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Abstract: We develop an empirical likelihood (EL) inference on parameters in gen-
eralized estimating equations with nonignorably missing data. We consider an
exponential tilting model for the nonignorably missing mechanism, and propose
modified estimating equations by imputing missing data through a kernel regression
method. We establish some asymptotic properties of the maximum EL estimators
of the unknown parameters under different scenarios. With the use of auxiliary in-
formation, the maximum EL estimators are statistically more efficient. Simulation
studies are used to assess the finite sample performance of our proposed maximum
EL estimators. We apply the proposed maximum EL estimators to investigate a
data set on earnings obtained from the New York Social Indicators Survey.
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1. Introduction

Missing data are encountered in various settings, including surveys, clinical
trials and longitudinal studies (Liffle-and Rubin (2002)); responses and/or covari-
ates may be missing in practice. Statistical models for dealing with the missing
data depend on a missing data mechanism such as data not missing at ran-
dom (NMAR), also referred to as nonignorable missingness. For example, when
there are NMAR responses, the complete-case analysis can result in biased and
inefficient parameter estimates, whereas to incorporate additional information
from incomplete cases, one needs to assume a parametric (or semiparametric)
model for the missing data mechanism. However, the assumptions underlying
such NMAR models are difficult to verify in practice and the resulting estimates
and tests may be sensitive to these assumptions. This paper develops an infer-
ence procedure for parameters in generalized estimating equations (GEEs) with
nonignorably missing data.

Various generalized estimating equations have been developed to handle
missing data, that are either missing at random (MAR) or NMAR, primarily
due to their being robust against model misspecification. Robins, Rotnitzky, and
Zhad (994) developed a class of estimators based on inverse probability-weighted
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estimating equations (EEs) when the probability of missingness is modeled para-
metrically, and Robins, Rotnitzky, and Zhad (T995) proved the semiparametric
efficiency bound for parameter estimation. [Lipsitz, I[brahim, and Zhad (I999)
presented an EM algorithm to estimate parameters defined by a weighted EE
with missing covariate data. It is more challenging to deal with NMAR data
due to the unverifiable assumptions introduced by the statistical models for it.
Iroxel, Lipsitz, and Brennan (1997) proposed weighted EEs for data with non-
ignorable nonresponse to eliminate the biases in the complete-case analysis that
ignores missing cases when the weights (the inverse probability of being observed)
are estimable. Kim and Yu (2011) developed an exponential tilting model and
proposed a semiparametric estimation method of mean functionals with nonig-
norably missing data. See [brahim ef all (2005) and [brahim and Molenberghs
(2009) for a detailed overview and comparisons of various paradigms for handling
missing data. All these methods are developed on the basis of non-empirical like-
lihood.

There is considerable interest in the development of EL for GEEs with/
without ignorably missing data. Empirical likelihood allows one to employ likeli-
hood methods in a nonparametric or semiparametric setting. It has been shown
that EL has various advantages over other competing methods, including gener-
alized method of moments (GMM) (Newey and Smith (2004)). Compared with
EE, EL allows the easy incorporation of auxiliary information and the number
of estimating equations can be greater than the number of parameters. See,
for example, Qin and Lawless (1994); Zhou, Wan, and Wang (2008); Zhu ef al
(2008); Wang and Cherl (2009), and (Qin, Zhang, and Leung (2009), among many
others. Zhou, Wan, and Wang (2008) proposed a kernel-assisted EE imputation
scheme and used EL and GMM on parameters in GEEs. Wang and Cher] (20019)
proposed a nonparametric imputation method to remove the selection bias in
the missingness and showed that the maximum EL estimators can be efficient.
However, little has been done on the development of the EL. method for GEEs
with nonignorably missing data.

We develop a general EL inference procedure for parameters in the GEEs
with nonignorably missing data. We integrate the modeling of nonignorably
missing data, the EL method, and the imputation of EEs by using the observed
data rather than imputing the missing data. Specifically, we consider the expo-
nential tilting model with known and estimated tilting parameters as the missing
mechanism for nonignorably missing data, which leads to a more robust estima-
tor. We extend the estimation of mean functionals with nonignorably missing
data to the estimation of parameters in GEEs. We systematically investigate the
asymptotic properties of the maximum EL estimators under this new setting.

The rest of this article is organized as follows. In Section 2, we describe the
proposed kernel-assisted EE imputation scheme based on the exponential tilting
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model of nonignorably missing data. As well, we outline the formulations of EL
with and without auxiliary information by utilizing the imputation scheme. In
Section 3, we establish the asymptotic properties of the proposed maximum EL
estimators. Two simulation studies and a data analysis are used to compare
the finite sample performance of the proposed maximum EL estimators with
competing methods, in Section 4. Technical details are given in the Appendix.

2. Methods
2.1. Imputation based on the exponential tilting model

Let {U; = (ZI',Y')T i =1,...,n} be a set of independent and identically
distributed random vectors from a distribution F(z,y), where the Z;’s are d,-
dimensional and observable, and the Y;’s are dy-dimensional and subject to miss-
ingness. Generally, the missing components may vary across different individuals.
For simplicity, we assume that the missing components have the same compo-
nents for Uy,...,U,. Furthermore, a missing variable Y; may represent a re-
sponse or covariate. Without assuming a specific form for F'(u), we are interested
in making statistical inference on a p x 1 vector, denoted by 6, based on ¢(> p)
functionally independent EEs )(Y;, Zi; 0) = (v1(Y:, Zi50), . . . ,1(Yi, Zi;0))T that
satisfy the unconditional moment condition of the form Er{¢(Y;, Z;;00)} = 0 for
Oy € © C RP, where 6 is the true value and Er denotes the expectation with
respect to F. The Y;’s are assumed to be nonignorably missing. Let X; be Z;
or a subset of Z;, and let §; = 1 if Y; is observed and 9; = 0 if Y; is missing. It
is assumed that J; and J; are independent for any 7 # j and J; depends on X;
and Y; such that P(5; = 1|X,,Y;) 2 7(X;,Y;) for i = 1,...,n. When 7(X;,Y;)
depends on the value of Y;, it is the NMAR condition of Litfle and Ruhinl (2002).

We consider an exponential tilting model for nonignorably missing data Y;’s
given by

logit{r(X;,Yi) £ P(8; = 1|X;,Y3)} = g(X;) + oY (2.1)

for some unknown function ¢(-) and ¢, where logit denotes the logit function.
When ¢ = 0, (E0) becomes an MAR model. Let f;(Y;|X;) be the conditional
density of Y; given X; and 0; = 1, and let fy(Y;|X;) be the conditional density of
Y; given X; and 0; = 0. Then, by following the reasoning of Kim and Yu (2011),
we have

exp(7Y;)
Yi| X;) = f1(Yi| X, 2.2
fO( l’ ’L) fl( Z‘ 1)X E{exp(leﬂXl,éZ:l}’ ( )
where v = —¢ is an unknown tilting parameter that measures the amount of

departure from the MAR assumption. When v = 0, (22) reduces to fo(Y;|X;) =
Hi(YilX5).
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To incorporate the incomplete cases, we consider a new set of EEs given by

V(Yi, Zi; 0) = 6:0(Yi, Zi; 0) + (1 — 6;)my (X4 0), (2.3)

where my(X;;0) = Ep{¢(Y;, Z;;0)|X;}. Under MAR, the EEs in (233) reduce
to the estimating equations of Zhou, Wan, and Wang (2008). Since m(X;;6)
defined in (23) is unknown, it is necessary to estimate (or ‘impute’) my,(X;;6)
from the observed data set. Under the MAR assumption, a consistent estima-
tor of my(X;;6) can be obtained from a consistent estimator of my,(X;;0) =
E{y(Y;, Z;;0)|X;,6; = 1}, denoted by 114(X;;6). Substituting 1y, (X5;0) in
(23) leads to @51(1’;, Zi;0) = 6;p(Ys, Zi;0) + (1 — 6;)114(X5; 0), which is biased
under NMAR.

