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Abstract: High-dimensional matrix data are common in modern data analysis. Sim-

ply applying Lasso after vectorizing the observations ignores essential row and col-

umn information inherent in such data, rendering variable selection results less use-

ful. In this paper, we propose a new approach that takes advantage of the structural

information. The estimate is easy to compute and possesses favorable theoretical

properties. Compared with Lasso, the new estimate can recover the sparse structure

in both rows and columns under weaker assumptions. Simulations demonstrate its

better performance in variable selection and convergence rate, compared to meth-

ods that ignore such information. An application to a dataset in medical science

shows the usefulness of the proposal.
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1. Introduction

In many modern applications, the number of the covariates p is much larger

than the number of the observations n. In this high-dimensional setting, while

the number of the variables can be large, the number of the important variables

truly related to the response is often small, sometimes much smaller than p.

Motivated by this, many approaches have been developed to recover a sparse

signal vector from the linear regression model

Yi = XT
i β + εi, i = 1, . . . , n,

whereXi ∈ Rp is the covariate, Yi ∈ R is the response, εi is the random noise, and

β is an unknown sparse coefficient. Estimation accuracy and parsimony are the

two fundamental considerations for handling high-dimensional data. A number of

useful methods in the penalized likelihood framework have been developed during

the past fifteen years. These include, for example, Lasso (Tibshirani (1996)) and

SCAD (Fan and Li (2001)), among others. Meinshausen and Bühlmann (2006)

is one of the first papers to study high-dimensional problems with p≫ n.

http://dx.doi.org/10.5705/ss.2012.033
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With the rapid development of new technology, it is increasingly common

that data are collected with structural information. A structural information

exists when matrix observations, rather than vector observations, are collected,

and variables in each row and column share common characteristics. We wish

to utilize this information. These data arise in, for example, food sciences and

medical diagnosis via imaging, economics, and finance. Here the i-th observation

is denoted by (Xi, Yi), where Xi is a high-dimensional matrix. A simple way

to deal with this type of data in the linear model framework is to vectorize Xi

and then build a linear regression model based on the data {(vec(Xi), Yi), i =

1, . . . , n}. There are two potential difficulties associated with this over-simplified

approach: vectorization gives a regression problem of dimension p× q that may

affect estimation accuracy; this approach inevitably loses meaningful information

in the rows and columns of Xi, making interpretation less natural.

As a concrete example, Zhong and Suslick (2012) considered a data set from

a colorimetric sensor array measuring multiple chemical interactions by using

chemo-responsive dyes. The experimenters recorded the color changes of these

dyes before and after exposure to some toxicants. These changes, digitalized in

the form of a matrix with rows representing dye effects and columns representing

the spectrum of colors, are the matrix covariates that are suitable for data anal-

ysis. In particular, Zhong and Suslick (2012) pointed out that by preserving the

matrix nature of these variables, better predictive models could be developed.

As another example, Leng and Tang (2012) investigated the US agricultural

exports in the last few decades. These agricultural exports are cross-classified

according to the categories of the products, such as wheat, corn and others, and

the regions to which they were exported, for instance, Asia, Europe Union, ect..

A natural question to ask among others is how the US exports are affected by

different economic factors, with agricultural export being an important indicator.

Of course, data recorded in matrix form do no mean that the structure has

to be meaningful. There are many examples where data are recorded in this

way for efficient storage and better processing. Even for data sets where matrix

variates make physical sense, we can always use some kind of cross validation

to compare the predictive performance of the approach that vectorizes the data,

and the one that preserves the matrix nature of the covariates. We have done

this in our later data analysis.

We propose to use the following model for dealing with matrix covariates,

Yi = αTXiβ + εi, i = 1, . . . , n, (1.1)

where Xi is a p × q covariate matrix, α = (α1, . . . , αp)
T , β = (β1, . . . , βq)

T ,

and the εi are i.i.d. N(0, σ2). A similar model was proposed by Li, Kim, and

Altman (2010) in the setting of sufficient dimension reduction. Here we use this
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model with sparse vectors α and β to describe the contribution to Y of rows and

columns of X, and to make variable selection for rows and columns.

If we use linear combinations of the column (or the row) variables in the form

Xβ (or Xα), our model is a standard linear regression model. This interpreta-

tion has a connection to the usual factor model if we view Xβ (or Xα) as an

unknown rank-one factor of the matrix data and view α (or β) as the unknown

regression coefficient. Thus, our model specifies that the response variable is a

linear function of the predictors made of linear combinations of either the row

variables or the column variables that play symmetric roles. We always assume

that min{p, q} > 1. To avoid identification problems, we assume that ∥α∥1 = 1

and that the element of β with the largest absolute value is positive. An immedi-

ate appeal of this model is that the number of the parameters is p+q−1 in stead

of p× q were we to vectorize Xi. If a component of α is zero, the variables in the

corresponding row of X then play no role in determining the response. Similarly,

a zero in β states that the corresponding column in X does not influence Y .

