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Abstract: We develop an empirical likelihood (EL) inference on parameters in gen-

eralized estimating equations with nonignorably missing data. We consider an

exponential tilting model for the nonignorably missing mechanism, and propose

modified estimating equations by imputing missing data through a kernel regression

method. We establish some asymptotic properties of the maximum EL estimators

of the unknown parameters under different scenarios. With the use of auxiliary in-

formation, the maximum EL estimators are statistically more efficient. Simulation

studies are used to assess the finite sample performance of our proposed maximum

EL estimators. We apply the proposed maximum EL estimators to investigate a

data set on earnings obtained from the New York Social Indicators Survey.
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1. Introduction

Missing data are encountered in various settings, including surveys, clinical

trials and longitudinal studies (Little and Rubin (2002)); responses and/or covari-

ates may be missing in practice. Statistical models for dealing with the missing

data depend on a missing data mechanism such as data not missing at ran-

dom (NMAR), also referred to as nonignorable missingness. For example, when

there are NMAR responses, the complete-case analysis can result in biased and

inefficient parameter estimates, whereas to incorporate additional information

from incomplete cases, one needs to assume a parametric (or semiparametric)

model for the missing data mechanism. However, the assumptions underlying

such NMAR models are difficult to verify in practice and the resulting estimates

and tests may be sensitive to these assumptions. This paper develops an infer-

ence procedure for parameters in generalized estimating equations (GEEs) with

nonignorably missing data.

Various generalized estimating equations have been developed to handle

missing data, that are either missing at random (MAR) or NMAR, primarily

due to their being robust against model misspecification. Robins, Rotnitzky, and

Zhao (1994) developed a class of estimators based on inverse probability-weighted
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estimating equations (EEs) when the probability of missingness is modeled para-

metrically, and Robins, Rotnitzky, and Zhao (1995) proved the semiparametric

efficiency bound for parameter estimation. Lipsitz, Ibrahim, and Zhao (1999)

presented an EM algorithm to estimate parameters defined by a weighted EE

with missing covariate data. It is more challenging to deal with NMAR data

due to the unverifiable assumptions introduced by the statistical models for it.

Troxel, Lipsitz, and Brennan (1997) proposed weighted EEs for data with non-

ignorable nonresponse to eliminate the biases in the complete-case analysis that

ignores missing cases when the weights (the inverse probability of being observed)

are estimable. Kim and Yu (2011) developed an exponential tilting model and

proposed a semiparametric estimation method of mean functionals with nonig-

norably missing data. See Ibrahim et al. (2005) and Ibrahim and Molenberghs

(2009) for a detailed overview and comparisons of various paradigms for handling

missing data. All these methods are developed on the basis of non-empirical like-

lihood.

There is considerable interest in the development of EL for GEEs with/

without ignorably missing data. Empirical likelihood allows one to employ likeli-

hood methods in a nonparametric or semiparametric setting. It has been shown

that EL has various advantages over other competing methods, including gener-

alized method of moments (GMM) (Newey and Smith (2004)). Compared with

EE, EL allows the easy incorporation of auxiliary information and the number

of estimating equations can be greater than the number of parameters. See,

for example, Qin and Lawless (1994); Zhou, Wan, and Wang (2008); Zhu et al.

(2008); Wang and Chen (2009), and Qin, Zhang, and Leung (2009), among many

others. Zhou, Wan, and Wang (2008) proposed a kernel-assisted EE imputation

scheme and used EL and GMM on parameters in GEEs. Wang and Chen (2009)

proposed a nonparametric imputation method to remove the selection bias in

the missingness and showed that the maximum EL estimators can be efficient.

However, little has been done on the development of the EL method for GEEs

with nonignorably missing data.

We develop a general EL inference procedure for parameters in the GEEs

with nonignorably missing data. We integrate the modeling of nonignorably

missing data, the EL method, and the imputation of EEs by using the observed

data rather than imputing the missing data. Specifically, we consider the expo-

nential tilting model with known and estimated tilting parameters as the missing

mechanism for nonignorably missing data, which leads to a more robust estima-

tor. We extend the estimation of mean functionals with nonignorably missing

data to the estimation of parameters in GEEs. We systematically investigate the

asymptotic properties of the maximum EL estimators under this new setting.

The rest of this article is organized as follows. In Section 2, we describe the

proposed kernel-assisted EE imputation scheme based on the exponential tilting
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model of nonignorably missing data. As well, we outline the formulations of EL

with and without auxiliary information by utilizing the imputation scheme. In

Section 3, we establish the asymptotic properties of the proposed maximum EL

estimators. Two simulation studies and a data analysis are used to compare

the finite sample performance of the proposed maximum EL estimators with

competing methods, in Section 4. Technical details are given in the Appendix.

2. Methods

2.1. Imputation based on the exponential tilting model

Let {Ui = (ZTi , Y
T
i )T : i = 1, . . . , n} be a set of independent and identically

distributed random vectors from a distribution F (z, y), where the Zi’s are dx-

dimensional and observable, and the Yi’s are dy-dimensional and subject to miss-

ingness. Generally, the missing components may vary across different individuals.

For simplicity, we assume that the missing components have the same compo-

nents for U1, . . . , Un. Furthermore, a missing variable Yi may represent a re-

sponse or covariate. Without assuming a specific form for F (u), we are interested

in making statistical inference on a p× 1 vector, denoted by θ, based on q(≥ p)

functionally independent EEs ψ(Yi, Zi; θ) = (ψ1(Yi, Zi; θ), . . . , ψq(Yi, Zi; θ))
T that

satisfy the unconditional moment condition of the form EF {ψ(Yi, Zi; θ0)} = 0 for

θ0 ∈ Θ ⊂ Rp, where θ0 is the true value and EF denotes the expectation with

respect to F . The Yi’s are assumed to be nonignorably missing. Let Xi be Zi
or a subset of Zi, and let δi = 1 if Yi is observed and δi = 0 if Yi is missing. It

is assumed that δi and δj are independent for any i ̸= j and δi depends on Xi

and Yi such that P (δi = 1|Xi, Yi)
∆
= π(Xi, Yi) for i = 1, . . . , n. When π(Xi, Yi)

depends on the value of Yi, it is the NMAR condition of Little and Rubin (2002).

We consider an exponential tilting model for nonignorably missing data Yi’s

given by

logit{π(Xi, Yi)
∆
= P (δi = 1|Xi, Yi)} = g(Xi) + ϕYi (2.1)

for some unknown function g(·) and ϕ, where logit denotes the logit function.

When ϕ = 0, (2.1) becomes an MAR model. Let f1(Yi|Xi) be the conditional

density of Yi given Xi and δi = 1, and let f0(Yi|Xi) be the conditional density of

Yi given Xi and δi = 0. Then, by following the reasoning of Kim and Yu (2011),

we have

f0(Yi|Xi) = f1(Yi|Xi)×
exp(γYi)

E{exp(γYi)|Xi, δi = 1}
, (2.2)

where γ = −ϕ is an unknown tilting parameter that measures the amount of

departure from the MAR assumption. When γ = 0, (2.2) reduces to f0(Yi|Xi) =

f1(Yi|Xi).
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To incorporate the incomplete cases, we consider a new set of EEs given by

ψ̃(Yi, Zi; θ) = δiψ(Yi, Zi; θ) + (1− δi)mψ(Xi; θ), (2.3)

where mψ(Xi; θ) = EF {ψ(Yi, Zi; θ)|Xi}. Under MAR, the EEs in (2.3) reduce

to the estimating equations of Zhou, Wan, and Wang (2008). Since mψ(Xi; θ)

defined in (2.3) is unknown, it is necessary to estimate (or ‘impute’) mψ(Xi; θ)

from the observed data set. Under the MAR assumption, a consistent estima-

tor of mψ(Xi; θ) can be obtained from a consistent estimator of m1ψ(Xi; θ) =

E{ψ(Yi, Zi; θ)|Xi, δi = 1}, denoted by m̂1ψ(Xi; θ). Substituting m̂1ψ(Xi; θ) in

(2.3) leads to ψ̂1(Yi, Zi; θ) = δiψ(Yi, Zi; θ) + (1 − δi)m̂1ψ(Xi; θ), which is biased

under NMAR.

