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Abstract: We study flexible modeling of clustered data using marginal generalized

additive partial linear models with a diverging number of covariates. Generalized

estimating equations are used to fit the model with the nonparametric functions

being approximated by polynomial splines. We investigate the asymptotic prop-

erties in a “large n, diverging p” framework. More specifically, we establish the

consistency and asymptotic normality of the estimators for the linear parameters

under mild conditions. We propose a penalized estimating equations based pro-

cedure for simultaneous variable selection and estimation. The proposed variable

selection procedure enjoys the oracle property and allows the number of parameters

in the linear part to increase at the same order as the sample size under some gen-

eral conditions. Extensive Monte Carlo simulations demonstrate that the proposed

methods work well with moderate sample sizes. A dataset is analyzed to illustrate

the application.
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1. Introduction

Clustered data often arise in biological and biomedical research, where the

measurements within the same cluster are correlated, while the measurements

from different clustered are independent. For example, in longitudinal studies,

the subjects are measured repeatedly over a given period of time. The measure-

ments from the same subject are often correlated and thus form a cluster. A

popular approach for clustered data analysis is generalized estimating equations

(Liang and Zeger (1986)), in which both the within-cluster and between-cluster

variations are considered. A remarkable property of the GEE estimator is that

it is consistent and asymptotically normal even with a misspecified covariance

matrix. Furthermore, the estimator is efficient when the covariance matrix is

correctly specified. GEE and its extensions have been thoroughly studied for

various parametric and semiparametric models and are broadly applied in di-

verse disciplines, see Diggle et al. (2002) for a comprehensive survey. Robust
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estimation based on weighted GEE has been investigated in He, Fung, and Zhu

(2005).

Most existing work on GEE assumes the classical setting where the number

of covariates is fixed. Clustered data involving high-dimensional covariates have

become increasingly common from large-scale long-term health studies and from

time-course gene expression experiments. For example, in the well known Fram-

ingham Heart Study, many covariates including age, smoking status, cholesterol

level, blood pressure were recorded on the participants over the years to investi-

gate their cardiovascular health. Sometimes, although the number of covariates

are not many, when we consider various interaction effects, the total number of

variables in the model is large. These modern applications motivate us to study

analysis of clustered data in a new asymptotic setup, which allows the number of

covariates to increase with the sample size. Wang (2011) recently studied the the-

ory of GEE in a “large n, diverging p” asymptotic framework and revealed that

most of the classical theory continues to hold under some general regularity con-

ditions, see also Wang, Zhou, and Qu (2012) for an extension to high-dimensional

variable selection. However, the GEE model considered in Wang (2011) is re-

stricted to a marginal linear model. Ma, Song, and Wang (2012) considered

additive partially linear longitudinal models. These are, however, limited to con-

tinuous response models and fixed dimensionality. To incorporate nonlinearity

and avoid the curse of dimensionality, we study the marginal generalized additive

partial linear models (GAPLM, Härdle et al. (2004); Wood (2006)) analysis of

clustered data with diverging number of covariates.

The marginal GAPLM approach for clustered data analysis relaxes the re-

strictive model assumptions of marginal linear GEE. However, the more complex

model structure, which involves both parametric and nonparametric components,

also great computational challenges when the dimension of the covariates is high.

More specifically, diverging dimension of linear components incorporating non-

parametric modeling can be computationally intensive. In the setting of clustered

data, this makes it difficult to incorporate additional correlation structure into the

model. However, ignoring correlation leads to inefficient estimation and reduces

prediction capability. As pointed out by Wang (2003), ignoring the correlation

could also lead to biased estimation (Zhu, Fung, and He (2008)). Specifically,

Wang (2003) shows that selection of the smoothing parameter could fail since

it is sensitive to even a small departure from the true correlation structure, and

this is reflected by over-fitting the nonparametric estimator in order to reduce

the overall bias. In contrast to the parametric setting, these problems could

be more serious for the GAPLM since the true model might not be easily ver-

ified. To the best of our knowledge, few efforts have been made in estimation

of marginal generalized partially linear models (only one nonparametric function
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in GAPLM). For example, Lin and Carroll (2001, 2006) developed a GEE type

estimating equation for such a setting, but no result for marginal GAPLM with

diverging number of covariates is available.

For independent data, several algorithms have been proposed for estima-

tion in GAPLM. The kernel-based backfitting or local scoring procedures (Buja,

Hastie, and Tibshirani (1989)) iteratively estimates the linear coefficients and

nonparametric components by solving a large system of equations (Yu, Park,

and Mammen (2008)). The marginal integration approach (Linton and Nielsen

(1995)) estimates the parametric components by treating the summand of ad-

ditive terms as a nonparametric component, which is then estimated as a mul-

tivariate nonparametric function. Wood (2004) suggested penalized regression

splines, which share most of the practical benefits of smoothing spline methods

combined with ease of use and reduction of the computational cost of backfitting

GAMs. Nevertheless, these methods all have limitations for estimating GAPLM

when the dimension of covariates is large. The kernel-based backfitting proce-

dure suffers from expensive computational costs because the procedure needs to

solve a large system of equations (Yu, Park, and Mammen (2008)); while the

marginal integration approach suffers from the “curse of dimensionality” (Härdle

et al. (2004)). The difficulty increases dramatically as the dimension of covari-

ates grows. The penalized spline estimators may not be efficient. Moreover, no

theoretical justifications are available for these procedures even in the case the

dimension of the covariates is fixed.

To fit GAPLM to clustered data with diverging number of covariates, we

extend the spline-based approach proposed by Wang et al. (2011) for indepen-

dent data. This approach uses polynomial splines to estimate the nonparamet-

ric components (Stone (1986, 1994)). Unknown functions are approximated via

polynomial splines characterized by a linear combination of spline basis, and the

coefficients of the linear part can be estimated by an efficient one-step procedure

that maximizes the quasi-likelihood function after using the spline approximation

to the nonparametric components. Such an approximation reduces the computa-

tional burden comparing to the local scoring backfitting approach or the marginal

integration approach. To incorporate the intra-cluster correlation structure, we

combine this algorithm with the GEE, which archives a good balance of incor-

porating the correlation structure and retaining numerical efficiency.

We establish the theory for marginal GAPLM analysis to clustered data in

the “large n, diverging p” asymptotic framework. The theoretical development

is quite challenging because of the curse of dimensionality of the nonparametric

functions, the nonlinear relationship between the response and the covariates,

and the intra-cluster correlation.

We consider variable selection in our setting because in biomedical studies

one often collects data on a large number of covariates while a relatively small
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set of them are believed to be important. Efforts have been made for studies

of variable selection in parametric and semiparametric models to cross-sectional

data. See Fan and Lv (2010), Fan and Li (2006) and the references therein for

a comprehensive survey on the development of variable selection. Recently, vari-

able selection to the longitudinal data framework has been paid great attention

(Cantoni, Flemming, and Ronchetti (2005); Wang and Qu (2009); Wang, Zhou,

and Qu (2012); Xue, Qu, and Zhou (2010). Most work in the literature, however,

focused on the case where the number of covariates is fixed.

