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GENERALIZED VARYING COEFFICIENT MODELS:

A SMOOTH VARIABLE SELECTION TECHNIQUE
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Abstract: We consider nonparametric smoothing and variable selection in gener-

alized varying coefficient models. Generalized varying coefficient models are com-

monly used for analyzing the time-dependent effects of covariates on responses that

are not necessary continuous, for example counts or categories. We present the P-

spline estimator in this context and show its estimation consistency for a diverging

number of knots (or B-spline basis functions), by using an approximation of the

link function. The combination of P-splines with nonnegative garrote (which is a

variable selection method) leads to good estimation and variable selection. The

method is illustrated with a simulation study and a data example.
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nonparametric smoothing, P-splines, variable selection.

1. Introduction

Varying coefficient models (Hastie and Tibshirani (1993)) are an extension of

classical linear regression models. They allow the regression coefficients to vary

in a smooth way with another variable (for example time). We study varying

coefficient models where the response, covariates, and regression coefficients are

allowed to vary with t:

Y (t) = X(t)′β(t) + ε(t) = β0(t) +
d∑

p=1

X(p)(t)βp(t) + ε(t), (1.1)

where Y (t) is the response at time t (∈ T = [0, T ]), X(t) = (X(0)(t), . . . , X(d)(t))′

the covariate vector at time t with X(0)(t) ≡ 1, β(t) = (β0(t), . . . , βd(t))
′ the

vector of coefficients at time t, β0(t) is the baseline effect and ε(t) a mean zero

stochastic process at time t. These models are especially useful for modeling

longitudinal data, they are flexible and easy to interpret. They have been used

to discover dynamic patters in data in several scientific areas. See Fan and Zhang

(2008) (and references therein) for an overview.

We consider samples of n independent subjects or individuals each measured

repeatedly over a time period. Let (tij , Yij ,Xij) be the jth measurement for

subject i of (t, Y (t),X(t)), where 1 6 i 6 n, 1 6 j 6 Ni, Ni is the number
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of repeated measurements of subject i, tij is the measurement time, Yij is the

observed response at time tij , and Xij = (X
(0)
ij , . . . , X

(d)
ij )′. The total number of

observations is denoted by N =
∑n

i=1Ni.

In some applications data are not continuous, for example counts or cat-

egories. Allowing for this type of data one should extend varying coefficient

models in the same way as normal models were extended to generalized linear

models (McCullagh and Nelder (1995)). A generalized varying coefficient model

framework (see for example Cai, Fan, and Li (2000) and Şentürk and Müller

(2008)) takes

η(X(t)) = β0(t) + β1(t)X
(1)(t) + . . .+ βd(t)X

(d)(t) =

d∑
p=0

X(p)(t)βp(t),

where η(X(t)) is linked to the mean, µ(X(t)) = E (Y (t)|X(t)), through the link

function g(·): η(X(t)) = g(µ(X(t))). The density function of the random variable

Y at time t is to belong to the exponential family:

f(Y ; θ, ϕ) = exp
(Y θ − b(θ)

a(ϕ)
+ c(Y, ϕ)

)
, (1.2)

where a(·), b(·), and c(·) are known functions, ϕ is a scale parameter, and θ is

the canonical parameter. In this context, Y and θ depend on X(t). Furthermore

E (Y (X(t))) = µ(X(t)) = db
dθ

∣∣
θ(X(t))

and Var (Y (X(t))) = d2b
dθ2

∣∣
θ(X(t))

a(ϕ). We

assume that a(ϕ) is bounded. A link function g(·) is called a canonical link if

θ(X(t)) = g(µ(X(t))).

Consider an example that illustrates the kind of situations we consider. The

data come from a study on the short term effect of concentrations of pollutants

in ambient air on hospital admission for cardiovascular and respiratory diseases

in Hong Kong. In 1994 and 1995 the daily concentration (in µg/m3) of nitro-

gen dioxide (NO2), sulphur dioxide (SO2), particulates < 10µm in aerodynamic

diameter (i.e. dust) and ozone (O3), temperature (in Celsius), humidity (in per-

centage), and hospital admissions for cardiovascular and respiratory diseases were

measured in Hong Kong. The conditional distribution of the number of hospi-

tal admissions given the level of pollutants, temperature, and humidity can be

modeled as a Poisson distribution. The mean µ(X) of the hospital admissions is

linked to the linear predictor η(X) with the canonical log-link: η(X) = log(µ(X))

(see also Table 1 in Section 4).

We study the problem of smoothing and variable selection in this generalized

varying coefficient model setup; we want to estimate the regression coefficients

βp(t) nonparametrically and select the relevant ones.

In the context of varying coefficient models, several nonparametric smoothing

techniques, such as local polynomials (Fan and Zhang (1999, 2008)), regression
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splines (Huang, Wu, and Zhou (2004)) and P-splines (Antoniadis, Gijbels, and

Verhasselt (2012b)), have been proposed for estimating the coefficient functions

β(t). Local polynomials have been used frequently for estimation in generalized

varying coefficient models (see for example Fan and Zhang (2008), Zhang (2011),

and Zhang and Peng (2010)). P-splines have been considered in generalized

varying coefficient models by Eilers and Marx (2002) and Marx (2010) without

any theoretical foundation. This paper gives the theoretical foundation, proving

the estimation consistency of P-splines in generalized varying coefficient models.