We construct a consistent estimator of m0
ψ(Xi; θ) = E{ψ(Yi, Zi; θ)|Xi, δi =

0}. Under the NMAR assumption, it is difficult to estimate m0
ψ(Xi; θ) due to the

presence of missing data. It follows from (2.2) that

m0
ψ(Xi; θ) =

E{δiψ(Yi, Zi; θ) exp(γYi)|Xi}
E{δi exp(γYi)|Xi}

. (2.4)

Then, under the NMAR assumption, we construct a set of EEs for ψ(Yi, Zi; θ)

given by
ψ̂(Yi, Zi; θ) = δiψ(Yi, Zi; θ) + (1− δi)m

0
ψ(Xi; θ), (2.5)

where m0
ψ(Xi; θ) is defined in (2.4) based on a tilting parameter γ.

If the exponential tilting model (2.1) is true, then we have

E{ψ̂(Yi, Zi; θ)}
= E{δiψ(Yi, Zi; θ) + (1− δi)m

0
ψ(Xi; θ)}

= E

{
pr(δi = 1|Xi)E(ψ(Yi, Zi; θ)|δi = 1, Xi)

+pr(δi = 0|Xi)
E{δiψ(Yi, Zi; θ) exp(γYi)|Xi}

E{δi exp(γYi)|Xi}

}
= E

{
pr(δi = 1|Xi)E(ψ(Yi, Zi; θ)|δi = 1, Xi)

+pr(δi = 0|Xi)E(ψ(Yi, Zi; θ)|δi = 0, Xi)

}
= E

{
E(δiψ(Yi, Zi; θ)|Xi) + pr(δi = 0|Xi)

E{(1− δi)ψ(Yi, Zi; θ)|Xi}
E{(1− δi)|Xi}

}
= E{ψ(Yi, Zi; θ)} = 0.
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The second equality holds since

E{δψ(Y,Z; θ) exp(γY )|X}
E{δ exp(γy)|X}

=
E{π(X,Y )ψ(Y,Z; θ) exp(γY )|X}

E{π(X,Y ) exp(γY )|X}

=
E{ψ(Y, Z; θ)(1 + exp(g(X)− γY ))−1|X}

E{(1 + exp(g(X)− γY ))−1|X}

=
E{(1− δ)ψ(Y, Z; θ)|X}

E{(1− δ)|X}
= E(ψ(Y,Z; θ)|X, δ = 0).

Thus (2.5) is unbiased, which is the key idea of our approach. From (2.1), we have

π(Xi, Yi) = {1+exp(−g(Xi)) exp(γYi)}−1 with γ = −ϕ and E{δ exp(γYi)|Xi} =

exp(g(Xi))E(1− δi|Xi), which indicates that

exp(−g(Xi)) =
E(1− δi|Xi)

E{δ exp(γYi)|Xi}
=

pr(δi = 0|Xi)

pr(δi = 1|Xi)E{exp(γYi)|Xi, δi = 1}
.

Then, we also have

E{ψ(Yi, Zi; θ)} = E
{δiψ(Yi, Zi; θ)

π(Xi, Yi)

}
= E{δiψ(Yi, Zi; θ) + (1− δi)m

0
ψ(Xi; θ)} = 0.

The equality holds since

E
{δiψ(Yi, Zi; θ)

π(Xi, Yi)

}
= E

{
δiψ(Yi, Zi; θ)

[
1+

pr(δi = 0|Xi) exp(γYi)

pr(δi=1|Xi)E{exp(γYi)|Xi, δi=1}

]}
= E

{
pr(δi = 1|Xi)E(ψ(Yi, Zi; θ)|δi = 1, Xi)

+pr(δi = 0|Xi)
E{ψ(Yi, Zi; θ) exp(γYi)|δi=1, Xi}

E{exp(γYi)|δi=1, Xi}

}
= E{δiψ(Yi, Zi; θ) + (1− δi)m

0
ψ(Xi; θ)}

= E{ψ(Yi, Zi; θ)} = 0.

This equality also holds under the MAR assumption.

Let K(·) be a dx-dimensional kernel function of the m-th order satisfying∫
K(u1, . . . , udx)du1 . . . dudx = 1,

∫
ulsK(u1, . . . , udx)du1 . . . dudx = 0 for any

s = 1, . . . , dx and 1 ≤ l < m, and
∫
ums K(u1, . . . , udx)du1 . . . dudx ̸= 0. Then,

a nonparametric regression estimator of m0
ψ(X; θ) = E{ψ(Y, Z; θ)|X, δ = 0} can

be written as

m̂ψ(X; θ, γ) =

n∑
i=1

ωi0(X; γ)ψ(Yi, Zi; θ), (2.6)

where ωi0(X; γ) = δi exp(γYi)Kh(X −Xi)/{
∑n

k=1 δk exp(γYk)Kh(X −Xk)} rep-

resents the point mass assigned to Yi, in which Kh(u) = h−1K(u/h) and h is
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a bandwidth. Therefore, under the exponential tilting model, a set of modified

EEs for the ith observation is given by

ψ̂M (Yi, Zi; θ) = δiψ(Yi, Zi; θ) + (1− δi)m̂ψ(Xi; θ, γ). (2.7)

It can be shown that n−1
∑n

i=1 ψ̂M (Yi, Zi; θ0) is a set of asymptotically unbiased

EEs of θ.

2.2. Maximum empirical likelihood estimator

We assume that the value of γ is known. Although γ may be unknown in

practice, we may either fix γ at a prefixed value or calculate a consistent estimator

of γ, denoted by γ̂. For instance, γ̂ can be computed from an independent survey

or a validation sample that is a subsample of the nonrespondents. Then, we can

substitute γ̂ into (2.7) to get ψ̂T (Yi, Zi; θ). Therefore, we temporarily assume

that γ is known.

Let pi be the probability weight allocated to ψ̂M (Yi, Zi; θ). The empirical

likelihood (Owen (1990)) for θ based on ψ̂M (Yi, Zi; θ) can be taken as

L̂n(θ) = sup
{ n∏
i=1

pi | pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piψ̂M (Yi, Zi; θ) = 0
}
.

The optimal value of pi is p̂i = n−1{1 + λTn1(θ)ψ̂M (Yi, Zi; θ)}−1, where λn1(θ) is

the Lagrange multiplier and satisfies Qn1(θ, λn1) = n−1
∑n

i=1 ψ̂M (Yi, Zi; θ)/{1 +
λTn1(θ)ψ̂M (Yi, Zi; θ)} = 0. Therefore, the log empirical likelihood ratio function

(LELRF) for θ is given by

ℓ̂M (θ) = −2 log
{ n∏
i=1

(np̂i)
}
= 2

n∑
i=1

log
{
1 + λTn1(θ)ψ̂M (Yi, Zi; θ)

}
. (2.8)

Maximizing −ℓ̂M (θ) leads to the maximum EL estimator (MELM) of θ, denoted

by θ̂e. Under some smoothness condition, θ̂e can be obtained by simultaneously

solving

Qn1(θ, λn1) = 0 and Qn2(θ, λn1) = n−1
n∑
i=1

λTn1(θ)∂θψ̂M (Yi, Zi; θ)

1 + λTn1(θ)ψ̂M (Yi, Zi; θ)
= 0,

where ∂θ denotes partial derivative with respect to θ.

Let X be an auxiliary variable. In practice, some auxiliary information on

X may be available, for example, the mean of X is zero or the distribution

of X is symmetric. With the auxiliary information, we can improve statistical

inference on θ. Specifically, we assume that the auxiliary information of X can be

characterized as E{A(X)} = 0, where A(X) = (A1(X), . . . , Ar(X))T is a known

r ≥ 1 vector (or scalar) function.
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To incorporate the auxiliary information on X, the LELRF for θ is defined

as

ℓAU (θ) = −2max
{ n∑
i=1

log(npi)|pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piψ̂M (Yi, Zi; θ) = 0,

n∑
i=1

piA(Xi) = 0
}
.