The rest of the article is organized as follows. In Section 2, we introduce

the marginal GAPLM model for clustered data analysis, and propose the poly-

nomial spline estimators via a quasi-likelihood approach for the parametric and

nonparametric components. We present the asymptotic results of the proposed

procedure in Section 3. We study variable selection procedure and develop the

associated asymptotic properties in Section 4. Simulation studies and an empir-

ical example are presented in Section 5. Section 6 summarizes the paper and

discusses some related issues. Proofs are given in Section 7.

2. Estimation Procedures

For the jth observation of the ith cluster, we observe response variable Yij
and a (q + p)-dimensional vector of covariates (WT

ij ,X
T
ij)

T, where Wij and Xij

are the nonparametric and parametric components of the marginal GAPLM,

respectively, i = 1, . . . , n and j = 1, . . . ,mi. We assume q, the dimension of

Wij = (Wij1, . . . ,Wijq)
T, is fixed while p can diverge with the sample size n.

Observations from different clusters are independent, but those from the same

cluster are correlated. Let Yi = (Yi1, . . . , Yimi)
T denote the vector of responses

for the ith cluster, let Wi = (Wi1, . . . ,Wimi)
T and Xi = (Xi1, . . . ,Ximi)

T be

the associated mi × q and mi × p matrices of covariates, respectively.

The GEE approach specifies the first two marginal moments: E (Yij |Wij ,

Xij) = µ(θij) and Var (Yij |Wij ,Xij)= σ2(θij) = µ̇(θij), with θij=
∑q

l=1 αl(Wijl)

+XT
ijβ. A dispersion parameter can be added in the marginal variance function

if overdispersion or underdispersion is suspected to be present. For the marginal

logistic regression µ(θ) = eθ/(1 + eθ), and for the marginal Poisson regression

µ(θ) = eθ. The true unknown parameters in the marginal regression model are

denoted by α0 = {α01(·), . . . , α0q(·)}T and β0. In practice, the primary interest

is often in the parametric component β0. The true value of θij is denoted by θ0ij .

For simplicity we assume mi ≡ m < ∞.

Without loss of generality, we take the distribution of Wijl to be supported

on [0, 1]. To make the model identifiable, we assume
∫
αl(t)dt = 0, 1 ≤ l ≤ q. We

approximate the nonparametric component using B-splines. Let τ0 = 0 < τ1 <

· · · < τK′ < 1 = τK′+1 be a partition of [0, 1] into subintervals [τk, τk+1), k =
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0, . . . ,K ′ with K ′ internal knots. A polynomial spline of order J is a function

whose restriction to each subinterval is a polynomial of degree J−1 and globally

J − 2 times continuously differentiable on [0, 1]. The collection of splines with

a fixed sequence of knots has a B-spline basis {B1(t), . . . , BK̃(t)} with K̃ =

K ′ + J . Because of the centering constraint
∫
αl = 0, l = 1, . . . , q, we focus on

the subspace of spline functions S0 := {ϕ : ϕ =
∑K̃

k=1 akBk(t),
∫
ϕ(t) = 0} with

normalized basis {
√
K{Bk(t)−

∫
Bk(t)dt}, k = 1, . . . ,K = K̃−1}. With an abuse

of notation, the basis is still denoted by Bk(t), k = 1, . . . ,K. This subspace is of

dimensionK = K̃−1 due to the zero-integral constraint. Using spline expansions,

we can approximate the nonparametric component by αl(t) ≈
∑

k alkBk(t). In

our numerical studies, the knots are placed at quantiles of the observed covariate

values.

Let Hd denote the collection of all functions on the support [0, 1] whose uth

order derivative satisfies the Hölder condition of order r with d ≡ u+ r: for each

h ∈ Hd, there exists a positive constant M0 such that |h(u)(s)−h(u)(t)| ≤ M0|s−
t|r, ∀ s, t ∈ [0, 1]. For B-spline functions (De Boor (2001)), we can find a0l =

(a0l1, . . . , a0lK)T such that ∥
∑

k a0lkBk−αl∥∞ = O(K−d) if αl ∈ Hd, where ||·||∞
denotes the supremum norm. Let a0 = (aT01, . . . ,a

T
0q)

T, b0 = (aT0 ,β
T
0 )

T. Let

µij(b) = µij(a,β) = µ(aTBij +XT
ijβ) with Bij = {B1(Wij1), . . . , BK(Wij1), . . .,

BK(Wijq)}T ∈ RqK , and similarly we define σ2
ij(b). Let µi(b) = {µi1(b), . . .,

µim(b)}T, µ0i = {µ(θ0i1), . . . , µ(θ0im)}T, Ai(b) = diag{σ2
i1(b), . . . , σ

2
im(b)}, and

A0i = diag{σ2(θ0i1), . . . , σ
2(θ0im)}. For a vector a, ∥a∥ denotes its l2 (Euclidean)

norm; and for a matrix A, ∥A∥ denotes its Frobenius norm.

Let Xi = (Xi1, . . . ,Xim)Tm×p and Ui = {(Bi1, . . . ,Bim)T,Xi}m×(qK+p), and

let Uij be the j-th row of Ui. The GEE estimator b̂ is the solution of

S(b) =

n∑
i=1

UT
i A

1/2
i (b)R̂−1A

−1/2
i (b){Yi − µi(b)} = 0, (2.1)

where R̂ is an estimate of the working correlation matrix. Some commonly used

working correlation structures include independence, AR-1, equally correlated

(also called compound symmetry), and unstructured correlation, among others.

The theory established in this paper does not require that R̂ consistently

estimates the true common correlation matrix R0, although the deviation from

R0 may affect the efficiency of the GEE estimator. We introduce a residual-

based estimator R̂ for the unstructured working correlation matrix when an

initial estimator b̃ is available. A simple way to obtain the initial estimator is to

solve the GEE under the working independence assumption,

S̃(b) =

n∑
i=1

UT
i {Yi − µi(b)} = 0. (2.2)
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Then we use a moment estimator to estimate the unstructured correlation matrix:

R̂ =
1

n

n∑
i=1

A
−1/2
i (b̃){Yi − µi(b̃)}{Yi − µi(b̃)}TA−1/2

i (b̃). (2.3)

3. Main Theoretical Results

In this section, we investigate the asymptotic properties of the estimator in

(2.1) when the dimension of Xij increases with the number of clusters n at an

appropriate rate. To facilitate the presentation, we fix some regularity conditions.

Let rn =
√

(K + p)/n+K−2d.

(A1) supi,j ||Xij || = O(
√
p).

(A2) αl ∈ Hd for some d > 1/2, l = 1, . . . , q.