We construct a consistent estimator of m?/)(Xi;H) = E{Y(Y;, Z;;0)|X;,0; =
0}. Under the NMAR assumption, it is difficult to estimate m%(Xi; 6) due to the
presence of missing data. It follows from (E2) that

_ E{0i(Yi, Zi; 0) exp(7Y2) | X}

0(x..
(X3 6) = E{s;exp(Yi)| X} (24)

Then, under the NMAR assumption, we construct a set of EEs for (Y}, Z;;0)
given by X
DY, Z550) = 5:0(Yi, Zi3 6) + (1 — 8i)m) (X5 6), (2.5)

where m?p(Xi; 0) is defined in (24) based on a tilting parameter ~.
If the exponential tilting model (E71) is true, then we have

E{(Yi, Zs; 0)}
= E{6:(Yi, Zi;0) + (1 — 6:)my,(Xi;60)}
_ E{prwi X E((Y;, Z:0)l5: = 1, X))

E{6i(Yi, Zi; 0) exp(vY:)| Xy } }
E{0; exp(7Y:)| X}

+pr(0; = 0|X;)
_ E{pr@ X B (Y, Zi3 0)]6; = 1, X,)

E{(1 - 6:)0(Y;, Zs; 9)\Xi}}
E{(1-6;)|X;}

= E{E(éiw(Yi, Zi;0)|X:) + pr(d; = 01X;)
=E{y(Y:, Zi;0)} = 0.
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The second equality holds since

E{op(Y, Z;0) exp(nY)| X} _ E{n(X, V)¢ (Y, Z;0) exp(yY) | X}
E{d exp(vy)| X} E{n(X,Y)exp(yY)[ X}
_ E{y(Y, Z;0)(1 + exp(g(X) — 1Y) "' X}
 B{(I+exp(g(X) —9Y)) X}
_ E{(A—-0)y(Y, Z;0)| X} _
E{(1-0)|X}

E((Y, Z;0)|X,5 = 0).

Thus (23) is unbiased, which is the key idea of our approach. From (E-T), we have
m(Xi,Y;) = {1 +exp(—g(X;)) exp(7Y;)} ' with 7 = —¢ and E{dexp(7Y;)|X;} =
exp(g(X;))E(1 — §;]X;), which indicates that

E{dexp(vY:)|X;} pr(d; = 1|X;)E{exp(nY;)|X;,6; = 1}

exp(—g(Xi))

Then, we also have

E{(Y;, Zi;0)} —E{W}

= E{6ip(Yi, Zi30) + (1 — 0;)miy (X5 0)} = 0.
The equality holds since

60 (Yi, Zi3 0)
E{ W(Xw}/;)

} _ E{éﬂ/}(yﬁ 2:0) [1+ pr(d; = 0|X;) exp(7Y5) } }

pr(0; =1|X;) E{exp(7Y;)|X;, 6; =1}
_ E{prwz- XD B((Yi, Z0)): = 1, X))
E{(Y;, Zi;0) exp(7Y3)]0; =1, X} }
E{exp(7Y;)|0;=1, X;}
= E{6;9(Y;, Zi;0) + (1 — 6;)m,(X;;0)}
— B{y(Y;, Z:0)} = 0.

+pr(d; = 0|X;)

This equality also holds under the MAR assumption.

Let K(-) be a dy-dimensional kernel function of the m-th order satisfying
[K(u,...,uq,)duy ...dug, = 1, [u K(ui,...,ug,)du;...dug, = 0 for any
s=1,....dy and 1 <1 < m, and [ulK(u1,...,ug,)du;...dug, # 0. Then,
a nonparametric regression estimator of mgj(X; 0) = E{y(Y,Z;0)|X,0 = 0} can
be written as

p(X;0,9) = wio(X; 1) (Yi, Zi;0), (2.6)
=1

where wio(X;7) = 6 exp(VYs) Kp(X — X3)/{>_p_1 0k exp(7Y%) Kpn(X — Xj)} rep-
resents the point mass assigned to Y;, in which Kj(u) = h™'K(u/h) and h is
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a bandwidth. Therefore, under the exponential tilting model, a set of modified
EEs for the ith observation is given by

b (Yi, Zi30) = 6:0(YVi, Zi; 0) + (1 — 8;)1ny (X330, 7). (2.7)

It can be shown that n=1 > " Y (Y, Z;;0p) is a set of asymptotically unbiased
EEs of 6.

2.2. Maximum empirical likelihood estimator

We assume that the value of v is known. Although v may be unknown in
practice, we may either fix v at a prefixed value or calculate a consistent estimator
of v, denoted by 4. For instance, 4 can be computed from an independent survey
or a validation sample that is a subsample of the nonrespondents. Then, we can
substitute 4 into (27) to get ¢r(Yi, Zi;6). Therefore, we temporarily assume
that v is known.

Let p; be the probability weight allocated to @M(YZ-, Z;;0). The empirical
likelihood (Oswen (1990)) for 6 based on ¢y (Yi, Zi; 0) can be taken as

Lo(0) =sup { TTpi | pi = 0,3 pi = 1,3 pihus (v, Zi50) = 0}.
=1 i=1 =1

The optimal value of p; is p; = n = {1 + XL, (0)dar(Yi, Zi;0)} 1, where A1 (6) is
the Lagrange multiplier and satisfies in(ﬁ Ap1) =n1 Yo 1wM(Yz, Zi;0) /{1 +

AL (0)4rr (Y3, Zi;0)} = 0. Therefore, the log empirical likelihood ratio function
(LELRF) for 6 is given by

0n(8) = —210g { [Tpi) } =2 tog {1+ AL (0)0ni (Vi Zis0) ). (28)
=1 =1

Maximizing —/p7(0) leads to the maximum EL estimator (MELM) of 6, denoted
by .. Under some smoothness condition, . can be obtained by simultaneously
solving

8 }/:L’Zl’a
Qu(0; A1) = 0 and Qua(8, An) = *121“ <sz ((Y Z; ;> -
M\ Lig, L,

where 0y denotes partial derivative with respect to 6.