Note that this model can also be written as Yi = vec(Xi)
T (β⊗α)+ϵi. Then,

if β ⊗ α is treated as a single parameter, say θ, we can apply the Lasso (Tib-

shirani (1996)) to obtain an estimate θ̂las. Here we propose an approach termed

structured Lasso for parameter estimation and variable selection by accounting

for the structure. We show that the estimator, denoted as β̂ ⊗ α̂, that uses the

structure information is easy to compute and has favorable theoretical proper-

ties compared with θ̂las. We discuss sufficient conditions inspired by, but weaker

than, those in Bickel, Ritov, and Tsybakov (2009) that guarantee the success of

the method. The finite sample performance of the method is compared to the

usual Lasso via simulations and a data analysis.

The contents of this paper are arranged as follows. In Section 2, we introduce

the structured Lasso and its computational algorithm. The theoretical properties

of the estimate are presented in Sections 3 and 4. Simulation results and a data

analysis are presented in Section 5, while some discussion is in Section 6. All

the proofs involved are are available in the web-appendix in the Statistica Sinica

web-page.

2. Structured Lasso

Let {(Yi, Xi), i = 1, . . . , n} be i.i.d. observations. Consider the model

Yi = αTXiβ + εi, (2.1)

where α ∈ Rp, β ∈ Rq, Xi ∈ Rp×q with Vi = vec(Xi) ∼ N(0,Σ), diagonal el-

ements of Σ are 1 and the εi ∼ N(0, σ2). For any β = (β1, . . . , βq)
T , denote

|β(1)| ≥ · · · ≥ |β(q)| as the decreasing order of {|βj |, j = 1, . . . , q}. For identifia-

bility, and without loss of generality, we assume that ∥α∥1 = 1 and sign(β(1)) = 1.
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Denote Sα = {j : αj ̸= 0} and Sβ = {j : βj ̸= 0} as the set for important rows

and columns, respectively, and let p0 = |Sα| and q0 = |Sβ| be the cardinalities

of these two sets. Letting θ = β ⊗ α, it is easy to see that αTXiβ = V T
i θ. For

brevity, we write

Pθ = ∥α∥1∥β∥1 = ∥θ∥1,

where ∥ · ∥1 denotes the ℓ1 norm. We propose the structured Lasso estimator as

the solution to the optimization problem

(α̂, β̂) = arg min
(α,β)∈E

1

n

n∑
i=1

(Yi − αTXiβ)
2 + λn∥α∥1∥β∥1, (2.2)

where E = {(α, β) : α ∈ Rp, ∥α∥1 = 1, β ∈ Rq, sign(β(1)) = 1}.
It is not difficult to see that (2.2) is a nonconvex function in (αT , βT )T .

However, it is conditionally convex for one set of parameters given the other.

This observation motivates an iterative algorithm for computation. Specifically,

we can optimize α for fixed β, and vice versa.

If one set of parameters is fixed, the optimization problem reduces to the

Lasso formulation and can be solved by the Lasso algorithm. In particular,

the fast coordinate descent algorithm (Friedman, Hastie, and Tibshirani (2010))

designed especially for the Lasso can be used for our optimization. Let ρij =

cov(Y,Xij), where Xij is the (i, j)th element of X, and ρ̂ij be the corresponding

sample version. Write (i0, j0) = argmax ρ̂ij . We now state the algorithm.

(1) Take α(1) as the vector with i0-th element
∑

j ρ̂i0j and 0 otherwise, and

standardize α(1), so that ∥α(1)∥1 = 1.

(2) Fix α(m) and apply the Lasso algorithm with (XT
i α

(m), Yi) as the i-th obser-

vation to optimize β and obtain β(m). Adjust β(m) such that sign(β
(m)
(1) ) = 1.

Then fix β(m) and apply the Lasso algorithm with (Xiβ
(m+1), Yi) as the i-th

observation to obtain α(m+1).

(3) Let m← m+ 1. Repeat Step (2) until convergence.

We scale the estimator so that the solution of (2.2) has the property satisfying

∥α̂∥1 = 1 and sign(β̂(1)) = 1. The algorithm converges very quickly in our

simulation studies. We also initialized the algorithm using the best fitting α and

β to minimize the ℓ2 norm between α ⊗ β and the Lasso solution. The results

for the simulations were similar and thus are omitted.

Although this alternating approach is not guaranteed to find the global min-

imizer, it converges to a stationary point due to the bi-convexity of the objective

function. The proposed algorithm performs well in comparison to the usual Lasso
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that vectorizes X and is convex. If finding the global minimizer is a concern, mul-

tiple randomized initial values can be tried to alleviate the problem.