(A3) There exist a finite constant M1 > 0 such that E(||Y − µ0||2+δ) ≤ M1 for

some δ > 0.

(A4) There exist positive constants c1 and c2 such that

c1 ≤ λmin

(
n−1

n∑
i=1

UT
i Ui

)
≤ λmax

(
n−1

n∑
i=1

UT
i Ui

)
≤ c2,

where λmin (λmax) denotes the smallest (largest) eigenvalue of a matrix.

(A5) Let C = {b : ||b−b0|| ≤ ∆rn}, where ∆ is a finite positive constant. Then

µ̇(UT
ijb), 1 ≤ i ≤ n, 1 ≤ j ≤ m, is uniformly bounded away from 0 and

∞ on C; µ̈(UT
ijb) and µ(3)(UT

ijb), 1 ≤ i ≤ n, 1 ≤ j ≤ m, are uniformly

bounded by a finite positive constant M2 on C.

Remark 1. Condition (A1) is a common assumption in the literature on M-

estimation with diverging dimension. For a B-spline basis (De Boor (2001)),

∥Bij∥ = O(
√
K) and thus (A1) implies that supi,j ∥Uij∥ = O(

√
K + p). When

each cluster has only one observation, (A4) is commonly imposed on semipara-

metric regression for independent data. Condition (A4) implies the eigenvalues

of
∑

iX
T
i Xi/n are bounded away from zero and infinity. Conditions (A3) and

(A5) were also assumed in Wang (2011).

The following proposition demonstrates the consistency of the initial esti-

mator defined in (2.2) and the estimated working correlation matrix defined in

(2.3).

Proposition 1. Under (A1)−(A5) and p/n → 0, K logK/n → 0,K → ∞,

(i) the GEE in (2.2) has a root b̃ satisfying ∥b̃− b0∥ = Op(rn);

(ii) the estimated correlation matrix satisfies ∥R̂ − R0∥ = Op(rn) and ∥R̂−1 −
R−1

0 ∥ = Op(rn).
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Based on this proposition, it is natural to make the following assumption.

(A6) The common true correlation matrix R0 has eigenvalues bounded away

from zero and +∞. The estimated working correlation matrix R̂ satisfies

||R̂−1−R
−1|| = Op(rn), where R is a constant positive-definite matrix with

eigenvalues bounded away from zero and +∞. It is worth noting that we

do not require R to be the true correlation matrix R0.

Proposition 1 guarantees that (A6) is satisfied when a nonparametric moment

estimator is used for the working correlation matrix, with R = R0. However, we

allow R ̸= R0 as what would happen when a misspecified parametric model is

used to estimate the correlation matrix.

Take

S(b) =

n∑
i=1

UT
i A

1/2
i (b)R

−1
A

−1/2
i (b){Yi − µi(b)}

as an approximation of S(b) with estimated correlation matrix replaced by its

asymptotic limit. Let

M(b) =

n∑
i=1

UT
i A

1/2
i (b)R

−1
R0R

−1
A

1/2
i (b)Ui

be the covariance matrix of S(b). Furthermore, let D(b) = − ∂
∂bTS(b) and

D(b) = − ∂
∂bTS(b).

As in Wang (2011), D(b) can be decomposed as

D(b) = H(b) +E(b) +G(b), (3.1)

where the first termH(b) will be shown to dominate the other two in our analysis,

with

H(b) =

n∑
i=1

UT
i A

1/2
i (b)R

−1
A

1/2
i (b)Ui,

E(b) =
1

2

n∑
i=1

UT
i A

1/2
i (b)R

−1
A

−3/2
i (b)Ci(b)Fi(b)Ui,

G(b) = −1

2

n∑
i=1

UT
i A

1/2
i (b)Fi(b)Ji(b)Ui,

with Ci(b) = diag{Yi1 − µi1(b), . . . , Yim − µim(b)}, Fi(b) = diag{µ̈(UT
i1b), . . .,

µ̈(UT
imb)}, Ji(b) = diag[R

−1
A

−1/2
i (b){Yi − µi(b)}].

The following theorem provides the existence and the convergence rates of

the semiparametric GEE estimator.
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Theorem 1 (Existence and consistency). Suppose (A1)−(A6) hold and that

p2/n → 0, K2/n → 0, p/K2d → 0. Then S(b) = 0 has a root b̂ satisfying

||b̂− b0|| = Op(rn).

As an immediate implication, with α̂l =
∑K

k=1 âlkBk,

q∑
l=1

∥α̂l − α0l∥2 +
p∑

j=1

|β̂j − β0j |2 = Op(r
2
n).

The parametric part can be shown to be asymptotically normal under slightly

stronger conditions. Let

Fj :=

{
g : g(W1j) =

q∑
l=1

hl(W1jl) for some functions hj

with

∫
hl = 0 and E

q∑
l=1

h2l (W1jl) < ∞
}
,

and let Fm = {(g1, . . . , gm) : gj ∈ Fj} be the Cartesian product of Fj . For any

random vector Ω ∈ Rm with E(∥Ω∥2) < ∞, let EFm(Ω) denote the projection of

Ω onto Fm in the sense that

E[{Ω− EFm(Ω)}TA1/2
01 R

−1
A

1/2
01 {Ω− EFm(Ω)}]

= inf
(g1,...,gm)T∈Fm

E{(Ω− g)TA
1/2
01 R

−1
A

1/2
01 (Ω− g)}.

where g = {g1(W11), . . . , gm(W1m)}T. When Ω is an m × p matrix, we take

EFm(Ω) to be the m×p matrix whose columns are the projections of the columns

of Ω. This extends the setup in Li (2000) to the longitudinal data framework.

Let Γ be the projection of X1 onto Fm, so Γ(Wi) is a m× p matrix whose

(j, s)-entry can be written as
∑q

l=1 h
(s)
jl (Wijl).

(A7) h
(s)
jl ∈ Hd, 1 ≤ j ≤ m, 1 ≤ l ≤ q, 1 ≤ s ≤ p.

Theorem 2 (Asymptotic normality). Suppose Conditions (A1)−(A7) hold. If

p3/n → 0, p/K2d−1 → 0, p2/K2d → 0, np/K4d → 0 and pK2/n → 0, then for

any unit vector α ∈ Rp,

αTM−1/2
0 H0(β̂ − β0) → N(0, 1),

in distribution, where M0=
∑

i{Xi−Γ(Wi)}TA1/2
0i R

−1
R0R

−1
A

1/2
0i {Xi−Γ(Wi)}

and H0 =
∑

i{Xi − Γ(Wi)}TA1/2
0i R

−1
A

1/2
0i {Xi − Γ(Wi)}.