Let X be an auxiliary variable. In practice, some auxiliary information on
X may be available, for example, the mean of X is zero or the distribution
of X is symmetric. With the auxiliary information, we can improve statistical
inference on 6. Specifically, we assume that the auxiliary information of X can be
characterized as E{A(X)} = 0, where A(X) = (A1(X),..., A,(X))T is a known
r > 1 vector (or scalar) function.
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To incorporate the auxiliary information on X, the LELRF for 0 is defined
as

Cav(0) = —2maX{Zlog np;)|pi > 0, sz =1 leM Yi, Zi;0) = 0,

> acx) =0}

Let Ai(0) = (¥1,(Yi, Zi;6), AT(X;))T. The estimated LELRF for 6 based on
A;(0) can be expressed as

Tau(6) =2 Z log{1 + XL,(0)A:(0)}, (2.9)

where )\ng(ﬁ) is a (¢+7)x1 Lagrange multiplier vector that satisfies n Iy
Ai(0)/{1 + AT, (0)As(0)} = 0. Maximizing —¢47(f) leads to the MELE of 6, de-
noted by éae. Therefore, under some smoothness condition, éae can be calculated
by simultaneously solving

bt (Y, Zi;
nl 9 )\n2 _12 ~ d}M( ’ 0) T = 07
1+ A5 (0)ae(Ys, Zis 0) 4+ A1o0(0) A(X5)

- A(X;) _
Mi(0, An2) = Z L4+ Aoy (0)nr (Vi, Zi3 0) + Ao () A(X,) §

My3(0, A2) = 712 AZ@( )0t (Yi, Zi,0) -
<1+ AL, (00 (Y, Zi3 0) + Ny (0) A(X5)

where Ay2 = (AL,;, AL,0)T.

3. Theoretical Results
3.1. Asymptotic properties of MELE for known ~

We first establish the asymptotic properties of MELE and LELRF for known
~. Then, we approximate the asymptotic covariance of MELE. The detailed as-
sumptions and proofs of our results can be found in the Appendix and supplemen-

. . . L
tary materials, respectively. We need some notation. Let = denote convergence
in distribution, and a®? = aa” for any vector a. We define several matrices as
follows:

Vi= B [7(X,Y) " {0 (Y, Z360) = miy(X500)}52] + B {mi)(X:00)°}

Vo = E{[0:{(Yi, Z5;0) — my (X 0)} +miy (X5 0)]%% (3.1)
I'= E{0gy(Y, Z;0)}.
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Theorem 1. Suppose the conditions given in the Appendix hold. Then
V(e — 0) 5 N(0,5) = N(0, 577V, '3V, 0%y, (3.2)
where ¥ = (TTV;1T) 1

Theorem 1 gives the asymptotic normality of d. for the kernel-assisted EE im-
putation scheme. From (E1), we have 7(X;,Y;) = {1+exp(—g(X;)) exp(7Y;)} 1,
with 7 = —¢. On the other hand, E{dexp(7Y)|X} = exp(g(X))E(1 — §|X).
Then, by the kernel regression method and under (E) with known parameter
v = —¢, a non-parametric estimator of 7(X;,Y;) can be obtained as 7(X;,Y;) =
7i(7), where
#i(y) = {1+ &(Xi;7) exp(yY)} 1, (3.3)
with

> i1 (1= 05) Kn(X; — X5)
> i1 05 exp(vY)) K (X — X))
Let 7; = 617%1( )—l{w(}/“ Z;; 90) mw(XZ, 60)} +mw(XZ, 90) where mw(Xl, 90)
My (Xi;00,7). Then, a consistent estimator of Vi is Vi = nt Sy ﬁfw —
(1Y 7 Z)®2. Furthermore, the consistent estimators of I' and V, are I' =
n! Zz 1 89'¢M(Y;a Zi; 90) and VYQ =n! Zz 1 wM(}/;a Zl; 90)®27 respectlvely
Thus, 3. can be consistently estlmated by S = 507 V2 1V1V2 FEl, where
= (0T, ) !

Under the MAR assumption, 7(X;, Y;) reduces to P(X;) = exp{g(X;)}/[1+
exp{g(X;)}]. Since E{y(Y, Z;0)—mi14(X;0)| X} =0, Vi, Vo, and T, respectively,
reduce to

a(Xisy) =

Vi=E {P(X)_IEw(X)} + B {mY(X;00)%%}

Vo= E{P(X)Sy(X)} + E {m(X;60)®*} and I = E{dym1y(X;60)}, (3:4)

where ¥ (X) = cov{¢(Y, Z;60y)| X }. Thus, Theorem 1 reduces to Theorem 2 of
Zhou, Wan, and Wang (2008) under the MAR assumption. When 7(X,Y) =1, it
can be shown that Vi = Vo = E {¢(Y, Z;0)®*}, which leads to X, = TTv, )t
with I' = E{0py(Y, Z;0)}, the asymptotic variance of MELE based on the full
observations (Qin and Lawlesd (1994)). Therefore, when 7(X,Y) is close to 1,
the efficiency of MELE based on our proposed kernel-assisted EE imputation
scheme is close to that based on the full observations.

Theorem 2. Suppose the conditions given in the Appendiz hold. Asn — oo, we
have

0ai(00) 5 012+ 0ox2 4+ 0a X
where X%s are independent x? wvariables with one degree of freedom, and the
weights o; are the eigenvalues of VQ_lVl.
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Theorem 2 says the asymptotic distribution of EM(HO) as a complicated
weighted sum of chi-squares. We can use the asymptotic result in Theorem 2
to construct the confidence region of 8. Specifically, let ¢, be the 1 — a quantile
of o1x% +02X3+- -—|—qu2 for 0 < a < 1. An approximate 100(1—a)% empirical-
likelihood-based confidence region for 6 is given by CIM (6) = {0 : {3;(0) < ca}.

To obtain a simple asymptotic distribution, we define an adjusted LELRF as
55\4(90) — Rly(6p), where R is a consistent estimator of R = ¢/tr{V, 1V;} that
measures information loss due to the presence of missing data, Zhou, Wan, and
Wang (2008). By replacing 6y by 6. in V; and Vs, we can get consistent estimators
of V1 and Vs, denoted by Vi and Vs, respectively. When no data are missing,
r(6p) = 1. Moreover, even though RZZ:1 QkX% can be well approximated by a
x%(q) distribution, the accuracy of such approximation, E{V[ (0p), also depends on
the values of the p;’s.

We develop another adjusted LELRF, denoted by é‘]?/[(Qo), whose asymptotic
distribution is exactly a Xg distribution,

By(00) = 24D (00). (35)
Wo

where Wi=tr{V; 12} and Wa =tr{V, '3}, in which S = {37 (Vi Zi; 60) } 2.
Since £1(60) = Wa + 0,(1), #4,(60) = W1 + 0,(1) and Wy 5 x2(q).

With the auxiliary information on X, we use éae and /¢ Aau to denote the
MELE of 8 and the LELRF based on known .

Theorem 3. Suppose the conditions given in the Appendix hold. Then, we have

(i) VA(fae — 00) 5 N(0,%ge) = N(0,C BT AV, A\uA~LBCY), where B =
(FT’OT)T7 C= _BTAilg; Dy=FE {A(X)®2}7 Di=F {m?p(X700)AT(X)};

_( =Va =Dy (Vi Dy
A= <—D{’ —D2> and V1,40 = <D1T D2>’

i) Faer(00) 5 oty 2 4 oY, y2 where the weights ¢} are the eigenvalues
AU\YO Qle Qr—}-qu—i,-q? k
of matriz Vz_/iUVLAU, and Vo au = —A.