Let Λi(θ) = (ψ̂TM (Yi, Zi; θ), A
T (Xi))

T . The estimated LELRF for θ based on

Λi(θ) can be expressed as

ℓ̂AU (θ) = 2
n∑
i=1

log{1 + λTn2(θ)Λi(θ)}, (2.9)

where λn2(θ) is a (q+r)×1 Lagrange multiplier vector that satisfies n−1
∑n

i=1

Λi(θ)/{1 + λTn2(θ)Λi(θ)} = 0. Maximizing −ℓ̂AU (θ) leads to the MELE of θ, de-

noted by θ̂ae. Therefore, under some smoothness condition, θ̂ae can be calculated

by simultaneously solving

Mn1(θ, λn2) = n−1
n∑
i=1

ψ̂M (Yi, Zi; θ)

1 + λTn21(θ)ψ̂M (Yi, Zi; θ) + λTn22(θ)A(Xi)
= 0,

Mn2(θ, λn2) = n−1
n∑
i=1

A(Xi)

1 + λTn21(θ)ψ̂M (Yi, Zi; θ) + λTn22(θ)A(Xi)
= 0,

Mn3(θ, λn2) = n−1
n∑
i=1

λTn21(θ)∂θψ̂M (Yi, Zi, θ)

1 + λTn21(θ)ψ̂M (Yi, Zi; θ) + λTn22(θ)A(Xi)
= 0,

where λn2 = (λTn21, λ
T
n22)

T .

3. Theoretical Results

3.1. Asymptotic properties of MELE for known γ

We first establish the asymptotic properties of MELE and LELRF for known

γ. Then, we approximate the asymptotic covariance of MELE. The detailed as-

sumptions and proofs of our results can be found in the Appendix and supplemen-

tary materials, respectively. We need some notation. Let
L→ denote convergence

in distribution, and a⊗2 = aaT for any vector a. We define several matrices as

follows:

V1 = E
[
π(X,Y )−1{ψ(Y,Z; θ0)−m0

ψ(X; θ0)}⊗2
]
+ E

{
m0
ψ(X; θ0)

⊗2
}
,

V2 = E
{
[δi{ψ(Yi, Zi; θ)−m0

ψ(Xi; θ)}+m0
ψ(Xi; θ)]

⊗2
}
, (3.1)

Γ = E{∂θψ(Y,Z; θ)}.
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Theorem 1. Suppose the conditions given in the Appendix hold. Then

√
n(θ̂e − θ0)

L→ N(0,Σe) = N(0,Σ1Γ
TV −1

2 V1V
−1
2 ΓΣ1), (3.2)

where Σ1 = (ΓTV −1
2 Γ)−1.

Theorem 1 gives the asymptotic normality of θ̂e for the kernel-assisted EE im-

putation scheme. From (2.1), we have π(Xi, Yi) = {1+exp(−g(Xi)) exp(γYi)}−1,

with γ = −ϕ. On the other hand, E{δ exp(γY )|X} = exp(g(X))E(1 − δ|X).

Then, by the kernel regression method and under (2.1) with known parameter

γ = −ϕ, a non-parametric estimator of π(Xi, Yi) can be obtained as π̂(Xi, Yi) =

π̂i(γ), where

π̂i(γ) = {1 + α̂(Xi; γ) exp(γYi)}−1, (3.3)

with

α̂(Xi; γ) =

∑n
j=1(1− δj)Kh(Xj −Xi)∑n

j=1 δj exp(γYj)Kh(Xj −Xi)
.

Let η̂i = δiπ̂i(γ)
−1{ψ(Yi, Zi; θ0)− m̂ψ(Xi; θ0)}+ m̂ψ(Xi; θ0), where m̂ψ(Xi; θ0) =

m̂ψ(Xi; θ0, γ). Then, a consistent estimator of V1 is V̂1 = n−1
∑n

i=1 η̂
⊗2
i −

(n−1
∑n

i=1 η̂i)
⊗2. Furthermore, the consistent estimators of Γ and V2 are Γ̂ =

n−1
∑n

i=1 ∂θψ̂M (Yi, Zi; θ0) and V̂2 = n−1
∑n

i=1 ψ̂M (Yi, Zi; θ0)
⊗2, respectively.

Thus, Σe can be consistently estimated by Σ̂e = Σ̂1Γ̂
T V̂ −1

2 V̂1V̂
−1
2 Γ̂Σ̂1, where

Σ̂1 = (Γ̂T V̂ −1
2 Γ̂)−1.

Under the MAR assumption, π(Xi, Yi) reduces to P (Xi) = exp{g(Xi)}/[1 +
exp{g(Xi)}]. Since E{ψ(Y, Z; θ)−m1ψ(X; θ)|X} = 0, V1, V2, and Γ, respectively,

reduce to

V1 = E
{
P (X)−1Σψ(X)

}
+ E

{
m0
ψ(X; θ0)

⊗2
}
,

(3.4)
V2 = E {P (X)Σψ(X)}+E

{
m0
ψ(X; θ0)

⊗2
}

and Γ = E{∂θm1ψ(X; θ0)},

where Σψ(X) = cov{ψ(Y, Z; θ0)|X}. Thus, Theorem 1 reduces to Theorem 2 of

Zhou, Wan, and Wang (2008) under the MAR assumption. When π(X,Y ) = 1, it

can be shown that V1 = V2 = E
{
ψ(Y, Z; θ)⊗2

}
, which leads to Σe = (ΓTV −1

2 Γ)−1

with Γ = E{∂θψ(Y, Z; θ)}, the asymptotic variance of MELE based on the full

observations (Qin and Lawless (1994)). Therefore, when π(X,Y ) is close to 1,

the efficiency of MELE based on our proposed kernel-assisted EE imputation

scheme is close to that based on the full observations.

Theorem 2. Suppose the conditions given in the Appendix hold. As n→ ∞, we

have

ℓ̂M (θ0)
L→ ϱ1χ

2
1 + ϱ2χ

2
2 + · · ·+ ϱqχ

2
q ,

where χ2
ks are independent χ2 variables with one degree of freedom, and the

weights ϱi are the eigenvalues of V −1
2 V1.
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Theorem 2 says the asymptotic distribution of ℓ̂M (θ0) as a complicated

weighted sum of chi-squares. We can use the asymptotic result in Theorem 2

to construct the confidence region of θ. Specifically, let cα be the 1− α quantile

of ϱ1χ
2
1+ϱ2χ

2
2+ · · ·+ϱqχ2

q for 0 < α < 1. An approximate 100(1−α)% empirical-

likelihood-based confidence region for θ is given by CIMα (θ) = {θ : ℓ̂M (θ) ≤ cα}.
To obtain a simple asymptotic distribution, we define an adjusted LELRF as

ℓ̂IM (θ0) = R̂ℓ̂M (θ0), where R̂ is a consistent estimator of R = q/tr{V −1
2 V1} that

measures information loss due to the presence of missing data, Zhou, Wan, and

Wang (2008). By replacing θ0 by θ̂e in V1 and V2, we can get consistent estimators

of V1 and V2, denoted by V̂1 and V̂2, respectively. When no data are missing,

r(θ0) = 1. Moreover, even though R
∑q

k=1 ϱkχ
2
k can be well approximated by a

χ2(q) distribution, the accuracy of such approximation, ℓ̂IM (θ0), also depends on

the values of the ϱi’s.

We develop another adjusted LELRF, denoted by ℓ̂AM (θ0), whose asymptotic

distribution is exactly a χ2
q distribution,

ℓ̂AM (θ0) =
Ŵ1

Ŵ2

ℓ̂M (θ0), (3.5)

where Ŵ1=tr{V̂ −1
1 Σ̂} and Ŵ2=tr{V̂ −1

2 Σ̂}, in which Σ̂={
∑n

i=1 ψ̂M (Yi, Zi; θ0)}⊗2.

Since ℓ̂M (θ0) = Ŵ2 + op(1), ℓ̂
A
M (θ0) = Ŵ1 + op(1) and Ŵ1

L→ χ2(q).

With the auxiliary information on X, we use θ̂ae and ℓ̂AU to denote the

MELE of θ and the LELRF based on known γ.

Theorem 3. Suppose the conditions given in the Appendix hold. Then, we have

(i)
√
n(θ̂ae − θ0)

L→ N(0,Σae) = N(0, C−1BTA−1V1,AUA−1BC−1), where B =

(ΓT , 0T )T , C = −BTA−1B, D2=E
{
A(X)⊗2

}
, D1=E

{
m0
ψ(X; θ0)A

T (X)
}
,

A =

(
−V2 −D1

−DT
1 −D2

)
and V1,AU =

(
V1 D1

DT
1 D2

)
,

(ii) ℓ̂AU(θ0)
L→ ϱu1χ

2
1 + · · ·+ ϱur+qχ

2
r+q, where the weights ϱuk are the eigenvalues

of matrix V −1
2,AUV1,AU, and V2,AU = −A.