HIGH-DIMENSIONAL SEMIPARAMETRIC GEE 181

Remark 2. Theorem 2 suggests that the covariance matrix of β̂ is approximately

Σ = H−1
0 M0H

−1
0 . To estimate Σ, we can use the sandwich covariance matrix

estimator

Σ̂ = H−1(b̂)M̂(b̂)H−1(b̂),

where M̂(b) =
∑

i{Xi− Γ̂(Wi)}TA1/2
i (b)R̂−1R0R̂

−1A
1/2
i (b){Xi− Γ̂(Wi)} and

H(b) =
∑

i{Xi−Γ̂(Wi)}TA1/2
i (b)R̂−1A

1/2
i (b){Xi−Γ̂(Wi)}. The unknown true

covariance matrixR0 can be estimated from an initial estimator as in Proposition

1 under the unstructured working correlation. The sandwich estimator can be

shown to be consistent by standard arguments.

4. Variable Selection

We consider variable selection for the covariates that appear in the linear

part. We assume the the linear part in the true model is sparse in the sense that

the majority of the components of β are zero. Without loss of generality, we

assume that only the first s coefficients of β are nonzero.

We consider simultaneous variable selection and estimation based on the

penalized GEE:

L(b) = S(b)− nqλ(|β|)sgn(β), (4.1)

where S(b) is the estimating function in (2.1), q(|β|) = (0Tqk, qλ(|β1|), . . .,
qλ(|βp|))T , sgn(β) = (0Tqk, sgn(β1), . . . , sgn(βp))

T with 0qk denoting a qk-

dimensional vector of zeros, sgn(t) = I(t > 0)− I(t < 0) being the sign function,

and qλ(|β|)sgn(β) is the componentwise product of qλ(|β|) and sgn(β). In gen-

eral the penalty qλ(|βj |) should be close to zero when |βj | is large so that little

extra bias is introduced by the penalty term. On the other hand, qλ(|βj |) should
be large if |βj | is close to zero to encourage it to be shrunk to zero. Different

penalty functions have been proposed. Here we focus on the smoothly clipped

absolute deviation (SCAD) penalty of Fan and Li (2001),

qλ(x) = λ

{
I(|x| ≤ λ) +

(cλ− |x|)+
(c− 1)λ

I(|x| > λ)

}
for some c > 2,

where the notation (t)+ stands for the positive part of t and λ is a tuning pa-

rameter that determines the level of penalty. Fan and Li (2001) suggested using

c = 3.7 for the SCAD penalty function.

The following additional condition is adopted.

(A8) min1≤j≤s |β0j |/λ → ∞, s3/n → 0, s/K2d−1 → 0, s2/K2d → 0, ns/K4d →
0, sK2/n → 0, λ → 0, s2(log n)4 = o(nλ2), log p = o(nλ2/(log n)2),

ps4(log n)6 = o(n2λ2) and ps3(log n)8 = o(n2λ4).
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The first part of (A8) indicates that the smallest signal does not converge to zero

too fast so that the nonzero coefficients can be distinguished from the zero ones

asymptotically. If s is fixed and min1≤j≤s |β0j | is bounded away from zero, p = n

is allowed in Condition (A8).

Since L is not continuous, an exact solution to L(b) = 0 may not exist. An

exact solution is replaced by the zero-crossing condition (Johnson, Lin, and Zeng

(2008)), which roughly means a small perturbation of any zero component in β̂

changes the sign of the penalized estimating equations. We still use b̂ to denote

the approximate solution here.

Theorem 3. Under (A1)−(A8), there exists b̂ = (âT, β̂T)T that satisfies the

following

(i) P (β̂(2) = 0) → 1, where β̂(2) = (β̂s+1, . . . , β̂p)
T .

(ii) Lj(b̂) = 0 for 1 ≤ j ≤ qK+s, where Lj is the jth component of the (qK+p)-

dimensional L.

(iii) limn→∞limϵ→0+n
−1Lj(b̂+ ϵej)Lj(b̂− ϵej) ≤ 0, for qK+s+1 ≤ j ≤ qK+p,

where ej is the (qK + p)-dimensional vector with all components zero except

for a one at position j.

(iv)The convergence rate of the penalized estimator is Op(rn), as in Theorem 1.

(v) With β̂(1) = (β̂1, . . . , β̂s)
T ,

αTM01H01(β̂ − β0) → N(0, 1)

in distribution, where M01 and H01 are the principal submatrices of M−1/2
0

and H0 respectively, by removing the last p− s columns and rows.

Property (i) implies model selection consistency. Property (ii) shows that

b̂ is an exact solution for the first qK + s equations in L(b) = 0, and that in

particular the penalty has no effect for these equations. Property (iii) is the

approximate zero-crossing property.

Remark 3. The penalized GEE in (4.1) can be efficiently solved by combining

the MM algorithm (Hunter and Li (2005)) with the Newton-Raphson algorithm,

as in Wang, Zhou, and Qu (2012). Motivated by the recent work of Chen and

Chen (2008), we proposed a high-dimensional BIC (HBIC) criterion under the

working independence assumption to compare the estimators from the solution

path:

HBIC(λ) = log(σ̂2
λ) + |Mλ|

Cn log(p)

n
,

where |Mλ| denotes the cardinality of the model selected when the tuning pa-

rameter λ is used, and σ̂2
λ = n−1SSEλ with SSEλ = ||Y − µi(b̂)||2 with b̂ the



HIGH-DIMENSIONAL SEMIPARAMETRIC GEE 183

penalized estimator corresponding to the tuning parameter λ. As we are inter-

ested in the case where p grows with n, the penalty term also depends on p,

and Cn is a sequence of numbers that diverges to ∞, which we take to be log(n)

in our numerical studies in Section 5. We choose the value of λ that minimizes

HBIC(λ). Although HBIC performs satisfactorily in our numerical studies, it is

a challenge to establish the relevant theory in the GEE setting for models with

partially linear structure.

5. Numerical Studies

In this section, we carry out Monte-Carlo studies to assess the numerical

performance of estimation in the semiparametric marginal regression model and

the proposed variable selection procedure. We then apply the proposed methods

to analyze a data set from the Wisconsin Epidemiological Study of Diabetic

Retinopathy.

Example 1 (continuous response). The correlated normal responses were gen-

erated from the model

Yij = α1(Wij1) + α2(Wij2) +XT
ijβ + ϵij ,

where i = 1, . . . , 200, j = 1, . . . , 4, β is a pn-dimensional vector of parameters

with pn =
⌊
2.5n1/3

⌋
, with ⌊q⌋ denoting the largest integer not greater than q.