3. Theoretical Properties of The Global Minimizer

Let Y = (Y1, . . . , Yn), V = (V1, . . . , Vn)
T , and ε = (ε1, . . . , εn)

T . Then (2.2)

can be rewritten as

(α̂, β̂) = arg min
(α,β)∈E

1

n
∥Y− VT θ∥22 + λnPθ,

where ∥ · ∥2 is the ℓ2 norm and Pθ = ∥θ∥1. Let Sθ = {i : θi ̸= 0} and s0 = |Sθ|.
Here s0 = p0q0.

At the first glance, this is quite similar to a standard Lasso problem with

parameter θ ∈ Rpq as the coefficient. The difference is that θ here has the special

structure θ = β ⊗ α. Therefore θ̂ = β̂ ⊗ α̂ is the optimal solution on a subspace

of Rpq denoted as {v1 ⊗ v2 : (v1, v2) ∈ E}. We introduce a structured restricted

eigenvalue (SRE) condition tailored for our matrix data analysis.

Structured RE condition (SRE(s0, k0)). There exists κ(s0, k0) > 0, such that

min
S0⊆{1,...,pq}

|S0|≤s0

min
uSc

0
<k0uS0

u∈J0

∥Vu∥2√
n∥uS0∥2

≥ κ(s0, k0),

where J0 = {u : u = v1 ⊗ v2 − β ⊗ α; v1 ∈ Rq, v2 ∈ Rp} is a subset of Rpq.

This contrasts with what we call the (unstructured) RE condition intro-

duced by Bickel, Ritov, and Tsybakov (2009) that ignores the structure of the

parameter.

RE condition (Unstructured) (RE(s0, k0)). There exists κ̃(s0, k0) > 0, such

that

min
S0⊆{1,...,pq}

|S0|≤s0

min
uSc

0
<k0uS0

u∈J̃0

∥Vu∥2√
n∥uS0∥2

≥ κ̃(s0, k0),

where J̃0 = {u : u = v − β ⊗ α; v ∈ Rpq} is a subset of Rpq.

Since J0 ⊆ J̃0, κ(s0, k0) ≥ κ̃(s0, k0), so the unstructured RE condition

implies the structured RE condition. We give bounds on the convergence rate of

the new estimate, and then discuss sufficient conditions for the structured and

unstructured RE conditions. In particular, we show that the minimal sample

size required by the SRE is less than that by the RE.

3.1. Bounds on the convergence rate

Based on the optimality of θ̂ on the space {v1 ⊗ v2, (v1, v2) ∈ E} and the

structured RE condition, we obtain bound β̂ − β and α̂−α under the normality
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assumption on Xi and ϵi. Our assumption is motivated by Raskutti, Wainwright,

and Yu (2010) who provided sufficient conditions for the RE condition to hold.

For any δ0 > 0, let

A =

{
∥Vε∥∞
n

< λn,
∥Vj∥2√

n
≤ 1 + δ0, j = 1, . . . , pq

}
.

Lemma 1. Suppose Xi, i = 1, . . . , n are i.i.d. multivariate normal. With

λn = (1 + δ0)σ

√
2(1 + a)

log(pq)

n

for any a > 0, we have

P (A) ≥ (1− [(pq)a
√
π log(pq)]−1)[1− exp(−1

8
min(nδ1, nδ

2
1) + log(pq))],

where δ1 = (1 + δ0)
2 − 1.

Based on Lemma 1, the event A holds with probability tending to one under

appropriate conditions.

Theorem 1. Let α̂, β̂ be the global estimators defined in (2.2). Suppose the

structured restricted eigenvalue condition holds with κ(s0, 3) > 0. For any δ0 > 0,

given λn = (1+ δ0)σ
√

2(1 + a) log(pq)/n for model (2.1), conditioning on A, for
B0 = 4κ2(s0, 3) we have

∥α̂− α∥1 ≤
2B0λns0
|β(1)|

∥β̂ − β∥1 ≤ B0λns0(1 +
2∥β∥1
|β(1)|

).

Ignoring the structure and simply treating β⊗α as one parameter, we obtain

the Lasso estimator θ̂las of θ. We have the following results from Bickel, Ritov,

and Tsybakov (2009) and Zhou (2009).

Proposition 1 (Zhou (2009)). Suppose the unstructured restricted eigenvalue

condition holds with κ(s0, 3) > 0. For any δ0 > 0, given λn = (1 + δ0)σ√
2(1 + a) log(pq)/n for model (2.1), conditioning on A, for B̃0 = 4κ̃2(s0, 3)

we have

∥ulas∥1 ≤ B̃0λns0,

where ulas = θ̂las − α⊗ β.

