (2009) estimated overdiagnosis

by comparing the incidence trend before and after the screening. Their pre-

screening periods were mainly in the 1970s and 1980s, with one exception of the

Norway data (1980-1994), while the post-screening periods were after 1993. Their

estimate of overdiagnosis was 52%, with a 95% C.I of (46%, 58%). However, due

to a higher prevalence of hormone replacement therapy (HRT) in the 1990s, the

breast cancer incidence trend was dramatically increasing in the western world

until 2000, and then was decreasing afterward, even without screening. Their

inference may be flawed by failing to take this trend into account. Zahl, Mahlen,

and Welch (2008) inferred from a comparison of pre- and post-mammography

programs that some cancers may regress to normal if left untreated. These

authors’ conclusions resulted from research using observational studies where

problems are well known. Results based on one study cannot be extended to

other scenarios, and inferences made on observational studies usually need long

follow-up periods to collect incidence data from the study and the control arms.

This is not cost effective, and sometimes data may not be available (Wu and

Perez (2011)).

Davidov and Zelen (2004) introduced two measures of overdiagnosis: individ-

ual overdignosis and schedule overdiagnosis. Individual overdiagnosis represents

the risk of overdiagnosis in an upcoming exam, given a person’s screening history.

Schedule overdiagnosis, on the other hand, is a property of the particular sched-

ule used by the screening program and reflects the overall risk of overdiagnosis

with that program. They first used a forward recurrence time model to derive

the conditional probability of overdiagnosis for an i-th generation person who

was diagnosed at the j-th exam (j > i) at age tj . Next, they summarized these

probabilities to get the conditional probability of overdiagnosis at the j-th exam

for a fixed screening schedule τ = (τ1, . . . , τm) with m exams. Then, they applied

their method to prostate cancer screening data. Under different assumptions of

the mean sojourn time, sensitivity, and the number of screenings, they found that

the risk of overdiagnosis for prostate cancer was very high. For example, this risk

was over 50% if an individual was diagnosed at age 80, had a mean sojourn time

of 10 years, and was screened every 5 years. However, their methods required a

fixed lifetime, hence the number of screening fixed as well.
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Our model differs from existing work. We developed a systematic approach
to evaluate the long-term outcomes in regular screening. Unlike other methods
that deals with overdiagnosis alone, we separate all participants in a screening
program into four disjoint outcomes to evaluate the whole cohort. Other meth-
ods are retrospective, our method is prospective: we use existing data to obtain
information on three key parameters: screening sensitivity, sojourn time distri-
bution, and transition probability, then use these parameters and our probability
model to predict the probability of true-early-detection, no-early-detection, over-
diagnosis and symptom-free-life for different screening frequencies and different
age groups in the future. Long-term incidence data is not needed when using
the probability modeling. In summary, no assessment tools exist for continued
screening today; our model may provide a baseline.

This model can be generalized in practical ways. For example, consider an
eighty-year-old woman who has a history of screening and has remained healthy
so far. How best to incorporate that screening history into the calculation of the
probabilities of overdiagnosis, and true-early-detection? How can we incorporate
personal risks, such as a family history of cancer, into the model? We are working
on this extension. The model also shows the importance of accurate estimation
of the screening sensitivity, the sojourn time distribution, and the transition
probability density, because probability of each of the long term outcomes is a
function of these parameters.

Possible limitations of our model include that we do not consider the case
when the sensitivity and the sojourn time are correlated, and we do not model
the sojourn time in Sp as depending on the age at which the woman enters
the preclinical state. Accurate estimates of the sensitivity, the sojourn time
distribution, and the transition probability are very important, though it is a
complicated issue itself. We are looking into relaxing these assumptions when
we have access to more recent data. As pointed out by an anonymous referee,
true-early-detection may not be translated into benefit: if there is no effective
treatment, early-detection could be detrimental, we totally agree. However, we
hope our model will help policy makers evaluate a screening program’s long-term
effects more appropriately.

Supplementary Materials
Detailed simulation results in Section 3 and programming codes in C/C++

are provided in the appendix in the Statistica Sinica website.
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