Theorem 3 (i) gives the asymptotic normality of 6, when auxiliary infor-
mation is available. To estimate .., we only need to approximate D; and
D,, see the consistent estimators of V; and Vs given below Theorem 1. Specif-
ically, we estimate D; and Dy as Dy = n~! >y @M(YQ,Zi;HO)AT(Xi) and
Dy =n"1 S A(X;)®2. Tt can be shown that X, — X, is non-negative definite,

which indicates that 6, is asymptotically more efficient than .. Moreover, when
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auxiliary information on X is available, the amount of information reduction of
Oe compared to that of 0. does not depend on 7(X,Y’). This result is consistent
with that under a simpler setting in Wang and Rad (2007). Theorem 3 (ii) gives
the asymptotic distribution of Iav (6p) as a weighted sum of chi-squares; we can
propose several adjusted LELRFs based on lay (0p) and construct the confidence
region of . We omit them for the sake of space.

3.2. Asymptotic properties for estimated

In many cases, « is unknown and has to be estimated. We consider that an
estimator for v is computed from an independent survey, or that an estimate is
obtained from a validation sample, a subsample of the nonrespondents.

In either case, the resulting semi-parametric modified EEs for the ith obser-
vation of 6 is

Ur(Yi, Zi30) = 6;0(Yi, Zi50) + (1 — 8;)1ny (X3 0, 3). (3.6)

where 1, (X;0,7) is defined in (28).

It can be shown that n=t Y% z@T(Yi, Z;;0p) is a set of asymptotically unbi-
ased EEs of 8. So, we can define the LELRF for 6 based on the semi-parametric
modified EEs (8B). We use 7 and /7 to denote the MELE of § and LELRF
based on 4, respectively. Assume that E{A(X)} = 0, where A(X) = (A1(X),...,
A (X))T is a known rx1 vector (or scalar) function and let A;(6) = (TZJ%:(Y;, Zi;0),
AT(X;))T. With the auxiliary information on X, we use 047 and {47 to denote
the MELE of 8 and LELRF based on 4.

We first consider that 4 is estimated from an independent survey.

Theorem 4. Suppose (C1)—(C8) hold, /n(y —7) A N(0,Vy), and 4 is inde-
pendent of Yar(Yi, Z;;0). Then

() a(r — 00) 5 N(0,%7) = N(0, 5,07V, 'V, ' TSy), where Vi = Vi +
HTV,H, H = E[(1=0)(Y =mo(X)){4(Y, Z; 60) —m{),(X; 60)} ] and mo(X) =
E(Y|X,0 =0);

(ii) @T(Ho) % o3 +toaxs+ o+ ngg, where the weights o] s are the eigenvalues
of Vo V1.

Theorem 4 (i) generalizes Theorem 3 of Kim and Y (2011) from mean func-
tionals to GEEs. To approximate the asymptotic variance of 0, we only need a
consistent estimator of Vi, Vi*(6y) = Vi + HTV, H, where V., and H are, respec-
tively, consistent estimators of V, and H, Vi =n~t 30 7P? — (=t o0 ;) ®?
with 7; = (273'%(’?)_1{1#(}/@, Z“AQ()) — mw(Xi; 00,’:)/)} + mw(Xi; 00,’:)/). A consistent
estimate of H is given by H = n= 3" (1 — 6;)63(4;9), where 63(X;4) =
Q™1 Y0 85 exp(AY;) K (X — X){Y5 — 1o (X5 4) H (Y5, Zj3 0) — g (X5 0) } in
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which 7ig(X;9) = Q71 6 exp(3V))Kn(X; — X)Vi, Q = S0, 6 exp(3Y7)
Kh(Xz - X), and T?LwA(X;AQ, ’3/) = Z?:l wio(X; ’A)/)w(Y;, Zi; 9)

Compared with 6., 07 has larger asymptotic variance due to estimating ~.
The asymptotic variance of fr is the same as that of 6, when 4 is exactly es-

timated. Moreover, if 4 is exactly estimated, then V, = 0 and Vi is equal to
.

Theorem 5. Under the conditions of Theorem 4, we have

() Vrlbar —00) 5 N(0,Sar) = N(0,C BT A1V, sy A"LBCY), where
~ (Vi Dy
‘/].,AU - (D{ _D2> ’

A, B, and C as defined in Theorem 3.
(i) 47 (o) £ 03+ + Qg+qxg+q, where the weights ofs are the eigenvalues
of matriz VQTXUVLAU; and Vo au = —A.

It is can be shown that Y47 < ¥ indicating that 041 based on AZ(G)
is asymptotically more efficient than Or. Thus, the auxiliary information can
be used to improve the efficiency of MELE. Theorem 5 generalizes the existing
results in Kim and Yu (2001) and Wang and Rad (2002).

We now consider that a validation sample is randomly selected from the set of
nonrespondents and responses are obtained for all the elements in the validation
sample. A consistent estimator 4 of v can be obtained by solving

n

D (1= 6)rif (i, Zi0) — 1y (Xi50,7)} = 0, (3.7)

i=1

for ~, where r; is an indicator of unit ¢ belonging to the follow-up sample, and
1y (X3 0,7) is defined in (28).

Using the estimated titling parameter 4 obtained from (BZ4), one can con-
struct ¢p(Y;, Zi;0) in (B8). Further, we can construct MELE 07 and LELRF
lp.

Theorem 6. Suppose (C1)—(C8) hold, except for the semiparametric exponen-
tial tilting model in (E1). Assume that the solution 4 to (BZA) ewists almost
everywhere. Let 0 be the LELRF based on the semi-parametric modified EEs
(B8) using 4 obtained by solving (82) and the corresponding MELE is Op. Then
(i)

V(b7 — 60) 5 N(0,57) = N(0, 5,07V, 1,15 'T%),
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where V, = Var(n1;),
r;

m?p(Xi;G,’y) =pr lim my(X;560,7), v = E(r|d = 0) and o is the probability
n—oo
limit of 4.
i)
5 L
r(00) = 0xi + 03X3 + -+ + 69X

where the weights o] s are the eigenvalues of matriz VQ_IVV.

A consistent estimator of f/V is
2 1o 1 <
y ~®2 A \®2
W= EZU% - (ﬁzmi)(g ;

=1 =1
with .
i = My (Xi30,9) + {;Z(l —0;) + 0 H{p(Ys, Zis 0) — 1 (X436, 9) }-

In Theorem 6, the exponential tilting model (EZI) is not needed to show ().
The variance V, can be written as

Vo = Var((Y, Z;0)) + (v~ = 1)B[(1 = §){y(Y, Z;0) — m},(X;6,70))}*°].

Note that

E{5y(Y, Z;0) exp(vY)| X}
E{dexp(rY)[X} 7

miy (X30,7) = pr lim 1 (X30,7) =

Thus, if (20) is true, then 79 =+, and by (i),
MmO (X:0,~0) = E{oy(Y, Z;0) exp(7Y)| X} E{(1 - 0)y(Y, Z;0)| X}
v E{5exp(yY)|X} E{(1-9)|x}
= E{y(Y, Z;0)|X,6 = 0} = m),(X;0).