In this example, βT = (1 · 1Tk ,−1.5 · 1Tk , 1.8 · 1Tpn−2k), where 1k denotes a k-

dimensional vector of ones and k = ⌊pn/3⌋. The nonparametric components

were α1(t) = exp(−t) − exp(−0.5) and α2(t) = sin{4 ∗ (t − 0.5)}. In addition,

Xij = (xij1, . . . , xijpn)
T had a multivariate normal distribution with mean zero,

marginal variance 0.2 and an AR-1 correlation matrix with autocorrelation coeffi-

cient 0.5. The covariates Wij1 and Wij2 were independent uniform distributed on

[0,1] and independent of Xij and ϵij . The random error (ϵi1, . . . , ϵi4)
T was gener-

ated from the multivariate normal distribution with marginal mean 0, marginal

variance 1 and an AR-1 correlation matrix with autocorrelation coefficient 0.5.

For each setup, we generated 400 data sets. We evaluated the accuracy of the

estimators for the regression parameter β by MSE = 400−1
∑400

k=1 ||β̂(k) − β||2,
where β̂(k) denotes the estimated value of β in the kth simulation run. To

evaluate the estimation for αl(·), we used

ADEl =
1

400mn

400∑
k=1

n∑
i=1

m∑
j=1

|α̂(k)
l (Wijl)− αl(Wijl)|,

where α̂
(k)
l (Wijl) is the spline approximation to αl(Wijl) in the kth simulation

run. In the simulations, we used cubic B-splines with six degrees of freedom and

took three quartiles of the Wijk, k = 1, 2, as internal knots.
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Table 1. Example 1: Longitudinal data with continuous responses. ADE:
absolute deviation error; INDE: independence; EXCH: exchangeable; AR1:
AR(1); and UNST: unstructured.

n pn MSE ADE1 ADE2

200 14 INDE 0.1552 0.0808 0.1264
EXCH 0.1216 0.0741 0.1287
AR1 0.1030 0.0693 0.1297
UNST 0.1053 0.0703 0.1304

1000 24 INDE 0.0517 0.0493 0.0989
EXCH 0.0405 0.0473 0.1059
AR1 0.0350 0.0448 0.1092
UNST 0.0352 0.0449 0.1091

2000 31 INDE 0.0327 0.0437 0.0947
EXCH 0.0257 0.0424 0.1017
AR1 0.0222 0.0402 0.1052
UNST 0.0222 0.0402 0.1051

In Table 1, we summarize the MSE for estimating β and the ADE for es-

timating α1(·) and α2(·), respectively. We consider four working correlation

structures: independence(INDE), exchangeable (EXCH), AR(1) (AR1), and un-

structured working correlation (UNST). We observe that even when the covariate

dimension grows at an appropriate rate with the sample size, the accuracy of the

proposed GEE estimator for both the regression parameters and the nonparamet-

ric functions is satisfactory. In the simulations, we were not aiming to produce

optimal estimators for the nonparametric components. Instead, we focused on

estimating the parametric components, which only requires consistent estimators

for the nonparametric components. We note that the independent working cor-

relation structures shows worse performance in estimating the parameters in the

linear part.

Figure 1 depicts the nonparametric components α1(t) and α2(t). Also im-

posed on the graph are the estimators using each of the working correlation

structures based on one randomly simulated data set.

Example 2 ((binary response)). We considered the following model for the

marginal expectation of Yij ,

logit(E(Yij |Xij ,Wij1,Wij2)) = α1(Wij1) + α2(Wij2) +XT
ijβ, (5.1)

where i = 1, . . . , 400, j = 1, . . . , 3, βT = (0.4 ·1Tk ,−0.3 ·1Tk , 0.2 ·1Tk ,−0.1 ·1Tpn−3k),

where pn =
⌊
2.5n1/3

⌋
and k = ⌊pn/4⌋. The nonparametric components were

α1(t) = exp(−t) − exp(−0.5) and α2(t) = (t − 0.5)3. The distributions of Xij ,

Wij1 and Wij2 were the same as those in Example 1. The binary response vector
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Figure 1. Plot of the nonparametric components and their estimates using
each of the working correlation structures based on one random sample.

for each cluster had the above marginal mean and an exchangeable correlation

structure with correlation coefficient 0.5. Such correlated binary data were gen-

erated using Bahadur’s representation (see, for example, Fitzmaurice (1995)).

Table 2 summarizes the results for this example based on 400 simulation

runs. As with Example 1, Example 2 also verifies that for binary responses the

GEE estimator is satisfactory when the covariate dimension grows, and that more

efficient estimation is achieved when the true correlation matrix is used.

Example 3 (variable selection with binary response). We generated correlated

binary data from model (5.1) with n = 400, m = 3, α1(t) = exp(−t)− exp(−0.5)

and α2(t) = sin{4 ∗ (t − 0.5)}. We considered pn = 50 and 100. The true value

for βT was (0.7,−0.7,−0.7, 0.7,−0.7, 0.7,−0.7, 0.7,−0.7, 0.7,0pn−10). Thus the

number of nonzero coefficients was s = 10. The true correlation structure was

exchangeable with correlation coefficient 0.5.

We report the results based on 400 simulation runs in Table 3 for four sce-

narios with working correlation structures INDE, EXCH, AR1, and UNST. We

use the estimator from the unpenalized GEE as the initial value. The algorithm
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Table 2. Example 2: Longitudinal data with binary responses.

n pn MSE ADE1 ADE2

400 18 INDE 0.5870 0.1347 0.1382
EXCH 0.3512 0.1054 0.1140
AR1 0.4164 0.1142 0.1234
UNST 0.3563 0.1046 0.1124

1000 24 INDE 0.3587 0.0907 0.0899
EXCH 0.2531 0.0779 0.0779
AR1 0.2780 0.0823 0.0838
UNST 0.2607 0.0782 0.0777

2000 34 INDE 0.2637 0.0730 0.0721
EXCH 0.2138 0.0657 0.0665
AR1 0.2255 0.0689 0.0700
UNST 0.2224 0.0659 0.0663

Table 3. Example 3: Variable selection for longitudinal data with binary
responses.

pn TP FP EXACT L2 error
50 INDE 8.8625 0.5725 0.3325 0.8126

EXCH 8.9950 0.1825 0.5025 0.7162
AR1 8.9575 0.2400 0.4525 0.7537
UNST 9.0175 0.1975 0.5075 0.7537

100 INDE 8.8175 1.3600 0.2025 0.8391
EXCH 8.9400 0.3750 0.3975 0.7412
AR1 8.8425 0.6225 0.3200 0.8089
UNST 8.9325 0.3725 0.4025 0.8089

stops if ||β̂(k+1) − β̂(k)|| ≤ 10−3. The results in Table 3 include (i) the average

true positives (TP); that is, the average number of selected covariates that cor-

respond to the nonzero coefficients in the underlying model; (ii) the average false

positives (FP), the average number of selected covariates that correspond to the

zero coefficients in the underlying model; (iii) the percentage of times the true

model is exactly selected (EXACT); and (iv) the squared L2 estimation error

for estimating the nonzero coefficients. We observe that in all scenarios, the pro-

posed variable selection procedure is able to pick a model which has true positives

close to s = 10 and rather few false negatives. The L2 estimation error is also

very small. The best performance is obtained when the exchangeable working

correlation structure or the unstructured working correlation is used.