3.2. Sufficient conditions

We consider conditions under which the structured and unstructured RE

condition hold. Two theorems give, respectively, the sufficient conditions for
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the structured RE condition and unstructured RE condition. Vershynin (2012)

reviewed tools for non-asymptotic analysis of random matrices. Accordingly,

we define the ψ2 norm of a sub-Gaussian random scalar X ∈ R as ∥X∥ψ2 =

supk≥1 k
−1/2(E|X|k)1/k. If X ∼ N(0, 1), we have ∥X∥ψ2 ≤ C where C is an

absolute constant. For a sub-Gaussian random vector X̃ ∈ Rp, the ψ2 norm is

defined as ∥X̃∥ψ2 = sup
∥a∥2=1

∥aT X̃∥ψ2 . Let α0 denote the ψ2 norm of N(0, Ipq).

Theorem 2. Suppose V is normal random vector on Rpq, and that Vi, i =

1, . . . , n are i.i.d. copies of V . Under (4.1), for any 0≤ϵ≤1/2 and 0≤γ≤1, if

n >
c′α4

0C
2
s0,k0

γ2
log[c(ϵ, s0)max(p2s0q, pq2s0 ], (3.1)

then with probability at least 1 − exp{−c̄γ2n/α4
0} the structured RE condition

holds, where c′, c̄ > 0 and c(ϵ, s0), Cs0,k0 are defined in Lemma 3.

The following is a variant of a result of Zhou (2009).

Theorem 3. Under the conditions of Theorem 2, for any 0 ≤ ϵ ≤ 1/2, if

n >
c′α4

0C
2
s0,k0

γ2

(
log[c1(ϵ, s0)(pq)

2s0 ]
)
, (3.2)

then with probability at least 1− exp{−c̄γ2n/α4
0} the unstructured RE condition

holds, where c′, c̄ > 0, c1(s0, ϵ) = 2s0 (5d0e/4s0ϵ)
2s0 and d0, Cs0,k0 are defined in

Lemma 3.

The difference between the lower bound of n in (3.2) and that in (3.1) tends to

+∞, as min(p, q) −→ ∞. Therefore, the sample size required for the structured

RE condition is smaller than that of unstructured RE condition. This supports

our empirical findings that structured Lasso has better performance on prediction

error than Lasso.

4. Structured RE Condition

For any u = (u1, . . . , upq)
T ∈ Rpq, sort |u1|, · · · , |upq| in decreasing order,

and let T0 be index of the first largest s0 elements, T1 be the next largest s0
elements. Similarly we can define Tk, k = 2, 3, · · · , and we take uTk to be the

sub-vector of u consisting of elements with index in Tk. Let

J1 = {u ∈ J0, such that ∥Σ1/2u∥2 = 1, ∥uT c
0
∥1 ≤ ∥k0uT0∥1},

I1 = {v = Σ1/2u : u ∈ J1}.

Zhou (2009) considered the RE condition on a sub-gaussian random matrix by

applying the results of Mendelson, Pajor, and Tomczak-Jaegermann (2007, 2008)
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that are based on the complexity measure of the set considered. Since we consider

the RE condition with a special structure, these general approaches are also

suitable for our problem. For I1 ⊂ Rpq, define the complexity measure (Zhou

(2009)) as

l∗(I1) = E sup
v∈I1
|gT v| = E sup

u∈J1

|gTΣ1/2u|,

where u = (u1, . . . , upq)
T ∈ Rpq and g = (g1, . . . , gpq)

T ∈ Rpq, with the gi’s are

independent normal N(0, 1).

RE condition on Σ. Suppose the diagonal elements of Σ are 1 and that for

some 1 ≤ s ≤ pq and a positive number k,

K(s, k,Σ) := min
J0⊂{1,...,pq}

|J0|≤s

min
u ̸=0

∥uJc
0
∥1≤k∥uJ0∥1

∥Σ1/2u∥2
∥uJ0∥2

> 0. (4.1)

Let √
ρmax(m) = max

∥u∥2=1
|supp(u)|≤m

∥Σ1/2u∥2,

where supp(u) = {i : ui ̸= 0}. To simplify the computation of l∗(I1), we first

give a lemma; its proof is that of Proposition 1.4 of Zhou (2009), and is omitted.

Lemma 2. For any vector u ∈ Rpq, if ∥uSθ
∥1 ≤ k0∥uSc

θ
∥1, then ∥uT c

0
∥1 ≤

k0∥uT0∥1.

Lemma 3. Suppose (4.1) holds. For 0 < ϵ ≤ 1/2,

l∗(I1) ≤ Cs0,k0
√

log[c(ϵ, s0)max(p2s0q, pq2s0)],

where Cs0,k0 = 6(k0 + 2)
√
ρmax(s0)/K(s0, k0,Σ), c(ϵ, s0) = 2s0 (15d0/2ϵ)

2s0+1

(e/2s0)
2s0, and d0 = ∥β∥2 · ∥α∥2 + 1.

The proof of Lemma 3 is closely related to the covering number of Us0 defined

as

Us0 = {u : u ∈ J0, ∥u∥2 = 1, |supp(u)| = s0},

where s0 = p0q0.