Since
E[(1=8){¢(Y, Z;0) —m{(X;6,7))} ] > E[(1=0){¢(Y, Z; ) —my(X;0))}¥?],

the variance 37 in (i) is minimized when (E1) is true. Thus, the validity of the
proposed estimator does not depend on the assumed response model and the role
of (2) is to improve efficiency.

With the auxiliary information on X, we also use 0 a7 and / a1 to denote the
MELE of 8 and LELRF based on ¥4, estimated by the validation sample.
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Theorem 7. Under the conditions of Theorem 6, we have

() Vallar —00) 5 N(0,S47) = N(0,C BT A=V, Ay A~1BCY), where

” o Vv Dl
‘/\/,AU - (D%" DQ) )
with A, B and C as defined in Theorem 3 and Vi, as defined in Theorem 6.

(i) £a7(0o) 5 OIXT + -+ + 00 Xpy g where the weights of's are the eigenvalues
—1 =
of Vo auVv.au-

3.3. Bandwidth selection

Let Fo(y,2|X = z) = P(Y <y, Z < z|X = 2, = 0) be the conditional
distribution of (Z,Y) given X = z,J = 0. Then, based on the exponential tilting
model (E0), a kernel estimator of Fy(y, z| X = z) based on the sample is

Foly, 21X = 2) := Fy(y, 21X = 2;7)
Yy 0exp(YY)) (Y < y)I(Z; < z)Kp(x — X;)
> i1 95exp(VY;) Kp(x — Xj) '

Then m?p(x; 0) = E{y(Y,Z;0)|X = x,0 = 0} may be estimated by

R(z) = / by, 2 0)dEo(y, 21X = z37).

It is known that in nonparametric or semiparametric inferences, selecting a
suitable bandwidth is a critical issue. The classical optimal rate for the band-
width is h = n~/®, see Sepanski, Knickerbocker, and Carroll (1994). But as
Zhou, Wan, and Wang (2008) point out, the optimal rate h = n=1/5
lowed here since we require nh?™ — 0 for the mth kernel. Along the lines of
Zhou, Wan, and Wang (200R), we suggest the suitable and simple bandwidth
—1/3 where 6 is the standard deviation of observation X.

is not al-

h=dxn

3.4. Reduced Dimension of X

In practical applications the dimension of variate X is high and it is difficult
to get an accurate estimator of m?p (X;; 0) by a kernel-smoothing procedure. Here,
we propose a dimension reduction technique such that our method is still effective
for high-dimensional data.

Let S be a continuous function from R% to R, such that S = S(X) is univari-
ate and S; = S(X;). Suppose E{0;0(Y;, Z;;0) exp(7Y;)|Si}/ E{d; exp(7Y3)|Si} =
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E{6:;0(Y;, Z;;0) exp(7Y;)| X}/ E{d; exp(7Y;)| X;}. Then, if (E7T) is true,
E{8:(Yi, Zi; 0) + (1 — 6:)my)(Si; 0)}
= E{pr(éi = 1|XZ)E(1/J(E, Zi; 9)‘(2 = 17Xi)

E{0:(Yi, Zi; 0) exp(7Y3)|S(Xa) } }
E{6;exp(7Y3)[S(X4)}

_ E{prwi LX) E((Y;, Z5:6))6: = 1, X))

+pr(6; = 0|X;)

= E{ (6:0(Ys, Zi;0)|X;) + pr(d; = 0|X; )E{(l _E‘Si{)g/{(zfigiz)z";?j}!s()(i)}}

— B{(Y;, Z:;0)} =0,

here m?p(Si; 0) = E{6;¢(Yi, Zi; 0) exp(7Y:)|Si}/ E{di exp(7Y;)|S;}. Therefore, the
resulting EEs can be modified as

O (Yi, Zi;0) = 6:00(Yi, Zi3 0) + (1 — 6;)1ny(Si; 0, 7), (3.8)

where 1m(S;;6,7) is obtained as was 1, (X;;6,7) in (Z8), except that X is
replaced by S. This allows us to deal with the curse-of-dimensionality problem.

4. Numerical Examples
4.1. Simulation studies

Simulation studies of a nonlinear regression model and a logistic regression
model were conducted to evaluate the finite sample performance of our proposed
MELEs and LELRFs.

Experiment 1. We simulated {(X;,Y;) : ¢ =1,...,n} from a nonlinear regres-
sion model. Each dataset contained n observations. For each ¢, X; was generated
from a uniform distribution U(0, 1) and then, given X;, Y; was generated from
the normal distribution N(0X; + exp(6X;),1) with § = 1. We assumed the
X;’s completely observed, but the Y;’s subject to missingness. We generated
d;, the missing indicator for Y;, from a Bernoulli distribution with probability
m(X;,Y:) = P(6; = 11X;,Y;). We examined seven missing data mechanisms:

(i) 7(X,Y)=1for all X and Y;
(ii) logit{m(X,Y)} = ap + a1 X with (ap, 1) = (1.8,0.5);
(iii) logit{7 (X, Y)} = ap + an X + aoY with (ag, a1, a2) = (1.8,0.25,0.15);
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(iv) logit{m(X,Y)} = ap + a1 X% + Y with (ap, a1, a2) = (1.5,0.25,0.5);

(v) logit{m(X,Y)} = ap + au X + aoY? with (g, 1, a2) = (1.5,0.5,0.25);

(vi) logit{ﬂ(X, Y)} =ap+ a1 X + a2y + a3 XY with (ag, a1, ag, a3)=(1.5,0.15,
0.5,0.25);

(vid)logit{m(X,Y)} = ap + a1 X + a2Y + a3 XY with (ap, a1, @z, a3) = (0.0001,
0.005,0.05,0.25).

Scenario (i) is full observation, while (ii) describes a missing at random sce-
nario. Scenarios (iii)—(vii) describe nonignorable missing mechanisms. Scenarios
(ii)—(iv) satisfy (EC1) for missing Y. However, (v), (vi), and (vii), which do not
satisfy (EXD) and prescribe selection bias in the missingness, were used to inves-
tigate the robustness of our proposed empirical likelihood method with respect
to the misspecified 7(X,Y’). We took sample size n = 100, and simulated 1,000
datasets under each scenario. Then, we created the incomplete data sets for each
of 1,000 complete data sets under the six missing data mechanisms. The aver-
age missing proportions corresponding to (ii)—(vii) were 11.63%, 9.70%, 7.56%,
6.30%, 6.40%, and 39.45%, respectively.
We considered a set of estimating equations as follows:

(i (Y, X50)\ (Y2 —02/3—20X exp(0X) —exp(20X) — 1
(I, X;6) = (wi(y,x;e)) < Y — exp(6X) — 0/2 ) '

For model (E1), we considered two cases including ¢ = 0 for the MAR assumption
and unknown ¢. To estimate ¢ in model (EZ0), we used a validation sample
randomly selected from the set of nonrespondents, Kim and Yu (2001). We
chose the Gaussian kernel K (u) = exp(—u?/2)/(27)'/? and set the bandwidth h
for estimating m?p (X;0) at c6,n~/3, where ¢ is a constant chosen to be 1 in this
experiment, and &, is the standard deviation of observations {X; : i =1,...,n}
(Zhou, Wan. and Wang (2008)). We used auxiliary information on X specified
by E(X —0.5)2 = 1/12. We applied the EL method based on the EEs ¢ (Y, X; 6)
and model (Z) to compute the MELEs and 95% confidence intervals of . Table
1 presents the results.