Example 4 (analysis of diabetic retinopathy data). The data set is from the Wis-

consin Epidemiological Study of Diabetic Retinopathy (Klein et al. (1984)). The

binary response variable indicates the presence or absence of diabetic retinopathy

in each of the two eyes from each of the 720 individuals in the study. There are
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Table 4. Analysis of diabetic retinopathy data: results for the parametric
part using two working correlation structures (INDE and UNST). The num-
bers reported are the GEE estimators (the numbers in the parenthesis are
the associated standard errors).

INDE UNST
X1 -0.6177(0.2573) -0.6302(0.2428)
X2 -0.0476(0.1881) -0.0281(0.1720)
X5 -0.8010(0.3417) -0.8094(0.3415)
X7 -0.0552(0.0721) -0.0567(0.0715)
X9 0.2169(0.0918) 0.2077(0.0910)
X1*X2 0.0212(0.0106) 0.0209(0.0094)
X1*X5 0.0224(0.0162) 0.0237(0.0158)
X2*X7 0.0015(0.0024) 0.0011(0.0022)
X5*X7 0.0125(0.0046) 0.0126(0.0046)
X7*X9 -0.0025(0.0012) -0.0024(0.0011)

13 potential risk factors: X1 (eye refractive error), X2 (eye intraocular pressure),

X3 (age at diagnosis of diabetes), X4 (duration of diabetes), X5 (glycosylated

hemoglobin level), X6 (systolic blood pressure), X7 (diastolic blood pressure),

X8 (body mass index), X9 (pulse rate), X10 (gender, male=1, female=2), X11

(proteinuria, absent=0, present=1), X12 (doses of insulin per day), and X13 (res-

idence, urban=0, rural=1). Barnhart and Williamson (1998) analyzed this data

set using GEE with quadratic effects in X4 and X8. Based on preliminary data

exploration, we applied GEE with marginal GAPLM and the logit link function.

More specifically, we modeled the effects of X4 and X8 using cubic splines and

included the other covariates (and the 21 first-order interactions among the con-

tinuous covariates) in the linear part. This resulted in a model with 33 terms in

the linear part.

We first applied our variable selection procedure to select the variables in the

linear part. The following covariates were selected: X1, X2, X5, X1*X2, X1*X5,

X2*X7, X5*X7, X7*X9. We refit the model with the selected variables in the

linear part (X7 and X9 were also included) and X4, X8 in the nonlinear part.

Table 4 summarizes the estimates and the standard errors (computed from the

sandwich covariance formula) for the parametric part of the marginal GAPLM

using the independence and unstructured correlation structures. Here, there are

just two observations within each cluster. Thus the unstructured correlation is

equivalent to the exchangeable or AR(1) structure. In Figure 2, we depict the

estimated nonparametric functions for X4 and X8 under the unstructured work-

ing correlation. Some risk factors selected by our approach, such as glycosylated

hemoglobin level, diastolic blood pressure, were also identified as important by

Barnhart and Williamson (1998). However, they did not consider interaction
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Figure 2. Analysis of the diabetic retinopathy data: estimated nonparamet-
ric functions and 95% pointwise confidence intervals.

effects and they modeled both the effect of the duration of diabetes and that of

body mass index as quadratic. Our estimation of the nonparametric components

suggests that the effect of the body mass index is close to quadratic but the effect

of the duration of diabetes would be better modeled as cubic.

6. Conclusions and Discussions

We have assumed that the number of covariates in the linear part diverges

while that in the nonparametric part remains fixed. Our theory can be poten-

tially generalized to the case when the latter also diverges. For example, the

results stated in Theorem 1 are expected to hold if we add a multiplicative factor

involving q to the definition of rn, under conditions similar as (A1)−(A6).

With a large number of nonparametric components, it is desirable to perform

variable selection for the nonparametric components as well as the parametric

components. It is conceptually straightforward to extend our variable selection

methodology using two penalties, resulting in a doubly penalized GEE:

L(b) = S(b)− nqλ1(∥a∥)sgn(a)− nqλ2(|β|)sgn(β),

where sgn(a) = (aT1 /∥a1∥, . . . ,aTq /∥aq∥,0Tp )T (by convention al/∥al∥ is 0 if al =

0) and qλ1(∥a∥) = (qλ1(∥a1∥), . . . , qλ1(∥aq∥),0Tp )T. As one needs to select λ1 and

λ2 simultaneously, the computation is expected to be burdensome. Investigation

of the computational and theoretical properties of this doubly penalized GEE

will be left for future study.

In the dataset analysis, we have separated the covariates into the nonpara-

metric part and parametric part in an initial screening stage based on visual

inspection. Although this makes a sensible first attempt, a more efficient and

automatic criterion is needed to determine which covariates should be included
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in the linear component and which in the nonparametric part. Recently Zhang,

Cheng, and Liu (2011) investigated this problem using two penalties where one
penalty is designed to identify the linear part. It remains challenging to extend

this work to longitudinal data with diverging p. This is a future research topic.

Automatic choice of the number of knots is an important issue in spline es-

timation. We have followed the advice in some previous studies, e.g., Huang,
Horowitz, and Wei (2010), and fixed the number of knots. Empirically, we find

that two or three internal knots are flexible enough to approximate smooth func-

tions in most situations, although a larger number of knots is required for curves

with more complicated shapes. In a high-dimensional setting, developing suitable
criterion for knots selection is a challenging problem.

7. Proofs

Proof of Proposition 1 and a Preliminary Lemma.

(i) Let H̃ =
∑

iU
T
i ViUi, where Vi = A

1/2
0i R0A

1/2
0i is the true covariance

matrix. Based on the injection lemma (Chen, Hu, and Ying (1999)), we need

only show that for any ϵ > 0, there exists a ∆ > 0 such that, for n large enough,

P
(
∥H̃−1/2S̃(b0)∥ ≤ inf

∥b−b0∥=∆rn
∥H̃−1/2{S̃(b)− S̃(b0)}∥

)
≥ 1− ϵ. (7.1)

Using a Taylor expansion, we have

∥H̃−1/2{S̃(b)− S̃(b0)}∥ = ∥H̃−1/2[
∑
i

UT
i {µi(b)− µi(b0)}]∥

= ∥H̃−1/2{
n∑

i=1

m∑
j=1

Uijµ̇(θ
∗
ij)U

T
ij(b− b0)}∥

≥ Cλmin(H̃
−1/2)λmin(

∑
i

UT
i Ui)(∆rn) ≥ C

√
n∆rn,

where Uij is the j-th row of Ui and θ∗ij lies between UT
ijb and UT

ijb0.
On the other hand,

∥H̃−1/2S̃(b0)∥ ≤
∥∥∥H̃−1/2

∑
i

UT
i (Yi − µ0i)

∥∥∥+
∥∥∥H̃−1/2

∑
i

UT
i {µ0i − µi(b0)}

∥∥∥
≤

√∑
i

εTi UiH̃−1UT
i εi+

∥∥∥H̃−1/2
n∑

i=1

m∑
j=1

Uijµ̇(θ
∗
ij)(U

T
ijb0−θ0ij)

∥∥∥
= Op(

√
tr(UH̃−1UT) +Op(∥UT

ijb0 − θ0ij∥)
√
λmax(UH̃−1UT)

= Op(
√

K + p) +Op(
√
nK−d) = Op(

√
nrn),

where θ∗ij lies between UT
ijb0 and θ0ij , εi = (Yi − µ0i), U = (UT

1 , . . . ,U
T
n )

T.