4.1. The covering number of Us0

Consider the ϵ-cover ΠUs0
of Us0 . Here we compute the corresponding

covering number. Any u ∈ Us0 has the form (v1 ⊗ v2 − β ⊗ α). Due to

the fact |supp(α)| = p0, |supp(β)| = q0, and |supp(u)| = s0, it follows that

|supp(v1 ⊗ v2)| = |supp(v2)| · |supp(v1)| ≤ 2s0. Since ∥u∥2 = 1 for any u ∈ Us0 ,
the triangular inequality gives
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∥v1 ⊗ v2∥2 ≤ ∥β ⊗ α∥2 + 1 = ∥α∥2∥β∥2 + 1 := d0.

Take

W0={w=v1⊗ v2; v1∈Rq, v2∈Rp, ∥v1⊗ v2∥2≤d0, |supp(v1)| · |supp(v2)|≤2s0}.

It is obvious that Us0 ⊆W0−β⊗α. If ΠW0 is the ϵ-cover ofW0, then ΠW0−β⊗α
is the ϵ-cover of Us0 , so

ΠUs0
≤ ΠW0 . (4.2)

Therefore, it is sufficient to consider the covering number of W0.

Lemma 4. There exists an ϵ-cover ΠW0 of W0 with

|ΠW0 | ≤
∑

0<k1,k2∈Z,k1k2≤2s0

(
15d0
2ϵ

)k1+k2 ( q

k1

)(
p

k2

)
. (4.3)

Ignoring the structure of u = v1⊗ v2, we define the counterpart W̃0 of W0 as

W̃0 = {u ∈ Rpq : ∥u∥2 ≤ d0, supp(u) ≤ 2s0},

and compare the covering number of W0 and W̃0. It is easy to see that

W̃0 =

2s0∪
m=1

Ũm,

where Ũm = {u ∈ Rpq : ∥u∥2 ≤ d0, supp(u) = m}. By Lemma 2.3 of Mendelson,

Pajor, and Tomczak-Jaegermann (2008), for any 0 < ϵ ≤ 1/2, there exists Πm
an ϵ-cover of Ũm with

|Πm| =
(
5d0
2ϵ

)m(
pq

m

)
.

Consequently, Π
W̃0

=
∪2s0
m=1Πm is the ϵ-cover of W̃0 with

|Π
W̃0
| ≤

2s0∑
m=1

(
5d0
2ϵ

)m(
pq

m

)
. (4.4)

To compare the right side of (4.4) and (4.3), we first compare the behavior of(
q

k1

)(
p

k2

)
:= a1 and

(
pq

m

)
:= a2.

By Stirling’s formula,

a1 ≈
[

pq

(q − k1)(p− k2)

]1/2 ek1+k2ppqq

(q − k1)q−k1(p− k2)p−k2
≈

ek1+k2ppqq

(q − k1)q−k1(p− k2)p−k2
and
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a2 ≈
[

pq

pq −m

]1/2 em(pq)pq

(pq −m)pq−m
≈

em(pq)pq

(pq −m)pq−m
.

Since log(1 − x) = x + o(1) as x → 0, we have log(p − k1) = log p + k1/p.

Consequently, a1 ≈ qk1pk2 and a2 ≈ (pq)m. The right sides of both (4.4) and

(4.3) are finite sums. In addition, k1, k2,m are all finite with only p, q →∞. We

need only compare the largest terms of (4.4) and (4.3). The leading term on the

right side of (4.4) is(
5d0
2ϵ

)2s0 ( pq

2s0

)
(1 + o(1)) ≈

( 5

2ϵ

)2s0
(pq)2s0(1 + o(1)).

The largest term of the right side of (4.3) is achieved at (k1, k2) = (1, 2s0) or

(k1, k2) = (2s0, 1), so the right side of (4.3) is approximately (15d0/2ϵ)max(p2s0q,

pq2s0)(1+o(1)). If min(p, q)→∞, then max(p2s0q, pq2s0)/(pq)2s0 → 0. Therefore,

the covering number of the structuredW0 is much smaller than that of W̃0 which

ignores the structure. Moreover, the difference between log |Π
W̃0
| and log |ΠW0 |

tends to +∞, as min(p, q)→∞.

5. Simulations

Simulation studies were conducted to compare the proposed structured Lasso

method (Struc) and the usual Lasso method in terms of parameter estimation

and model selection.

Suppose (Xi, Yi), i = 1, . . . , n are i.i.d. observations from the model

Yi = αTXiβ + 0.5ϵi,

where α ∈ Rp, β ∈ Rq, and ϵi ∼ N(0, 1). We randomly chose n1 observations as

the training data. For performance, we recorded the predicted mean square error

(MSE) on the remaining n−n1 testing observations. Let α̂ and β̂ be the estimate

of α and β based on the training data. We computed the distance between the

true and estimated parameters as

ERR = ∥β̂ ⊗ α̂− β ⊗ α∥1.