Theorem 3 (i) gives the asymptotic normality of θ̂ae when auxiliary infor-

mation is available. To estimate Σae, we only need to approximate D1 and

D2, see the consistent estimators of V1 and V2 given below Theorem 1. Specif-

ically, we estimate D1 and D2 as D̂1 = n−1
∑n

i=1 ψ̂M (Yi, Zi; θ0)A
T (Xi) and

D̂2 = n−1
∑n

i=1A(Xi)
⊗2. It can be shown that Σe−Σae is non-negative definite,

which indicates that θ̂ae is asymptotically more efficient than θ̂e. Moreover, when
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auxiliary information on X is available, the amount of information reduction of

θ̂ae compared to that of θ̂e does not depend on π(X,Y ). This result is consistent

with that under a simpler setting in Wang and Rao (2002). Theorem 3 (ii) gives

the asymptotic distribution of ℓ̂AU(θ0) as a weighted sum of chi-squares; we can

propose several adjusted LELRFs based on ℓ̂AU(θ0) and construct the confidence

region of θ. We omit them for the sake of space.

3.2. Asymptotic properties for estimated γ

In many cases, γ is unknown and has to be estimated. We consider that an

estimator for γ is computed from an independent survey, or that an estimate is

obtained from a validation sample, a subsample of the nonrespondents.

In either case, the resulting semi-parametric modified EEs for the ith obser-

vation of θ is

ψ̂T (Yi, Zi; θ) = δiψ(Yi, Zi; θ) + (1− δi)m̂ψ(Xi; θ, γ̂). (3.6)

where m̂ψ(X; θ, γ) is defined in (2.6).

It can be shown that n−1
∑n

i=1 ψ̂T (Yi, Zi; θ0) is a set of asymptotically unbi-

ased EEs of θ. So, we can define the LELRF for θ based on the semi-parametric

modified EEs (3.6). We use θ̂T and ℓ̂T to denote the MELE of θ and LELRF

based on γ̂, respectively. Assume that E{A(X)} = 0, where A(X) = (A1(X), . . .,

Ar(X))T is a known r×1 vector (or scalar) function and let Λ̃i(θ)=(ψ̂TT (Yi, Zi; θ),

AT (Xi))
T . With the auxiliary information on X, we use θ̂AT and ℓ̂AT to denote

the MELE of θ and LELRF based on γ̂.

We first consider that γ̂ is estimated from an independent survey.

Theorem 4. Suppose (C1)−(C8) hold,
√
n(γ̂ − γ)

L→ N(0, Vγ), and γ̂ is inde-

pendent of ψ̂M (Yi, Zi; θ). Then

(i)
√
n(θ̂T − θ0)

L→ N(0,ΣT ) = N(0,Σ1Γ
TV −1

2 Ṽ1V
−1
2 ΓΣ1), where Ṽ1 = V1 +

HTVγH, H = E[(1−δ)(Y−m0(X)){ψ(Y,Z; θ0)−m0
ψ(X; θ0)}T ] andm0(X) =

E(Y |X, δ = 0);

(ii) ℓ̂T (θ0)
L→ ϱγ1χ

2
1+ϱ

γ
2χ

2
2+ · · ·+ϱγqχ2

q , where the weights ϱγi s are the eigenvalues

of V −1
2 Ṽ1.

Theorem 4 (i) generalizes Theorem 3 of Kim and Yu (2011) from mean func-

tionals to GEEs. To approximate the asymptotic variance of θ̂T , we only need a

consistent estimator of Ṽ1, V̂
∗
1 (θ0) = V̂1 + ĤT V̂γĤ, where V̂γ and Ĥ are, respec-

tively, consistent estimators of Vγ and H, V̂1 = n−1
∑n

i=1 η̂
⊗2
i − (n−1

∑n
i=1 η̂i)

⊗2

with η̂i = δiπ̂i(γ̂)
−1{ψ(Yi, Zi; θ0) − m̂ψ(Xi; θ0, γ̂)} + m̂ψ(Xi; θ0, γ̂). A consistent

estimate of H is given by Ĥ = n−1
∑n

i=1(1 − δi)σ̂
2
0(xi; γ̂), where σ̂20(X; γ̂) =

Q−1
∑n

j=1 δj exp(γ̂Yj)Kh(Xj −X){Yj − m̂0(Xj ; γ̂)}{ψ̂(Yj , Zj ; θ)− m̂ψ(Xj ; θ)} in
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which m̂0(X; γ̂) = Q−1
∑n

i=1 δi exp(γ̂Yi)Kh(Xi − X)Yi, Q =
∑n

i=1 δi exp(γ̂Yi)

Kh(Xi −X), and m̂ψ(X; θ, γ̂) =
∑n

i=1 ωi0(X; γ̂)ψ(Yi, Zi; θ).

Compared with θ̂e, θ̂T has larger asymptotic variance due to estimating γ.

The asymptotic variance of θ̂T is the same as that of θ̂e when γ̂ is exactly es-

timated. Moreover, if γ̂ is exactly estimated, then Vγ = 0 and Ṽ1 is equal to

V1.

Theorem 5. Under the conditions of Theorem 4, we have

(i)
√
n(θ̂AT − θ0)

L→ N(0,ΣAT ) = N(0, C−1BTA−1Ṽ1,AUA−1BC−1), where

Ṽ1,AU =

(
Ṽ1 D1

DT
1 D2

)
,

A, B, and C as defined in Theorem 3.

(ii) ℓ̂AT (θ0)
L→ ϱa1χ

2
1 + · · ·+ ϱar+qχ

2
r+q, where the weights ϱai s are the eigenvalues

of matrix V −1
2,AUṼ1,AU, and V2,AU = −A.

It is can be shown that ΣAT ≤ ΣT indicating that θ̂AT based on Λ̃i(θ)

is asymptotically more efficient than θ̂T . Thus, the auxiliary information can

be used to improve the efficiency of MELE. Theorem 5 generalizes the existing

results in Kim and Yu (2011) and Wang and Rao (2002).

We now consider that a validation sample is randomly selected from the set of

nonrespondents and responses are obtained for all the elements in the validation

sample. A consistent estimator γ̂ of γ can be obtained by solving

n∑
i=1

(1− δi)ri{ψ(Yi, Zi; θ)− m̂ψ(Xi; θ, γ)} = 0, (3.7)

for γ, where ri is an indicator of unit i belonging to the follow-up sample, and

m̂ψ(Xi; θ, γ) is defined in (2.6).

Using the estimated titling parameter γ̂ obtained from (3.7), one can con-

struct ψ̂T (Yi, Zi; θ) in (3.6). Further, we can construct MELE θ̂T and LELRF

ℓ̂T .

Theorem 6. Suppose (C1)−(C8) hold, except for the semiparametric exponen-

tial tilting model in (2.1). Assume that the solution γ̂ to (3.7) exists almost

everywhere. Let ℓ̂T be the LELRF based on the semi-parametric modified EEs

(3.6) using γ̂ obtained by solving (3.7) and the corresponding MELE is θ̂T . Then

(i)
√
n(θ̂T − θ0)

L→ N(0, Σ̃T ) = N(0,Σ1Γ
TV −1

2 ṼvV
−1
2 ΓΣ1),
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where Ṽv = Var(η1i),

η1i = m0
ψ(Xi; θ, γ0) + {ri

ν
(1− δi) + δi}{ψ(Yi, Zi; θ)−m0

ψ(Xi; θ, γ0)},

m0
ψ(Xi; θ, γ) = pr lim

n→∞
m̂ψ(Xi; θ, γ), ν = E(r|δ = 0) and γ0 is the probability

limit of γ̂.
(ii)

ℓ̂T (θ0)
L→ ϱγ1χ

2
1 + ϱγ2χ

2
2 + · · ·+ ϱγqχ

2
q ,

where the weights ϱγi s are the eigenvalues of matrix V −1
2 Ṽv.