Thus (7.1) is proved if ∆ is large enough.
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(ii) The proof is basically the same as the proof for (3.4) in Wang (2011).

Let

R∗ =
1

n

∑
i

A
−1/2
0i (Yi − µ0i)(Yi − µ0i)

TA
−1/2
0i .

Using the Central Limit Theorem indicates ∥R∗−R0∥ = Op(n
−1/2). We can also

show ∥R̂ − R∗∥ = Op(rn) following the proof of (3.4) in Wang (2011). Finally

we have ∥R̂−1 −R−1
0 ∥ = ∥R̂−1(R̂−R0)R

−1
0 ∥ = Op(rn).

Lemma 1. If (A1)−(A6) hold, p/n → 0,K logK/n → 0 and K → ∞, then

||S(b0)− S(b0)|| = Op(nr
2
n). (7.2)

Furthermore, for b ∈ RqK+p, we have

sup
||b−b0||≤∆rn

sup
||d||=1

∣∣dT{D(b)−D(b)}d
∣∣ = Op(nrn). (7.3)

sup
||b−b0||≤∆rn

sup
||d||=1

∣∣dT{D(b)−H(b)}d
∣∣ = Op

(
n(K + p)1/2rn

)
. (7.4)

sup
||b−b0||≤∆rn

sup
||d||=1

∣∣dT{H(b)−H(b0)}d
∣∣ = Op

(
n(K + p)1/2rn

)
. (7.5)

Proof. Let Q = {qj1,j2}1≤j1,j2≤m denote the matrix R̂−1 −R
−1

. We can write

S(b0)− S(b0) =

n∑
i=1

m∑
j1=1

m∑
j2=1

qj1,j2A
1/2
ij1

(b0)A
−1/2
ij2

(b0){Yij2 − µij2(b0)}Uij1 .

Note that Yij2 − µij2(b0) does not have mean zero. We further decompose

S(b0)− S(b0) =

n∑
i=1

m∑
j1=1

m∑
j2=1

qj1,j2A
1/2
ij1

(b0)A
−1/2
ij2

(b0)(Yij2 − µ0ij2)Uij1

+

n∑
i=1

m∑
j1=1

m∑
j2=1

qj1,j2A
1/2
ij1

(b0)A
−1/2
ij2

(b0){µ0ij2 − µij2(b0)}Uij1 .

Then, as in Lemma 3.1 of Wang (2011), we have ∥
∑n

i=1A
1/2
ij1

(b0)A
−1/2
ij2

(b0)

(Yij2 − µ0ij2)Uij1 || = Op(
√

n(K + p)). Furthermore,∥∥∥ n∑
i=1

A
1/2
ij1

(b0)A
−1/2
ij2

(b0){µ0ij2 − µij2(b0)}Uij1

∥∥∥
≤ C

∥∥∥ n∑
i=1

{µ0ij2 − µij2(b0)}Uij1

∥∥∥
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= Op

(√∑
i

{µ0ij2 − µij2(b0)}2
)
Op

(√
λmax(

∑
i

Uij1U
T
ij2

)
)

= Op(nK
−d).

By Condition (A5), qj1,j2 = Op(rn), ∀ 1 ≤ j1, j2 ≤ m, and the proof of (7.2) is

finished.

the proof of (7.3)−(7.5) can be done similarly largely as in Lemma C.2 of

Wang (2011).

Proof of Theorem 1. As in the proof of Proposition 1, we need only show that

for any ϵ > 0, there exists a ∆ > 0 such that, for n large enough,

P
(
∥M−1/2

(b0)S(b0)∥ ≤ inf
∥b−b0∥=∆rn

∥M−1/2
(b0){S(b)− S(b0)}∥

)
≥ 1− ϵ.

(7.6)

Considering first the right hand side of the event, we have

M
−1/2

(b0){S(b)− S(b0)}

=M
−1/2

(b0)D(b∗)(b− b0)

=M
−1/2

(b0)H(b0)(b− b0) +M
−1/2

(b0){H(b∗)−H(b0)}(b− b0)

+M
−1/2

(b0){D(b∗)−H(b∗)}(b− b0)

+M
−1/2

(b0){D(b∗)−D(b∗)}(b− b0)

△
=

4∑
j=1

Inj ,

where b∗ lies between b and b0. We have ∥In1∥ ≥ C
√
n∥b − b0∥ = C

√
n∆rn,

and

∥In2∥ =
∥b− b0∥max[|λmax{H(b∗)−H(b0)}|, |λmin{H(b∗)−H(b0)}|]

λ
1/2
max{M(b0)}

= Op(rn)Op(nrn
√

K + p)Op(1/
√
n)

= op(
√
nrn).

Similarly we get ∥Inj∥ = op(
√
nrn), j = 3, 4.

For the left hand side of the event in (7.6),

∥M−1/2
(b0)S(b0)∥

≤ ∥M−1/2
(b0){S(b0)− S(b0)}∥

+∥M−1/2
(b0)

∑
i

UT
i A

1/2
i (b0)R

−1
A

−1/2
i (b0){µ0i − µi(b0)}∥



192 HENG LIAN, HUA LIANG AND LAN WANG

+∥M−1/2
(b0)

∑
i

UT
i A

1/2
i (b0)R

−1
A

−1/2
i (b0)(Yi − µ0i)∥

△
= Jn1 + Jn2 + Jn3.

We have ∥Jn1∥ = op(
√
nrn) by Lemma 1, and

∥Jn2∥ = Op(1/
√
n)Op(

√
nK−d)Op

(√
λmax(

∑
i

UiUT
i )
)

= Op(
√
nK−d) = Op(

√
nrn).

By straightforward calculations EJn3 = 0 and E∥Jn3∥2 = K + p, so ∥Jn3∥ =

Op(
√
K + p) = Op(

√
nrn).

Combining these results, (7.6) is proved with ∆ large enough.

Proof of Theorem 2. Since the entries of Γ, denoted by h
(s)
jl , are in Hd, h

(s)
jl

can be approximated by spline functions h̃
(s)
jl with approximation error O(K−d).