For every simulation setup, we generated 100 datasets and computed the

mean and standard error of the MSE and ERR. For model selection, we com-

puted the average number of the variables selected, missed, and false positives

in 100 replicates, denoted as Vall, Vmiss and Vfp, respectively. The optimal tun-

ing parameter λ was selected by 5-fold cross validation on the training data.

We took n = 150, and set the training sample size n1 = 120, with 30 observa-

tions used as the testing data. We considered (p, q) = (20, 50), (p, q) = (40, 50),

(p, q) = (50, 100), and (p, q) = (100, 100).
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Model 1: We set α = (4, 4, 3, 2, 0 · · · , 0)T ∈ Rp and β = (3, 2, 0, . . . , 0)T ∈ Rq,
and generated vec(Xi) from N(0, Ipq).

Model 2: For the model Yi = αTXiβ+0.5ϵi, we let Xi = AX̃iB where vec(X̃i) ∼
N(0, Ipq); A = (aij) with aij = 0.2|i−j| and B = (bij) with bij = 0.6|i−j|. The

parameters α and β were those of Model 1.

Model 3: We took Yi = αTXiβ + βTerrvec(Xi) + 0.5ϵi. Here Xi, α, β were the

same as in Model 1; βerr = (0T5 , v
T , vT , vT , vT ,0Tpq−29)

T ∈ Rpq, where v =

(c, 0, 0, 0, 0, 0)T ∈ R6 and 05 = (0, 0, 0, 0, 0)T with 0pq−29 defined similarly. We

took c = 0, 0.3, 0.6, 0.9, 1.2, 1.5. This is Model 1 when c = 0.

Model 4: Here Yi, Xi, α, β were the same as in Model 3, but βerr = (0T5 ,1
T
d ⊗

wT ,0pq−5−6d)
T ∈ Rpq, 1d ∈ Rd is the vector with all elements 1, and w =

(0.5, 0, 0, 0, 0, 0)T . We took d = 2, 4, 6, 8; d = 0 gives Model 1.

In Table 1, the proposed method shows much better performance than Lasso

in both prediction and variable selection. For Model 1, the structured Lasso

improves the prediction and the estimation accuracy substantially: for the MSE,

improvement ranges from 20% to 30% while the estimation accuracy in terms

of ERR improves by about 30% to 50%. In terms of variable selection, the

proposed structured Lasso also outperforms Lasso, especially for Model 1. This

is reflected in the average number of the variables selected on the average, that of

the variables being missed, and the average number of the false positives. Clearly

here, taking into account of the matrix structure of the covariates gives estimates

and selects variables more accurately.

For Model 3, it is reasonable that for small c, structured Lasso still has good

performance and that for large c, Lasso performs better. Simulation results for

p = 20 and q = 50 and for p = 50 and q = 100 are presented in Table 2, results for

other cases were quite similar and are omitted here. Table 2 shows that, when

(p, q) = (20, 50), structured Lasso outperforms Lasso in both prediction and

variable selection for c ≤ 0.3; and when c ≥ 0.6, Lasso outperforms structured

Lasso. With (p, q) = (50, 100), structured Lasso performs better than Lasso

for c ≤ 0.9 and worse than Lasso for c ≥ 1.2. In addition, when c = 0.6 or

0.9, structured Lasso performs better than Lasso for p = 50 and q = 100, and

worse than Lasso for p = 20 and q = 50; as dimension increases, βerr is better

approximated by a Keronecker product. This indicates that structured Lasso can

have advantages over Lasso as dimensionality increases.

For Model 4, it is clear from Table 3 that when p = 20 and q = 50, structured

Lasso is slightly better than Lasso for d = 2, similar to Lasso for d = 4, and worse

than Lasso for d ≥ 6. Recall that Model 1 is a special case of Model 4 with d = 0,

where structured Lasso outperforms Lasso. This shows structured Lasso superior

to Lasso when d is small. When p = 50 and q = 100, we find that for all values
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Table 1. Simulation results for Models 1 and 2. For variable selection part,
the three rows for the structured Lasso (Struc) method are results on β⊗α, α,
and β, respectively. In the columns of MSE and ERR, the quantities outside
and inside the bracket are the means and standard deviations, respectively.

model p, q MSE ERR Variable Selection
Vall Vmiss Vfp

Struc 3.452 (0.518) 1.120 (0.134) 8.086 0.000 0.086
p = 20 4.000 0.000 0.000
q = 50 2.021 0.000 0.021