Inspecting the results in Table 1 reveals the following. MELESs based on the
auxiliary information on X outperformed those without the auxiliary informa-
tion. When model (E1) was used and ¢ was estimated, even though the missing-
ness mechanism was misspecified under (ii), (v), (vi), and (vii), the MELEs of

0 were close to their true values. Moreover, their empirical coverage levels were
relatively close to the pre-specified nominal level 95%. This indicates robustness
of the nonignorable missingness model (Z1). Under the MAR assumption, ¢ = 0
in model (E71), the MELEs and confidence intervals of 6 under (iii)—(vii) were
inaccurate. Under (E71), the confidence intervals for known ~ were shorter than
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those for estimated ~y. As expected, increasing the mean response rates improves
the accuracy of parameter estimate and the empirical coverage of confidence
interval.

Experiment 2. We simulated {(Y;, X;) : ¢ =1,...,n} as follows. We generated
Xi1 ~ U(0,2) and X;2 ~ N(0,1), and then we simulated Y; ~ Bernoulli(p;),
where logit{p;} = X;1 + 0.5X;2. We assumed the X;’s completely observed, but
the Y;’s subject to missingness. To create missing responses, we generated &;
for Y; from a Bernoulli distribution with probability m; = 7(X;,Y;; ) given by
logit{m(X;,Yi;a)} = ap + a1 Xi1 + aoXio + a3Y; + au XY + a5 X;2Y;, where
a = (ag,...,as)T. We considered (i) a = (1.0,0.25,0.20,0.25,0.20,0.20)7, and
(ii) « = (1.5,0.15,0.20,0.25,0.20,0.20)". Their corresponding average missing
proportions were 17.81% and 12.73%, respectively. We took sample size n = 100
and simulated 1,000 datasets under each scenario.

We considered the missing mechanism model (211) and a set of EEs as follows:

W(Y;, Xi; B) = (X1, Xi2)T {Vi — logit(B1 Xi1 + B2Xi2)}, (4.1)

where 3 = (31, 82)T. For (E0), we considered ¢ = 0 for the MAR assumption,
and unknown ¢. To estimate ¢ in (2), we used a validation sample randomly se-
lected from the set of nonrespondents, Kimand Yui (20011). To estimate m?b(X ;0)
in which 6 = 3, we took the kernel function to be K (x1,z2) = K(z1)K (z2), and
the bandwidth h to be ,,n~ /3, where K(z) = exp(—x2/2)/(27)'/? and &, is
the standard deviation of observations {X;; : ¢ = 1,...,n}. As auxiliary infor-
mation, we considered F(X; — 1)? = 1/3 and E(X3)? = 1. We applied the EL
method based on the EEs ¢(Y, X;0) and (E1) to compute the MELEs and 95%
confidence intervals of 6. We present the results in Table 2.

Inspecting the results in Table 2 reveals the following. Under (210) with esti-
mated v, the MELEs and confidence intervals of 6 were relatively accurate. This
indicates that (E) is robust to some degree of model misspecification, since the
true probability function 7(X;,Y;;a) is different from (20). MELEs with the
auxiliary information outperformed those without. For the scenarios without
the auxiliary information, the empirical coverage probabilities were not close to
the pre-specified nominal confidence level 95% when n was small. As expected,
increasing the mean response rates increased the accuracy of the empirical cov-
erage probability and decreased the bias and standard deviation (SD) of MELESs
and the confidence interval width of §. MELEs under scenario (i) had smaller
root mean square error (RMS) and SD than those under (ii). This indicates that
the misspecified missing data mechanism can influence the accuracy of MELE,
but such influence is minor. The values of RMS were relatively close to those
of SD, indicating that the estimates of the asymptotic variances of MELEs were
reasonably accurate even under a misspecified missing data mechanism.
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Table 1. Performance of the MELEs and 95% empirical-likelihood-based

confidence intervals for § with n = 100 in Experiment 1.

m(X,Y) Est. Bias RMS SD CpP WD
Scenario (i)  6r 0.023 0.056 0.050 0.896 0.202
Opa 0.015 0.051 0.049 0.910 0.230

Scenario (i) 67  0.020 0.058 0.054 0.946 0.246
Oar  0.012 0.053 0.051 0.949 0.245

0, 0.023 0.058 0.053 0923 0.245

047 0.015 0.053 0.051 0.909 0.242

Scenario (iii) 6,  0.023 0.060 0.055 0.947 0.250
fac  0.015 0.055 0.053 0.942 0.249

6r 0.022 0.057 0.053 0.955 0.252

Oar 0.014 0.052 0.050 0.948 0.251

0z 0.021 0.069 0.066 0927 0.243

faz 0.020 0.064 0.060 0.906 0.239

Scenario (iv) 6. 0.022 0.056 0.051 0.945 0.256
fac  0.013 0.051 0.050 0.947 0.254

O  0.022 0.055 0.051 0.955 0.258

Oar 0.013 0.051 0.049 0.953 0.256

6, 0.016 0.065 0.063 0934 0.245

faz 0015 0.060 0.058 0.905 0.242

Scenario (v) 67  0.023 0.056 0.051 0.956 0.259
Gur 0.014 0.051 0.049 0.946 0.257

07 0.013 0.064 0.063 0.935 0.246

faz 0.012 0.059 0.058 0.919 0.243

Scenario (vi)  fp  0.022  0.055 0.051 0.959 0.260
Gur 0.013 0.050 0.049 0.953 0.258

07 0.017 0.065 0.063 0.933 0.246

faz 0.016 0.060 0.057 0.911 0.243

Scenario (vii) Or 0.020 0.094 0.096 0936 0.407
Oar 0.023 0.089 0.092 0.935 0.430

07 0.042 0.063 0.076 0964 0.375

faz 0.035 0.061 0.070 0.965 0.388

739

6 and Op 4 denote MELEs of 6 without and with the auxiliary information on X based on the
complete data, respectively, whilst 6, and 0,7 denote Zhou’s estimators in (EZ3) with v = 0,
with and without auxiliary information, ‘Bias’ denotes the difference between the true value and
the mean of the estimates based on 1,000 replications, ‘RMS’ is the root mean square between
the true value and the estimates based on 1,000 replications, ‘SD’ is the standard deviation
of the estimates based on 1,000 replications, ‘CP’ is the coverage probability and ‘WD’ is the

average interval width.
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Table 2. Performance of the MELEs and 95% empirical-likelihood-based
confidence intervals for 6 in Experiment 2.

m(X,Y) S Est. Bias RMS SD CP WD
Full Obs. 1 fir 0001 0176 0176 0.955 0.800
Bipa  0.001 0.176 0.176 0.962 0.909