A consistent estimator of Ṽv is

ˆ̃Vv =
1

n

n∑
i=1

η̂⊗2
1i − (

1

n

n∑
i=1

η̂1i)
⊗2,

with

η̂1i = m̂ψ(Xi; θ, γ̂) + {ri
ν
(1− δi) + δi}{ψ(Yi, Zi; θ)− m̂ψ(Xi; θ, γ̂)}.

In Theorem 6, the exponential tilting model (2.1) is not needed to show (i).

The variance Ṽv can be written as

Ṽv = Var(ψ(Y, Z; θ)) + (ν−1 − 1)E[(1− δ){ψ(Y, Z; θ)−m0
ψ(X; θ, γ0))}⊗2].

Note that

m0
ψ(X; θ, γ) = pr lim

n→∞
m̂ψ(X; θ, γ) =

E{δψ(Y,Z; θ) exp(γY )|X}
E{δ exp(γY )|X}

,

Thus, if (2.1) is true, then γ0 = γ, and by (i),

m0
ψ(X; θ, γ0) =

E{δψ(Y,Z; θ) exp(γY )|X}
E{δ exp(γY )|X}

=
E{(1− δ)ψ(Y, Z; θ)|X}

E{(1− δ)|X}
= E{ψ(Y, Z; θ)|X, δ = 0} = m0

ψ(X; θ).

Since

E[(1− δ){ψ(Y, Z; θ)−m0
ψ(X; θ, γ0))}⊗2] ≥ E[(1− δ){ψ(Y, Z; θ)−m0

ψ(X; θ))}⊗2],

the variance Σ̃T in (i) is minimized when (2.1) is true. Thus, the validity of the

proposed estimator does not depend on the assumed response model and the role

of (2.1) is to improve efficiency.

With the auxiliary information on X, we also use θ̂AT and ℓ̂AT to denote the

MELE of θ and LELRF based on γ̂, estimated by the validation sample.
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Theorem 7. Under the conditions of Theorem 6, we have

(i)
√
n(θ̂AT − θ0)

L→ N(0, Σ̃AT ) = N(0, C−1BTA−1Ṽv,AUA−1BC−1), where

Ṽv,AU =

(
Ṽv D1

DT
1 D2

)
,

with A, B and C as defined in Theorem 3 and Ṽv as defined in Theorem 6.

(ii) ℓ̂AT (θ0)
L→ ϱa1χ

2
1 + · · ·+ ϱar+qχ

2
r+q, where the weights ϱai s are the eigenvalues

of V −1
2,AUṼv,AU.

3.3. Bandwidth selection

Let F0(y, z|X = x) = P (Y ≤ y, Z ≤ z|X = x, δ = 0) be the conditional

distribution of (Z, Y ) given X = x, δ = 0. Then, based on the exponential tilting

model (2.1), a kernel estimator of F0(y, z|X = x) based on the sample is

F̂0(y, z|X = x) := F̂0(y, z|X = x; γ)

=

∑n
j=1 δjexp(γYj)I(Yj ≤ y)I(Zj ≤ z)Kh(x−Xj)∑n

j=1 δjexp(γYj)Kh(x−Xj)
.

Then m0
ψ(x; θ) = E{ψ(Y, Z; θ)|X = x, δ = 0} may be estimated by

R̂(x) =

∫
ψ(y, z; θ)dF̂0(y, z|X = x; γ).

It is known that in nonparametric or semiparametric inferences, selecting a

suitable bandwidth is a critical issue. The classical optimal rate for the band-

width is h = n−1/5, see Sepanski, Knickerbocker, and Carroll (1994). But as

Zhou, Wan, and Wang (2008) point out, the optimal rate h = n−1/5 is not al-

lowed here since we require nh2m → 0 for the mth kernel. Along the lines of

Zhou, Wan, and Wang (2008), we suggest the suitable and simple bandwidth

h = σ̂Xn
−1/3, where σ̂X is the standard deviation of observation X.

3.4. Reduced Dimension of X

In practical applications the dimension of variate X is high and it is difficult

to get an accurate estimator ofm0
ψ(Xi; θ) by a kernel-smoothing procedure. Here,

we propose a dimension reduction technique such that our method is still effective

for high-dimensional data.

Let S be a continuous function fromRdx toR, such that S = S(X) is univari-

ate and Si = S(Xi). Suppose E{δiψ(Yi, Zi; θ) exp(γYi)|Si}/E{δi exp(γYi)|Si} =
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E{δiψ(Yi, Zi; θ) exp(γYi)|Xi}/E{δi exp(γYi)|Xi}. Then, if (2.1) is true,

E{δiψ(Yi, Zi; θ) + (1− δi)m
0
ψ(Si; θ)}

= E

{
pr(δi = 1|Xi)E(ψ(Yi, Zi; θ)|δi = 1, Xi)

+pr(δi = 0|Xi)
E{δiψ(Yi, Zi; θ) exp(γYi)|S(Xi)}

E{δi exp(γYi)|S(Xi)}

}
= E

{
pr(δi = 1|Xi)E(ψ(Yi, Zi; θ)|δi = 1, Xi)

+pr(δi = 0|Xi)E(ψ(Yi, Zi; θ)|δi = 0, Xi)

}
= E

{
E(δiψ(Yi, Zi; θ)|Xi) + pr(δi = 0|Xi)

E{(1− δi)ψ(Yi, Zi; θ)|S(Xi)}
E{(1− δi)|Xi}

}
= E{ψ(Yi, Zi; θ)} = 0,

herem0
ψ(Si; θ) = E{δiψ(Yi, Zi; θ) exp(γYi)|Si}/E{δi exp(γYi)|Si}. Therefore, the

resulting EEs can be modified as

ψ̂M (Yi, Zi; θ) = δiψ(Yi, Zi; θ) + (1− δi)m̂ψ(Si; θ, γ), (3.8)

where m̂ψ(Si; θ, γ) is obtained as was m̂ψ(Xi; θ, γ) in (2.6), except that X is

replaced by S. This allows us to deal with the curse-of-dimensionality problem.

4. Numerical Examples

4.1. Simulation studies

Simulation studies of a nonlinear regression model and a logistic regression

model were conducted to evaluate the finite sample performance of our proposed

MELEs and LELRFs.

Experiment 1. We simulated {(Xi, Yi) : i = 1, . . . , n} from a nonlinear regres-

sion model. Each dataset contained n observations. For each i, Xi was generated

from a uniform distribution U(0, 1) and then, given Xi, Yi was generated from

the normal distribution N(θXi + exp(θXi), 1) with θ = 1. We assumed the

Xi’s completely observed, but the Yi’s subject to missingness. We generated

δi, the missing indicator for Yi, from a Bernoulli distribution with probability

π(Xi, Yi) = P (δi = 1|Xi, Yi). We examined seven missing data mechanisms:

(i) π(X,Y ) = 1 for all X and Y ;

(ii) logit{π(X,Y )} = α0 + α1X with (α0, α1) = (1.8, 0.5);

(iii) logit{π(X,Y )} = α0 + α1X + α2Y with (α0, α1, α2) = (1.8, 0.25, 0.15);
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(iv) logit{π(X,Y )} = α0 + α1X
2 + α2Y with (α0, α1, α2) = (1.5, 0.25, 0.5);

(v) logit{π(X,Y )} = α0 + α1X + α2Y
2 with (α0, α1, α2) = (1.5, 0.5, 0.25);

(vi) logit{π(X,Y )} = α0 + α1X + α2Y + α3XY with (α0, α1, α2, α3)=(1.5, 0.15,

0.5, 0.25);

(vii)logit{π(X,Y )} = α0 + α1X + α2Y + α3XY with (α0, α1, α2, α3) = (0.0001,

0.005, 0.05, 0.25).

Scenario (i) is full observation, while (ii) describes a missing at random sce-

nario. Scenarios (iii)−(vii) describe nonignorable missing mechanisms. Scenarios

(ii)−(iv) satisfy (2.1) for missing Y . However, (v), (vi), and (vii), which do not

satisfy (2.1) and prescribe selection bias in the missingness, were used to inves-

tigate the robustness of our proposed empirical likelihood method with respect

to the misspecified π(X,Y ). We took sample size n = 100, and simulated 1,000

datasets under each scenario. Then, we created the incomplete data sets for each

of 1,000 complete data sets under the six missing data mechanisms. The aver-

age missing proportions corresponding to (ii)−(vii) were 11.63%, 9.70%, 7.56%,

6.30%, 6.40%, and 39.45%, respectively.