Lasso 4.262(0.697) 1.777 (0.240) 12.586 0.000 4.586
Struc 3.587 (0.556) 1.190 (0.142) 8.088 0.000 0.088

p = 40 4.014 0.000 0.014
q = 50 2.014 0.000 0.014

Lasso 4.516 (0.717) 1.935 (0.279) 14.470 0.000 6.470
1 Struc 3.648(0.553) 1.191(0.267) 8.301 0.000 0.301

p = 50 4.048 0.000 0.048
q = 100 2.048 0.000 0.048

Lasso 4.932(0.901) 2.278(0.549) 21.084 0.000 13.084
Struc 3.748(0.569) 1.215(0.364) 8.500 0.000 0.500

p = 100 4.083 0.000 0.083
q = 100 2.083 0.000 0.083

Lasso 5.244(0.923) 2.406(0.558) 29.208 0.000 21.208
Struc 5.074(0.645) 1.570(0.113) 8.000 0.000 0.000

p = 20 4.000 0.000 0.000
q = 50 2.000 0.000 0.000

Lasso 5.788(0.697) 1.857(0.127) 8.020 0.000 0.020
Struc 5.254(0.772) 1.571(0.118) 8.000 0.000 0.000

p = 40 4.000 0.000 0.000
q = 50 2.000 0.000 0.000

Lasso 5.996(0.852) 1.858(0.130) 8.020 0.000 0.020
2 Stru 5.106(0.693) 1.581(0.108) 8.000 0.000 0.000

p = 50 4.000 0.000 0.000
q = 100 2.000 0.000 0.000

Lasso 5.838(0.846) 1.850(0.140) 8.040 0.000 0.040
Struc 5.108(0.696) 1.580(0.094) 8.000 0.000 0.000

p = 100 4.000 0.000 0.000
q = 100 2.000 0.000 0.000

Lasso 5.935(0.963) 1.869(0.146) 8.033 0.000 0.033

of d, structured Lasso is superior to Lasso. This suggests that structured Lasso

is more competitive as dimensionality becomes large.
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Table 2. Simulation results for Model 3. For variable selection part, Vα and
Vβ denote the average number of variables selected for α and β, respectively,
by the structured Lasso (Struc) method.

p, q c MSE ERR Variable Selection
Vall Vmiss Vfp Vα Vβ

1.5 Struc 12.142(1.759) 10.344(1.765) 76.201 0.000 65.201 12.108 6.356
Lasso 5.008(0.643) 2.769(0.438) 21.250 0.000 10.250

1.2 Struc 9.729(1.120) 7.004(0.842) 50.109 0.000 39.109 10.554 4.955
Lasso 4.972(0.752) 2.668(0.386) 20.227 0.000 9.227

p=20 0.9 Struc 7.137(1.156) 4.627(0.464) 30.206 0.000 19.206 9.650 3.026
q=50 Lasso 4.861(0.535) 2.615(0.325) 18.302 0.000 7.302

0.6 Struc 5.862(0.618) 3.249(0.257) 22.805 0.000 11.805 7.159 3.102
Lasso 5.062(0.668) 2.738(0.538) 20.809 0.000 9.809

0.3 Struc 4.369(0.699) 1.945(0.182) 14.052 0.475 3.527 5.156 2.401
Lasso 4.817(0.677) 2.603(0.415) 17.752 0.675 7.427

0 Struc 3.547(0.439) 1.155(0.183) 8.002 0.000 0.002 4.000 2.030
Lasso 4.383(0.577) 1.819(0.286) 11.956 0.000 3.956

1.5 Struc 11.240(1.710) 10.377(1.401) 81.916 0.000 69.916 17.582 4.504
Lasso 9.309(7.889) 7.294(7.754) 42.416 0.107 30.523

1.2 Struc 9.537(1.898) 7.824(1.061) 61.324 0.000 49.324 15.130 4.043
Lasso 9.197(4.773) 7.398(4.765) 46.563 0.000 34.563

p=50 0.9 Struc 7.744(1.273) 5.413(0.942) 40.285 0.000 28.285 12.405 3.220
q=100 Lasso 8.831(4.139) 7.128(4.571) 48.190 0.115 36.305

0.6 Struc 5.813(0.785) 3.476(0.323) 25.285 0.000 13.285 10.152 2.502
Lasso 6.769(1.883) 4.860(1.543) 38.476 0.419 26.895

0.3 Struc 4.424(0.703) 2.322(0.258) 16.384 1.000 5.384 7.714 2.095
Lasso 6.569(1.172) 4.628(0.990) 34.277 1.846 24.123

0 Struc 3.537(0.399) 1.134(0.155) 8.262 0.000 0.262 4.042 2.035
Lasso 4.722(0.740) 2.346(0.509) 20.761 0.000 12.761

5.1. An analysis of a medical data

It is known that high concentrations of plasma cholesterol and triglyceride

are associated with an increased risk of coronary heart disease. The risk of this

disease has been shown to be closely related to the distribution of cholesterol

and triglyceride in different types of lipoproteins. Therefore, it is important to

measure the lipoprotein profile for assessing the risk of coronary heart disease.

Ultracentrifugation is the established standard reference method for the separa-

tion and analysis of lipoproteins.

A popular approach in medical diagnosis uses the so-called nuclear magnetic

resonance (NMR) spectra and the near-infrared spectroscopy (NIR) technology.