By fBop 0012 0195 0.195 0.955 0.800

Bora  0.014 0199 0.198 0.962 0.909

Scenario 1 81 Air 0019 0253 0253 0.941 0.803
Biar 0.043 0.211 0.207 0.948 0.782

By 0053 0728 0.727 0.921  0.792

Biaz 0.003 0.789 0.789 0911 0.778

By  fBor 0021 0268 0267 0941 0.803

Boar 0.012 0251 0251 0945 0.782

Boy  0.066 0.846 0.844 0.921 0.792

Boay 0.029 0481 0480 0915 0.778

Scenario 2 B, A 0.032 0239 0237 0.951 0.816
Biar  0.031 0.196 0.194 0942 0.791

By 0078 0266 0254 0.934 0.807

Biaz 0046 0263 0259 0916 0.792

By fBor 0032 0251 0250 0951 0.816

Boar 0.005 0234 0234 0950 0.791

Boy  0.046 0275 0272 0.934 0.807

Boaz 0.011 0.698 0.699 0920 0.792

To compare our proposed method with that of [Itoxel, Lipsitz, and Brennan
(1997), we created the missing responses in the 1,000 datasets {(Y;, X;) : i =
1,...,100} simulated above. We used the missing data mechanisms

(iii) logit{ P(Ri1 = 1)} = ap + a1 X;1 + a2 X2 + a3Y; and logit{ P(R;2 = 1|R;1 =
0)} = o+ an Xi1 + @2 Xio + a3Y; + 7, with (g, a1, a2, a3, 7) = (0.05,0.25,
0.20,0.25,0.5),

(iv) logit{ P(R;1 = 1)} = ap + a1 Xi1 + a2 X2 + asY; + au X1Y; + a5 X;2Y; and
logit{ P(Ri2 = 1|R;1 = 0)} = ap+a1 Xij1+aoXip+agYi+oau X Yi+as XY+
7, with (g, a1, g, as, ay, as, 7) = (0.5,0.25,0.20,0.25, 0.20, 0.20, 0.5).

Here (iii) satisfies (270) for missing Y, whilst (iv) does not. The average missing
rates corresponding to (iii) and (iv) were, respectively, 38.36% and 26.13%. We
computed the estimates of (31, 32) and the 95% confidence regions of (51, 52)
by using our proposed EL method and the Troxel, Lipsitz and Brennan (TLB)
method based on EEs (B) and ().

Table 3 and Figure 1 present the results. Table 3 shows that, compared with
the TLB method, our proposed method not only significantly reduced bias, but
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Table 3. Estimates of 51 and 55 for the EL and TLB methods in Experiment 2.

Scenario (iii) Scenario (iv)
Est. Bias RMS SD Est. Bias RMS SD
Bir  0.074 0.367 0.360 Bir 0.078 0.292 0.282
Bor  0.005 0.306 0.306 Bor  0.006 0.288 0.288
3TLB0.101  0.305 0.288 3TLB - 0.109 0.297 0.276
3TLB - 0.026 0.305 0.304 3TLB - 0.042 0.308 0.305

also yielded parameter estimates with smaller RMS and SD under (iv), indicat-
ing that our proposed method is robust to the misspecified response probability
model. Figure 1 shows that our proposed method gave smaller confidence regions
than the TLB method.

We suggest that

e EL method can handle over-identified EEs, whereas the TLB method can-
not. Moreover, the EL method produces confidence regions, whose shape and
orientation are determined entirely by the data. It also does not require a piv-
otal quantity for constructing confidence regions and has better finite sample
performance (Owenl (T990)).

e We observed that the TLB method requires correct specification of the missing
data mechanisms (R;x|Y;, X;) and the model for (Y;|X;), which limits its ap-
plicability. In contrast, our method does not require a specific form of F(z,y),

and the validity of our proposed estimator is robust to the assumed response
model P(Rzl = 1|Y;,Xz)

However, our method can suffer from computational difficulties, including opti-
mizing LELRFs and searching the lower and upper limits for confidence regions
of parameters. Moreover, our method can break down in the high-dimensional
case, which is the topic of our future research.

4.2. A data example

The New York Social Indicators Survey (NYSIS) was a telephone survey of
New York City families conducted every two years by the Columbia University
School of Social Work. The core survey was designed to document individual and
family well-being across multiple domains: human, financial, and social assets;
economic and social living conditions; perceptions of the City and its services.
The survey also measured the sources and extent of external support from gov-
ernment, family, and friends, community and religious programs, and employers.

A data set was taken from the 2002 NYSIS to illustrate our proposed method-
ologies. The 2002 SIS survey was conducted between March and June, 2002, and
1501 adults were interviewed. Interviews lasted an average of 24 minutes for
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Ba

B

Figure 1. Results of Experiment 2: 95% confidence regions for (81, 82) based
on EL (the dot curve) and TLB (the solid curve) under the scenario (iii) with
a sample size n = 100 for a simulated dataset.

families without children, and 34 minutes for families with children. Let X; be
the number of people in family, X9; be the working hours, and Y; be the earning
of a resident in the New York City in 2001. Since some people were reluctant
to report their earnings, some data on Y were missing, but Xi; and Xo; were
fully observed. According to the nature of missing data, we deemed it reasonable
to assume the missing data mechanism of Y was non-ignorable. For the 2002
NYSIS data set, the response rate of Y;’s was 89.81%.

Our objective was to use the proposed method to estimate the mean earnings
of a resident in the New York City in 2001 and the variance of earnings. The
vector of estimating functions is

o= Lo i)

where 61 and 63 are the mean and variance of Y;’s, respectively. Clearly, Ev(Y; 6)
= 0, and we let o = n~Y/26,. To obtain the estimator m%(X;H), we chose
K(z1,29) = K(21) K (z2) and set the bandwidth h to be 6,n~ /3, where K (z) =
exp(—22/2)/(27)"/? and &, is the standard deviation of X in the data set.
An estimator 4 of the exponential tilting parameter v was obtained by solving
Yo (1= 0)ri{yp(Y5; 0) — 1y (X435 0,v)} = 0, where r; was the indicator of unit
i belonging to the follow-up sample, and 1 (X;6,7) is defined in (Z8). The
follow-up rate was 25%. To stabilize the computational algorithm, we used 10~4
to scale the observed values of the Y;’s. Zhou’s estimators, which assume the
missing data mechanism is MAR, and our proposed estimators were computed.
Results of estimates, standard errors, and 95% confidence intervals for 61 and 6
are reported in Table 4(a). Table 4(a) has the estimated standard errors (SE)
based on Zhou’s estimators larger in magnitude than those of our estimators; our
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Table 4(a). Estimate (Est), standard error (SE), 95% confidence interval
(CI), and average width (AW) for Zhou’s estimators (MAR assumption)
and our estimators in the case study.

NMAR MAR

Methods él ég @ él ég @
Est 6.204 22.122 0.571 6.132 21.720 0.561

SE 0.560 4.681 — 0.765 6.215 —

NACI (5.106,7.302) (12.948,31.296) — (4.634,7.631) (9.539,33.902) —

NAAW 2.196 18.348 — 2.997 24.363 —

ELCI (5.354,7.454) (17.612,26.872) — (5.132,7.582) (17.120,26.590) —

ELAW 2.100 9.260 — 2.450 9.470 —

Table 4(b). The results when only the variable Xs: “number of working
hours” is considered as an auxiliary variable in the case study.