Denote by Γ̂(Wi) the matrix that approximates Γ(Wi) by replacing h
(s)
jl with

h̃
(s)
jl . Note that since h̃

(s)
jl is a spline function, the (j, s)-entry of Γ̂(Wi) can be

expressed as c
(s)
j Bij for some c

(s)
j ∈ RqK , for 1 ≤ j ≤ m, 1 ≤ s ≤ p.

Let b̂0 = (âT,βT
0 )

T and b̂ = (âT, β̂T)T. Take

S(b) =
∑
i

{Xi − Γ̂(Wi)}TA1/2
i (b)R̂−1A

−1/2
i (b){Yi − µi(b)},

S(b) =
∑
i

{Xi − Γ̂(Wi)}A1/2
i (b)R

−1
A

−1/2
i (b0){Yi − µi(b)},

S0 =
∑
i

{Xi − Γ(Wi)}TA1/2
0i R

−1
A

−1/2
0i (Yi − µ0i),

D(b) = −∂S(a,β)
∂βT , D(b) = −∂S(a,β)

∂βT , and

H(b) = {Xi − Γ̂(Wi)}TA1/2
i (b)R

−1
A

1/2
i (b){Xi − Γ̂(Wi)}.

We need S(b̂) = 0. To see this, note that

S(b̂) =
∑
i

UT
i A

1/2
i (b̂)R̂−1A

1/2
i (b̂){Yi − µi(b̂)} = 0,

and the (j, s)-entry of Γ̂(Wi) can be expressed as c
(s)
j Bij . Thus it is easy to see

that the rows of S(b̂) are simply linear combinations of the rows of S(b̂), which

implies S(b̂) = 0.
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By the arguments in Lemma 3.7 in Wang (2011), αTM−1/2
0 S0 → N(0, 1).

We next show that
∥S(b̂0)− S0∥ = op(

√
n). (7.7)

In fact,

∥S(b̂0)− S0∥ ≤ ∥
∑
i

{Xi − Γ̂(Wi)}A1/2
i (b̂0)R̂

−1A
−1/2
i (b̂0){µi(b̂0)− µ0i}∥

+∥
∑
i

{Xi−Γ̂(Wi)}A1/2
i (b̂0)(R̂

−1−R
−1

)A
−1/2
i (b̂0)(Yi−µ0i)∥

+∥
∑
i

{Γ̂(Wi)− Γ(Wi)}A1/2
i (b̂0)R

−1
A

−1/2
i (b̂0)(Yi − µ0i)∥

+∥
∑
i

{Xi−Γ(Wi)}(A1/2
i (b̂0)−A

1/2
0i )R

−1
A

−1/2
i (b̂0)(Yi−µ0i)∥

+∥
∑
i

{Xi − Γ(Wi)}A1/2
0i R

−1{A−1/2
i (b̂0)−A

−1/2
0i }(Yi − µ0i)∥

△
=

5∑
j=1

Lnj .

First,

Ln1 ≤ ∥
∑
i

{Xi − Γ(Wi)}A1/2
i (b̂0)R̂

−1A
−1/2
i (b̂0){µi(b̂0)− µ0i}∥

+∥
∑
i

{Γ(Wi)− Γ̂(Wi)}A1/2
i (b̂0)R̂

−1A
−1/2
i (b̂0){µi(b̂0)− µ0i}∥.

From the definition of Γ(Wi), as the proof of (A.6) in Wang et al. (2011), the
first term above is Op(

√
nprn). The second term is obviously Op(n

√
pK−drn)

since ∥Γ(Wi) − Γ̂(Wi)∥ = Op(
√
pK−d) and ∥µi(b̂0) − µ0i∥ = Op(rn). Thus if

np/K2d((K + p)/n+ 1/K2d) = o(1), then Ln1 = op(
√
n). Using Condition (A1)

and Proposition 1, we get Ln2 = op(
√
n). Similarly one can get Lnj = op(

√
n),

j = 3, 4, 5, and thus (7.7) is shown.
Based on (7.7) and using a Taylor expansion, we get

αTM−1/2
0n S0 = αTM−1/2

0n S(b̂0) + op(1)

= αTM−1/2
0n D(b∗)(β̂ − β0) + op(1), (7.8)

where b∗ = (â,β∗) with β∗ lying between β̂ and β0, and in the last step above
we used S(b̂) = 0.

Using the arguments in the proof of Lemma 1 (or of Lemma C.2 in Wang et
al. (2011)), we can show that

sup
||b−b0||≤∆rn

sup
||d||=1

∣∣dT{D(b)−D(b)}d
∣∣ = Op(nrn).
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sup
||b−b0||≤∆rn

sup
||d||=1

∣∣dT{D(b)−H(b)}d
∣∣ = Op

(
np1/2rn

)
.

sup
||b−b0||≤∆rn

sup
||d||=1

∣∣dT{H(b)−H(b0)}d
∣∣ = Op

(
np1/2rn

)
.

Thus (7.8) comes to

αTM−1/2
0 S0 = αTM−1/2

0 H(b0)(β̂ − β0) + op(1),

from which the asymptotic normality follows by the assumptions imposed on K.

Proof of Theorem 3. Let (âoT, β̂(1)T)T be the exact solution of (2.1) when

we only use the first s columns of Xi in the definition Si. We show that b̂ =

(âoT, β̂(1)T, β̂(2)T = 0)T satisfies all the properties in the theorem.

Property (i) is trivial by our construction. (ii) is also obvious as (âo, β̂(1))

solves (2.1) and the penalty term is zero since min1≤j≤s |β̂j |/λ → ∞. Based

on Theorems 1 and 2, the convergence rate is O(rn) and β̂(1) is asymptotically

normal. Thus we only need to demonstrate (iii).

Motivated by the proof of Theorem 2, we let

Sâo(β) =
∑
i

{Xi − Γ̂(Wi)}TA1/2
i ((âoT,βT)T)R̂−1A

−1/2
i ((âoT,βT)T)

×{Yi − µi((â
oT,βT)T)}.

Similar to (7.7) and using the root-n consistency of β̂(1), we have

∥Sâo((β̂(1)T, β̂(2)T)T)−S̄0∥ = op(
√
n) = op(nλ). Using the arguments in the proof

of Theorem 1 in Wang, Zhou, and Qu (2012), with the only difference being that

Xi in their paper is replaced by Xi − Γ(Wi) here, we have sups+1≤j≤p S̄0j =

Op(nλ/ log n), where S̄0j is the jth component of S̄0. Thus uniformly over j =

pK + 1, . . . , pK + s, Sj(b̂+ ϵej) and Sj(b̂− ϵej) are dominated by −nqλ(ϵ) and

nqλ(ϵ) respectively, as ϵ goes to zero. Thus Lj(b̂ + ϵej) and Lj(b̂ − ϵej) have

different signs. This completes the proof of (iii).
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