We take a dataset from a study that represents 2D diffusion-edited 1H NMR

spectra obtained from the website http://www.models.kvl.dk/dosylipo. The

http://www.models.kvl.dk/dosylipo
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Table 3. Simulation results for Model 4. For variable selection, Vα and
Vβ denote the number of selected variable for α and β, respectively, by the
structured Lasso (Struc) method.

p, q d MSE ERR Variable Selection
Vall Vmiss Vfp Vα Vβ

2 Struc 4.364(0.602) 1.946(0.184) 13.400 0.000 3.400 6.333 2.115
Lasso 4.764(0.704) 2.366(0.376) 17.566 0.000 7.566

p=20 4 Struc 5.176(0.846) 2.761(0.294) 19.800 0.000 8.800 7.533 2.548
q=50 Lasso 4.932(1.105) 2.788(0.765) 21.133 0.000 10.300

6 Struc 6.231(0.841) 4.209(0.394) 34.100 0.300 21.400 8.033 4.324
Lasso 5.393(0.870) 3.524(0.920) 28.033 0.000 15.033

8 Struc 7.140(0.730) 5.707(0.572) 41.666 0.525 27.191 9.166 4.725
Lasso 5.625(1.380) 4.251(0.996) 32.733 0.105 17.838

2 Struc 4.281(0.591) 1.987(0.185) 13.727 0.000 3.727 6.272 2.181
Lasso 5.369(0.927) 3.185(0.809) 27.136 0.031 17.167

p=50 4 Struc 5.493(0.334) 3.047(0.475) 22.882 0.038 10.920 9.052 2.427
q=100 Lasso 7.220(1.910) 5.297(2.066) 38.411 0.423 26.834

6 Struc 6.030(0.861) 4.270(0.602) 34.045 0.166 20.211 11.272 3.120
Lasso 8.294(2.033) 7.200(1.770) 53.000 1.416 40.416

8 Struc 6.504(0.974) 5.400(0.514) 47.105 0.444 31.549 13.105 3.509
Lasso 10.825(2.143) 10.877(2.298) 66.789 3.185 53.974

detailed background of this dataset is found in Dyrby et al. (2005). The aim of

the analysis was to evaluate the potential for quantification of lipoprotein main-

and subfractions in human plasma samples. An important role of NMR in this

kind of study is to provide complementary information on the classification of

lipoprotein fractions compared to ultracentrifugation. The data file contains the

NMR data in X and lipoproteins in Y. Two index files are also provided for

selecting specific parts of the data. Since Y provided is a 25 × 32 matrix, for

illustration purposes, we took the fourth column Y4 of Y as our response, which

is an important indicator for the quantification. The sample size was n = 25

and, for each subject i(1 ≤ i ≤ 25), Xi is the NMR spectra, a 24× 1,600 matrix.

Thus, the data set is (X,Y4) where X, the 25× 24× 1,600 array, consists of X ′
is.

We standardized the data such that the empirical variance of X(·, i, j) was 1 for

1 ≤ i ≤ 24, 1 ≤ j ≤ 1,600, and the empirical variance of Y4 was 1.

For comparison purposes, we took 20 random data points as the training data

and left the other 5 observations as the testing data. We then fit the structured

Lasso and the usual Lasso to the training dataset and recorded the MSE on

the testing data, as well as the number of the variables selected. This process

was repeated 100 times to compute the means and standard deviations of MSE

and the average number of the variables selected in terms of Vall, Vα, and Vβ, as

defined in the simulation studies. Again, the optimal tuning parameter λ was
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Table 4. Performance comparison between the structured Lasso (Struc) and
the usual Lasso for the data set over 100 random partitioning of the data.

MSE (SD) Vall Vα Vβ
Struc 1.951 (0.637) 5.45 2.45 1.95
Lasso 2.282 (0.698) 7.20 – –

selected via 5-fold cross validation. The results are summarized in Table 4. We

see that in terms of prediction, the proposed method outperformed the Lasso; in

terms of the variable selection, the structured Lasso gave a smaller model on the

average.

6. Discussion

We propose a structured Lasso for matrix covariates and obtain the theoret-

ical property of the estimator. Simulation results confirm the usefulness of the

proposed method. The optimization problem in section 2 is non-convex, raising

the question of obtaining the global optimal solution. Although our numerical

experience indicates satisfactory performance. It is of interest to develop a con-

vex optimization formulation and to derive a faster rate of convergence than the

one in this paper. A possible trick is via the relaxing used by d’Aspremont et al.

(2007), and to apply the theoretical arguments in Amini and Wainwright (2009).

However, the fact that we aim for sparsity in both α and β where they are pre-

sented in a product form means their technique may not be directly applicable.

Further research to address this non-convexity is needed.

The proofs of the main results can be found in the web appendix available

on the Statistica Sinica web site. This web appendix also contains the code and

the data used for the data analysis in section 5.1.
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