NMAR MAR

Methods 0, 05 ) 0, 05 )
Est 5.711 20.614 0.532 5.765 20.901 0.540
SE 0.529 4.519 — 0.774 6.468 —
NACI  (4.675,6.747) (11.757,29.470) —  (4.248,7.282) (8.223,33.579) —

NAAW 2.072 17.713 — 3.034 25.356 —
ELCI (4.911,6.861) (16.134 25.304) —  (4.865,7.115) (16.361,25.711) —

ELAW 1.950 9.170 — 2.250 9.350 —

NACI denotes the NA-based CI, ELCI represents the EL-based CI, NAAW denotes the average width for the
NA-based CI, ELAW represents the average width for the EL-based CI.

proposed estimators had shorter EL-based and NA-based confidence intervals
than Zhou’s estimators; the EL-based Cls had shorter interval lengths than NA-
based Cls; further, results from Table 4(a) indicate that our proposed estimator
0 was, in fact, very close to the estimated standard error of él, but there is large
bias between ¢ and the SE of 0, based on Zhou’s method.

Also, we addressed the case in which only the variable Xs: ”number of
working hours” is considered as auxiliary. Table 4(b) shows the same conclusions
as Table 4(a). Comparing Table 4(b) to Table 4(a), we also find that, based on
our proposed method, when only the variable X5: "number of working hours”
is considered as auxiliary, standard errors of the estimates of the 6; and 6 were
smaller than those from considering both X; and X5 as auxiliary and, in this case,
the corresponding EL-based and NA-based confidence intervals were shorter.
Table 4(b) suggests that we need only consider the variable X5 as auxiliary to
estimate the mean earning of a resident in the New York City in 2001 and the
variance of earning in this Indicators Survey.
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Appendix

Let f(-) be the probability density function of X and G(X )= f(X) exp{g(X)}
{1—m(X)}, where g(X) is defined in (20). Take n(z,y) = P(6 =1|X =2,V =
y), (@) = P(6 = 1X = @), m(2:0) = E{0(Y, Z;0)|X = 2,8 =0}, mo(X) =
E(Y|X,6 =0), and myy(X) = E(Yy(Y, Z;0)|X,0 = 0). The symbol 0 denotes
partial differentiation with respect to parameter 6.

Some regularity conditions are required for the proofs of Theorems 1-7.
(C1) The probability density function f(z) is bounded away from oo on the

support of X, and the second derivative of f(x) is continuous and bounded.

(C2) The probability function 7(X,Y") satisfies min; 7(X;,Y;) > ¢o > 0 a.s. for
some positive constant cp, and 7(X) = E(m(X,Y)|X) # 1 as..
(C3) E(Y?) and E{exp(27Y)} are finite.

(C4) (+;0) is twice continuously differentiable in the neighborhood of the true
value 6y, and my(z; 0) is twice continuously differentiable in the neighbor-
hood of z.

(C5) 0 < E[Y(Y,Z;0)|?> < 0o and 0 < Ela’0py(Y, Z;0)|? < oo for any constant
vector a; Ogtp(+;0) and 13(+;6) are bounded by some integrable function
M (z) in the neighborhood of 6.

(C6) Matrices Vi, Va, Vi, Vi, and D, are positive definite, and E{0p(Y, Z;0)}
has full column rank p.

(C7) The kernel function K(-) is a probability density function such that

(i) it is bounded and has compact support;
(ii) it is symmetric with 0% = [ w? K (w)dw < oo;
(iii) K (w) > d; for some d; > 0 in some closed interval centered at zero.

(C8) nh — oo and nh* — 0 as n — co.
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These assumptions are common in the missing data and nonparametric litera-
tures. Conditions (C2) is similar to that used in Kim and Yu (20L1); (C3)—(C6)
are standard assumptions for empirical likelihood based inference with estimating
equations; (C7) and (C8) are common in the nonparametric literature.

Lemma 1. Suppose (C1)—(C8) hold. Then

w23 Gy (Vi Z8) B NOVD), 0ty b (¥ Zi60) B Ve,
=1 =1

n! Z%@M(Yi, Zi,00) BT
i=1

Lemma 2. Suppose (C1)—(C8) hold. Then, asn — 00, with probability tending
to 1, Cp(0) attains its minimum at_some point Oe in the interior of the ball
|6 — 6 ||< /3, and the solutions 6. and Apy = An1(0e) satisfy

in (éev 5\nl) =0 and QnQ(éea 5\nl) =0.
Lemma 3. Suppose (C1)—(C8) hold. Then

n

n_1/2 ZAZ(QO) £> N(07 VYI,AU)? n_l ZAZ(GO)AZT(QO) 2) VQ,AUy
i=1 i=1

where

Vo D
Vz,AU:< g 1>-

DT D,

Lemma 4. Let U be r-vector of random wvariables that satisfies U LY N(0,1I,),
where I, is the r X r identity matriz. Let P be a v X T nonnegative definite

matriz with eigenvalues ly,--- ,1.. Then, UT PU A lle + -+ Lx2, where X? s
(i=1,...,7r) are x*> random variables each with one degree of freedom.

Lemma 5. Suppose (C1)—(C8) hold. Then

(i) when the parameter estimate for «y is computed from an independent survey,
1 < r N
% ZQZJT(}/H Zi7 9) — N(07 ‘/1)7
i=1

where Vi = V; + HTVVH.

(ii) when the parameter estimate for 7y is obtained from a validation sample,

I = - -
% ZwT(E,Zlae) £> N(Oa V;/)?
i=1
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where V, = Var(n1;),
r
mi = my,(Xi;0,70) + {5(1 — i) + 6: Hu(Yi, Zi;0) — m(Xi50,70)},
mg)(Xi; 0,v) =pr nh_)rgo My (X33 0,7), v=E(r|0 =0), and o is the probability
limit of 4.
Lemma 6. Suppose (C1)—(C8) hold. Then
1. - » 1 . »
- > b (Y, Zi; 00)07(Ys, Zis 00) = Va, - > 0pr(Yi, Ziz00) = T
i=1 i=1

where Vo = E {[51{711(5/“ Zi;0) — m?z,(Xﬁ 0)} + m%(Xi; 9)]®2} and
D = B{0pi(Y, Z:6)}.

Lemma 7. Suppose (C1)—(C8) hold. Then

(i) when the parameter estimate for ~y is computed from an independent survey,

1 -« -
=" Ki(8o) 5 N(0, Th,av),

A;(00)AT Li
i 2 ; (60)A; (60) = VoAU,

where _
~ N Vi Dy o Vo Dy
Viau = (DlT D2> V240 = (D{ D2>

with Dy = E {mg(x;eo)AT(X)}, Dy = E{A(X)AT(X)}, Vi is defined in
Theorem 4, and Vs is defined in Theorem 2.

(ii) when the parameter estimate for v is obtained from a validation sample,

TZ[\ ) 5 N0, Ve au), ZA 00)AT (60) B Vaau,

~ (Vs Dy [ Va Dy

V. is defined in Theorem 6.

where
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