We considered a set of estimating equations as follows:

ψ(Y,X; θ) =

(
ψ1(Y,X; θ)

ψ2(Y,X; θ)

)
=

(
Y 2 − θ2/3− 2θX exp(θX)− exp(2θX)− 1

Y − exp(θX)− θ/2

)
.

For model (2.1), we considered two cases including ϕ = 0 for the MAR assumption

and unknown ϕ. To estimate ϕ in model (2.1), we used a validation sample

randomly selected from the set of nonrespondents, Kim and Yu (2011). We

chose the Gaussian kernel K(u) = exp(−u2/2)/(2π)1/2 and set the bandwidth h

for estimating m0
ψ(X; θ) at cσ̂xn

−1/3, where c is a constant chosen to be 1 in this

experiment, and σ̂x is the standard deviation of observations {Xi : i = 1, . . . , n}
(Zhou, Wan, and Wang (2008)). We used auxiliary information on X specified

by E(X− 0.5)2 = 1/12. We applied the EL method based on the EEs ψ(Y,X; θ)

and model (2.1) to compute the MELEs and 95% confidence intervals of θ. Table

1 presents the results.

Inspecting the results in Table 1 reveals the following. MELEs based on the

auxiliary information on X outperformed those without the auxiliary informa-

tion. When model (2.1) was used and ϕ was estimated, even though the missing-

ness mechanism was misspecified under (ii), (v), (vi), and (vii), the MELEs of

θ̂ were close to their true values. Moreover, their empirical coverage levels were

relatively close to the pre-specified nominal level 95%. This indicates robustness

of the nonignorable missingness model (2.1). Under the MAR assumption, ϕ = 0

in model (2.1), the MELEs and confidence intervals of θ under (iii)−(vii) were

inaccurate. Under (2.1), the confidence intervals for known γ were shorter than
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those for estimated γ. As expected, increasing the mean response rates improves

the accuracy of parameter estimate and the empirical coverage of confidence

interval.

Experiment 2. We simulated {(Yi, Xi) : i = 1, . . . , n} as follows. We generated

Xi1 ∼ U(0, 2) and Xi2 ∼ N(0, 1), and then we simulated Yi ∼ Bernoulli(pi),

where logit{pi} = Xi1 + 0.5Xi2. We assumed the Xi’s completely observed, but

the Yi’s subject to missingness. To create missing responses, we generated δi
for Yi from a Bernoulli distribution with probability πi = π(Xi, Yi;α) given by

logit{π(Xi, Yi;α)} = α0 + α1Xi1 + α2Xi2 + α3Yi + α4Xi1Yi + α5Xi2Yi, where

α = (α0, . . . , α5)
T . We considered (i) α = (1.0, 0.25, 0.20, 0.25, 0.20, 0.20)T , and

(ii) α = (1.5, 0.15, 0.20, 0.25, 0.20, 0.20)T . Their corresponding average missing

proportions were 17.81% and 12.73%, respectively. We took sample size n = 100

and simulated 1,000 datasets under each scenario.

We considered the missing mechanism model (2.1) and a set of EEs as follows:

ψ(Yi, Xi;β) = (Xi1, Xi2)
T {Yi − logit(β1Xi1 + β2Xi2)} , (4.1)

where β = (β1, β2)
T . For (2.1), we considered ϕ = 0 for the MAR assumption,

and unknown ϕ. To estimate ϕ in (2.1), we used a validation sample randomly se-

lected from the set of nonrespondents, Kim and Yu (2011). To estimatem0
ψ(X; θ)

in which θ = β, we took the kernel function to be K(x1, x2) = K(x1)K(x2), and

the bandwidth h to be σ̂x1n
−1/3, where K(x) = exp(−x2/2)/(2π)1/2 and σ̂x1 is

the standard deviation of observations {Xi1 : i = 1, . . . , n}. As auxiliary infor-

mation, we considered E(X1 − 1)2 = 1/3 and E(X2)
2 = 1. We applied the EL

method based on the EEs ψ(Y,X; θ) and (2.1) to compute the MELEs and 95%

confidence intervals of θ. We present the results in Table 2.

Inspecting the results in Table 2 reveals the following. Under (2.1) with esti-

mated γ, the MELEs and confidence intervals of θ were relatively accurate. This

indicates that (2.1) is robust to some degree of model misspecification, since the

true probability function π(Xi, Yi;α) is different from (2.1). MELEs with the

auxiliary information outperformed those without. For the scenarios without

the auxiliary information, the empirical coverage probabilities were not close to

the pre-specified nominal confidence level 95% when n was small. As expected,

increasing the mean response rates increased the accuracy of the empirical cov-

erage probability and decreased the bias and standard deviation (SD) of MELEs

and the confidence interval width of θ. MELEs under scenario (i) had smaller

root mean square error (RMS) and SD than those under (ii). This indicates that

the misspecified missing data mechanism can influence the accuracy of MELE,

but such influence is minor. The values of RMS were relatively close to those

of SD, indicating that the estimates of the asymptotic variances of MELEs were

reasonably accurate even under a misspecified missing data mechanism.
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Table 1. Performance of the MELEs and 95% empirical-likelihood-based
confidence intervals for θ with n = 100 in Experiment 1.

π(X,Y ) Est. Bias RMS SD CP WD

Scenario (i) θ̂F 0.023 0.056 0.050 0.896 0.202

θ̂FA 0.015 0.051 0.049 0.910 0.230

Scenario (ii) θ̂T 0.020 0.058 0.054 0.946 0.246

θ̂AT 0.012 0.053 0.051 0.949 0.245

θ̂Z 0.023 0.058 0.053 0.923 0.245

θ̂AZ 0.015 0.053 0.051 0.909 0.242

Scenario (iii) θ̂e 0.023 0.060 0.055 0.947 0.250

θ̂ae 0.015 0.055 0.053 0.942 0.249

θ̂T 0.022 0.057 0.053 0.955 0.252

θ̂AT 0.014 0.052 0.050 0.948 0.251

θ̂Z 0.021 0.069 0.066 0.927 0.243

θ̂AZ 0.020 0.064 0.060 0.906 0.239

Scenario (iv) θ̂e 0.022 0.056 0.051 0.945 0.256

θ̂ae 0.013 0.051 0.050 0.947 0.254

θ̂T 0.022 0.055 0.051 0.955 0.258

θ̂AT 0.013 0.051 0.049 0.953 0.256

θ̂Z 0.016 0.065 0.063 0.934 0.245

θ̂AZ 0.015 0.060 0.058 0.905 0.242

Scenario (v) θ̂T 0.023 0.056 0.051 0.956 0.259

θ̂AT 0.014 0.051 0.049 0.946 0.257

θ̂Z 0.013 0.064 0.063 0.935 0.246

θ̂AZ 0.012 0.059 0.058 0.919 0.243

Scenario (vi) θ̂T 0.022 0.055 0.051 0.959 0.260

θ̂AT 0.013 0.050 0.049 0.953 0.258

θ̂Z 0.017 0.065 0.063 0.933 0.246

θ̂AZ 0.016 0.060 0.057 0.911 0.243

Scenario (vii) θ̂T 0.020 0.094 0.096 0.936 0.407

θ̂AT 0.023 0.089 0.092 0.935 0.430

θ̂Z 0.042 0.063 0.076 0.964 0.375

θ̂AZ 0.035 0.061 0.070 0.965 0.388

θ̂F and θ̂FA denote MELEs of θ without and with the auxiliary information on X based on the

complete data, respectively, whilst θ̂Z and θ̂AZ denote Zhou’s estimators in (2.7) with γ = 0,

with and without auxiliary information, ‘Bias’ denotes the difference between the true value and

the mean of the estimates based on 1,000 replications, ‘RMS’ is the root mean square between

the true value and the estimates based on 1,000 replications, ‘SD’ is the standard deviation

of the estimates based on 1,000 replications, ‘CP’ is the coverage probability and ‘WD’ is the

average interval width.
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Table 2. Performance of the MELEs and 95% empirical-likelihood-based
confidence intervals for θ in Experiment 2.

π(X,Y ) β Est. Bias RMS SD CP WD

Full Obs. β1 β̂1F 0.001 0.176 0.176 0.955 0.800

β̂1FA 0.001 0.176 0.176 0.962 0.909

β2 β̂2F 0.012 0.195 0.195 0.955 0.800

β̂2FA 0.014 0.199 0.198 0.962 0.909

Scenario 1 β1 β̂1T 0.019 0.253 0.253 0.941 0.803

β̂1AT 0.043 0.211 0.207 0.948 0.782

β̂1Z 0.053 0.728 0.727 0.921 0.792

β̂1AZ 0.003 0.789 0.789 0.911 0.778

β2 β̂2T 0.021 0.268 0.267 0.941 0.803

β̂2AT 0.012 0.251 0.251 0.945 0.782

β̂2Z 0.066 0.846 0.844 0.921 0.792

β̂2AZ 0.029 0.481 0.480 0.915 0.778

Scenario 2 β1 β̂1T 0.032 0.239 0.237 0.951 0.816

β̂1AT 0.031 0.196 0.194 0.942 0.791

β̂1Z 0.078 0.266 0.254 0.934 0.807

β̂1AZ 0.046 0.263 0.259 0.916 0.792

β2 β̂2T 0.032 0.251 0.250 0.951 0.816

β̂2AT 0.005 0.234 0.234 0.950 0.791

β̂2Z 0.046 0.275 0.272 0.934 0.807

β̂2AZ 0.011 0.698 0.699 0.920 0.792

To compare our proposed method with that of Troxel, Lipsitz, and Brennan

(1997), we created the missing responses in the 1,000 datasets {(Yi, Xi) : i =

1, . . . , 100} simulated above. We used the missing data mechanisms

(iii) logit{P (Ri1 = 1)} = α0 +α1Xi1 +α2Xi2 +α3Yi and logit{P (Ri2 = 1|Ri1 =
0)} = α0 + α1Xi1 + α2Xi2 + α3Yi + τ , with (α0, α1, α2, α3, τ) = (0.05, 0.25,

0.20, 0.25, 0.5),

(iv) logit{P (Ri1 = 1)} = α0 + α1Xi1 + α2Xi2 + α3Yi + α4Xi1Yi + α5Xi2Yi and

logit{P (Ri2 = 1|Ri1 = 0)} = α0+α1Xi1+α2Xi2+α3Yi+α4Xi1Yi+α5Xi2Yi+

τ , with (α0, α1, α2, α3, α4, α5, τ) = (0.5, 0.25, 0.20, 0.25, 0.20, 0.20, 0.5).

Here (iii) satisfies (2.1) for missing Y , whilst (iv) does not. The average missing

rates corresponding to (iii) and (iv) were, respectively, 38.36% and 26.13%. We

computed the estimates of (β1, β2) and the 95% confidence regions of (β1, β2)

by using our proposed EL method and the Troxel, Lipsitz and Brennan (TLB)

method based on EEs (4.1) and (2.1).

Table 3 and Figure 1 present the results. Table 3 shows that, compared with

the TLB method, our proposed method not only significantly reduced bias, but
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Table 3. Estimates of β1 and β2 for the EL and TLB methods in Experiment 2.

Scenario (iii) Scenario (iv)
Est. Bias RMS SD Est. Bias RMS SD

β̂1T 0.074 0.367 0.360 β̂1T 0.078 0.292 0.282

β̂2T 0.005 0.306 0.306 β̂2T 0.006 0.288 0.288

β̂TLB
1 0.101 0.305 0.288 β̂TLB

1 0.109 0.297 0.276

β̂TLB
2 0.026 0.305 0.304 β̂TLB

2 0.042 0.308 0.305

also yielded parameter estimates with smaller RMS and SD under (iv), indicat-

ing that our proposed method is robust to the misspecified response probability

model. Figure 1 shows that our proposed method gave smaller confidence regions

than the TLB method.

We suggest that

• EL method can handle over-identified EEs, whereas the TLB method can-

not. Moreover, the EL method produces confidence regions, whose shape and

orientation are determined entirely by the data. It also does not require a piv-

otal quantity for constructing confidence regions and has better finite sample

performance (Owen (1990)).

• We observed that the TLB method requires correct specification of the missing

data mechanisms (Rik|Yi, Xi) and the model for (Yi|Xi), which limits its ap-

plicability. In contrast, our method does not require a specific form of F (x, y),

and the validity of our proposed estimator is robust to the assumed response

model P (Ri1 = 1|Yi, Xi).

However, our method can suffer from computational difficulties, including opti-

mizing LELRFs and searching the lower and upper limits for confidence regions

of parameters. Moreover, our method can break down in the high-dimensional

case, which is the topic of our future research.

4.2. A data example

The New York Social Indicators Survey (NYSIS) was a telephone survey of

New York City families conducted every two years by the Columbia University

School of Social Work. The core survey was designed to document individual and

family well-being across multiple domains: human, financial, and social assets;

economic and social living conditions; perceptions of the City and its services.

The survey also measured the sources and extent of external support from gov-

ernment, family, and friends, community and religious programs, and employers.

A data set was taken from the 2002 NYSIS to illustrate our proposed method-

ologies. The 2002 SIS survey was conducted between March and June, 2002, and

1501 adults were interviewed. Interviews lasted an average of 24 minutes for
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Figure 1. Results of Experiment 2: 95% confidence regions for (β1, β2) based
on EL (the dot curve) and TLB (the solid curve) under the scenario (iii) with
a sample size n = 100 for a simulated dataset.

families without children, and 34 minutes for families with children. Let X1i be

the number of people in family, X2i be the working hours, and Yi be the earning

of a resident in the New York City in 2001. Since some people were reluctant

to report their earnings, some data on Y were missing, but X1i and X2i were

fully observed. According to the nature of missing data, we deemed it reasonable

to assume the missing data mechanism of Y was non-ignorable. For the 2002

NYSIS data set, the response rate of Yi’s was 89.81%.

Our objective was to use the proposed method to estimate the mean earnings

of a resident in the New York City in 2001 and the variance of earnings. The

vector of estimating functions is

ψ(Y ; θ) =

(
Y − θ1

(Y − θ1)
2 − θ22

)
.

where θ1 and θ
2
2 are the mean and variance of Yi’s, respectively. Clearly, Eψ(Y ; θ)

= 0, and we let ϱ = n−1/2θ2. To obtain the estimator m0
ψ(X; θ), we chose

K(x1, x2) = K(x1)K(x2) and set the bandwidth h to be σ̂xn
−1/3, where K(x) =

exp(−x2/2)/(2π)1/2 and σ̂x is the standard deviation of X1 in the data set.

An estimator γ̂ of the exponential tilting parameter γ was obtained by solving∑n
i=1(1 − δi)ri{ψ(Yi; θ) − m̂ψ(Xi; θ, γ)} = 0, where ri was the indicator of unit

i belonging to the follow-up sample, and m̂ψ(X; θ, γ) is defined in (2.6). The

follow-up rate was 25%. To stabilize the computational algorithm, we used 10−4

to scale the observed values of the Yi’s. Zhou’s estimators, which assume the

missing data mechanism is MAR, and our proposed estimators were computed.

Results of estimates, standard errors, and 95% confidence intervals for θ1 and θ2
are reported in Table 4(a). Table 4(a) has the estimated standard errors (SE)

based on Zhou’s estimators larger in magnitude than those of our estimators; our
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Table 4(a). Estimate (Est), standard error (SE), 95% confidence interval
(CI), and average width (AW) for Zhou’s estimators (MAR assumption)
and our estimators in the case study.

NMAR MAR

Methods θ̂1 θ̂2 ϱ̂ θ̂1 θ̂2 ϱ̂
Est 6.204 22.122 0.571 6.132 21.720 0.561
SE 0.560 4.681 — 0.765 6.215 —

NACI (5.106,7.302) (12.948,31.296) — (4.634,7.631) (9.539,33.902) —
NAAW 2.196 18.348 — 2.997 24.363 —
ELCI (5.354,7.454) (17.612,26.872) — (5.132,7.582) (17.120,26.590) —
ELAW 2.100 9.260 — 2.450 9.470 —

Table 4(b). The results when only the variable X2: “number of working
hours” is considered as an auxiliary variable in the case study.

NMAR MAR

Methods θ̂1 θ̂2 ϱ̂ θ̂1 θ̂2 ϱ̂
Est 5.711 20.614 0.532 5.765 20.901 0.540
SE 0.529 4.519 — 0.774 6.468 —

NACI (4.675,6.747) (11.757,29.470) — (4.248,7.282) (8.223,33.579) —
NAAW 2.072 17.713 — 3.034 25.356 —
ELCI (4.911,6.861) (16.134 25.304) — (4.865,7.115) (16.361,25.711) —
ELAW 1.950 9.170 — 2.250 9.350 —

NACI denotes the NA-based CI, ELCI represents the EL-based CI, NAAW denotes the average width for the

NA-based CI, ELAW represents the average width for the EL-based CI.

proposed estimators had shorter EL-based and NA-based confidence intervals

than Zhou’s estimators; the EL-based CIs had shorter interval lengths than NA-

based CIs; further, results from Table 4(a) indicate that our proposed estimator

ϱ̂ was, in fact, very close to the estimated standard error of θ̂1, but there is large

bias between ϱ̂ and the SE of θ̂1 based on Zhou’s method.

Also, we addressed the case in which only the variable X2: ”number of

working hours” is considered as auxiliary. Table 4(b) shows the same conclusions

as Table 4(a). Comparing Table 4(b) to Table 4(a), we also find that, based on

our proposed method, when only the variable X2: ”number of working hours”

is considered as auxiliary, standard errors of the estimates of the θ1 and θ2 were

smaller than those from considering bothX1 andX2 as auxiliary and, in this case,

the corresponding EL-based and NA-based confidence intervals were shorter.

Table 4(b) suggests that we need only consider the variable X2 as auxiliary to

estimate the mean earning of a resident in the New York City in 2001 and the

variance of earning in this Indicators Survey.
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Appendix

Let f(·) be the probability density function ofX andG(X)=f(X) exp{g(X)}
{1−π(X)}, where g(X) is defined in (2.1). Take π(x, y) = P (δ = 1|X = x, Y =

y), π(x) = P (δ = 1|X = x), m0
ψ(x; θ) = E{ψ(Y, Z; θ)|X = x, δ = 0}, m0(X) =

E(Y |X, δ = 0), and mY ψ(X) = E(Y ψ(Y, Z; θ)|X, δ = 0). The symbol ∂ denotes

partial differentiation with respect to parameter θ.

Some regularity conditions are required for the proofs of Theorems 1–7.

(C1) The probability density function f(x) is bounded away from ∞ on the

support of X, and the second derivative of f(x) is continuous and bounded.

(C2) The probability function π(X,Y ) satisfies mini π(Xi, Yi) ≥ c0 > 0 a.s. for

some positive constant c0, and π(X) = E(π(X,Y )|X) ̸= 1 a.s..

(C3) E(Y 2) and E{exp(2γY )} are finite.

(C4) ψ(·; θ) is twice continuously differentiable in the neighborhood of the true

value θ0, and mψ(x; θ) is twice continuously differentiable in the neighbor-

hood of x.

(C5) 0 < E|ψ(Y, Z; θ)|2 <∞ and 0 < E|αT∂θψ(Y, Z; θ)|2 <∞ for any constant

vector α; ∂θψ(·; θ) and ψ3(·; θ) are bounded by some integrable function

M(z) in the neighborhood of θ.

(C6) Matrices V1, V2, Ṽ1, Ṽv, and D2 are positive definite, and E{∂θψ(Y, Z; θ)}
has full column rank p.

(C7) The kernel function K(·) is a probability density function such that

(i) it is bounded and has compact support;

(ii) it is symmetric with σ2 =
∫
ω2K(ω)dω <∞;

(iii)K(ω) ≥ d1 for some d1 > 0 in some closed interval centered at zero.

(C8) nh→ ∞ and nh4 → 0 as n→ ∞.
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These assumptions are common in the missing data and nonparametric litera-

tures. Conditions (C2) is similar to that used in Kim and Yu (2011); (C3)−(C6)

are standard assumptions for empirical likelihood based inference with estimating

equations; (C7) and (C8) are common in the nonparametric literature.

Lemma 1. Suppose (C1)−(C8) hold. Then

n−1/2
n∑
i=1

ψ̂M (Yi, Zi, θ)
L→ N(0, V1), n−1

n∑
i=1

ψ̂M (Yi, Zi, θ0)
⊗2 P→ V2,

n−1
n∑
i=1

∂θψ̂M (Yi, Zi, θ0)
P→ Γ.

Lemma 2. Suppose (C1)−(C8) hold. Then, as n→ ∞, with probability tending

to 1, ℓ̂M (θ) attains its minimum at some point θ̂e in the interior of the ball

∥ θ − θ0 ∥≤ n−1/3, and the solutions θ̂e and λ̂n1 = λn1(θ̂e) satisfy

Qn1(θ̂e, λ̂n1) = 0 and Qn2(θ̂e, λ̂n1) = 0.

Lemma 3. Suppose (C1)−(C8) hold. Then

n−1/2
n∑
i=1

Λi(θ0)
L→ N(0, V1,AU), n−1

n∑
i=1

Λi(θ0)Λ
T
i (θ0)

P→ V2,AU,

where

V2,AU =

(
V2 D1

DT
1 D2

)
.

Lemma 4. Let U be r-vector of random variables that satisfies U
L→ N(0, Ir),

where Ir is the r × r identity matrix. Let P be a r × r nonnegative definite

matrix with eigenvalues l1, · · · , lr. Then, UTPU
L→ l1χ

2
1 + · · ·+ lrχ

2
r, where χ

2
i ’s

(i = 1, . . . , r) are χ2 random variables each with one degree of freedom.

Lemma 5. Suppose (C1)−(C8) hold. Then

(i) when the parameter estimate for γ is computed from an independent survey,

1√
n

n∑
i=1

ψ̂T (Yi, Zi, θ)
L→ N(0, Ṽ1),

where Ṽ1 = V1 +HTVγH.

(ii) when the parameter estimate for γ is obtained from a validation sample,

1√
n

n∑
i=1

ψ̂T (Yi, Zi, θ)
L→ N(0, Ṽv),
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where Ṽv = Var(η1i),

η1i = m0
ψ(Xi; θ, γ0) + {ri

ν
(1− δi) + δi}{ψ(Yi, Zi; θ)−m0

ψ(Xi; θ, γ0)},

m0
ψ(Xi; θ, γ) = pr lim

n→∞
m̂ψ(Xi; θ, γ), ν = E(r|δ = 0), and γ0 is the probability

limit of γ̂.

Lemma 6. Suppose (C1)−(C8) hold. Then

1

n

n∑
i=1

ψ̂T (Yi, Zi; θ0)ψ̂
T
T (Yi, Zi; θ0)

P→ V2,
1

n

n∑
i=1

∂θψ̂T (Yi, Zi; θ0)
P→ Γ,

where V2 = E
{
[δi{ψ(Yi, Zi; θ)−m0

ψ(Xi; θ)}+m0
ψ(Xi; θ)]

⊗2
}

and

Γ = E{∂θψ(Y, Z; θ)}.

Lemma 7. Suppose (C1)−(C8) hold. Then

(i) when the parameter estimate for γ is computed from an independent survey,

1√
n

n∑
i=1

Λ̃i(θ0)
L→ N(0, Ṽ1,AU),

1

n

n∑
i=1

Λ̃i(θ0)Λ̃
T
i (θ0)

P→ V2,AU,

where

Ṽ1,AU =

(
Ṽ1 D1

DT
1 D2

)
, V2,AU =

(
V2 D1

DT
1 D2

)
with D1 = E

{
m0
ψ(X; θ0)A

T (X)
}
, D2 = E

{
A(X)AT (X)

}
, Ṽ1 is defined in

Theorem 4, and V2 is defined in Theorem 2.

(ii) when the parameter estimate for γ is obtained from a validation sample,

1√
n

n∑
i=1

Λ̃i(θ)
L→ N(0, Ṽv,AU),

1

n

n∑
i=1

Λ̃i(θ0)Λ̃
T
i (θ0)

P→ V2,AU,

where

Ṽv,AU =

(
Ṽv D1

DT
1 D2

)
, V2,AU =

(
V2 D1

DT
1 D2

)
Ṽv is defined in Theorem 6.
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