This result extends the consistency result of Antoniadis, Gijbels, and Verhasselt

(2012b) for varying coefficient models to the broader class of generalized varying

coefficient models.

We combine P-splines with the nonnegative garrote variable selection tech-

nique for estimating and selecting the relevant coefficient functions βp(t). As

such, this generalizes the results of Antoniadis, Gijbels, and Verhasselt (2012b)

to this generalized setup. The nonnegative garrote was originally proposed for

variable selection in linear regression models by Breiman (1995), but it has been

used in additive models by Antoniadis, Gijbels, and Verhasselt (2012a), Can-

toni, Flemming, and Ronchetti (2000), and Yuan (2007), in generalized additive

models by Marra and Wood (2011), and in varying coefficient models by Anto-

niadis, Gijbels, and Verhasselt (2012b). The estimation and variable selection

consistency is proved for the nonnegative garrote, combined with P-splines in this

generalized varying coefficient model framework. As such we give theoretical sup-

port for the P-spline estimation and nonnegative variable selection techniques in

the broad class of generalized varying coefficient models. Key ingredients for the

consistency are recent results in Antoniadis, Gijbels, and Verhasselt (2012b) for

varying coefficient models (1.1), and the idea of Gijbels and Verhasselt (2010)

for approximating g−1(·). By using an approximation of g−1(·), we approximate

the optimization problem in the generalized context to a problem similar to the

normal context.

The paper is organized as follows. In Section 2 we introduce P-splines in the

generalized varying coefficient model context and show their consistency. The

nonnegative garrote and its variable selection consistency are discussed in Sec-

tion 3. We evaluate the performance of the method in Section 4 with simulations

and on data. The details of the proofs are deferred to the Appendix.

2. P-spline Estimator

P-splines were first introduced by Eilers and Marx (1996) in the univariate

nonparametric smoothing context. Since regular regression with B-splines tends

to overfit, they proposed to add a difference penalty on the coefficients of adjacent

B-splines, in the same sense as smoothing splines. This leads to the regression
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P-splines technique. P-splines have been used as a tool in many different areas,

see for example Ruppert, Wand, and Carroll (2003).

The extension of P-splines to generalized varying coefficient models is the

following: suppose that for each p = 0, . . . , d, βp(t) can be approximated by a

B-spline basis expansion βp(t) =
∑mp

l=1Bpl(t; qp)αpl and

η(X(t)) =
d∑

p=0

X(p)(t)

mp∑
l=1

Bpl(t; qp)αpl,

where {Bpl(·; qp) : l = 1, . . . ,Kp+qp = mp} is the qpth degree B-spline basis with

Kp + 1 equidistant knots ξp0, . . . ξpKp for the pth component (which is a basis of

the space Gp of spline functions on T with fixed degree qp and knot sequence

Ξp = (ξp0, . . . , ξpKp)). In our consistency results the number of knots Kp+1 (and

thus mp) will grow with n. Let mmax = max06p6dmp, the maximal size of the

B-spline basis of the various components.

We use the canonical link

θ(X(t)) = η(X(t)) =
d∑

p=0

X(p)(t)

mp∑
l=1

Bpl(t; qp)αpl.

We then obtain the P-spline estimates of the regression coefficients αpl by mini-

mizing S1(α) with respect to α = (α′
0, . . . ,α

′
d)

′ ∈ IRdim×1, where αp = (αp1, . . .,

αpmp)
′ and dim =

∑
pmp:

S1(α) = −2 log(L(α; (tij , Yij ,Xij), j = 1, . . . , Ni, i = 1, . . . , n))

+
d∑

p=0

λpα
′
pD

′
kpDkpαp

= −2
n∑

i=1

1

Ni

Ni∑
j=1

(Yijθij − b(θij)

a(ϕ)
+ c(Yij ;ϕ)

)
+

d∑
p=0

λpα
′
pD

′
kpDkpαp,

with L(α; (tij , Yij ,Xij), j = 1, . . . , Ni, i = 1, . . . , n) the likelihood function de-

rived from (1.2), Dkp ∈ IR(mp−kp)×mp is the matrix representation of the kpth

order differencing operator ∆kp , λp > 0 (for p = 0, . . . , d) the smoothing param-

eters, and θij = θ(Xij).

This optimization problem is equivalent to minimizing S2(α) with respect

to α:

S2(α) = −2
n∑

i=1

1

Ni

Ni∑
j=1

(
Yijθij − b(θij)

)
+ a(ϕ)

d∑
p=0

λpα
′
pD

′
kpDkpαp

= −2

n∑
i=1

1

Ni

(
Y′

iUiα− 1′Ni
b(Uiα)

)
+ a(ϕ)α′Qλα
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= −2
(
Y′WUα− 1′NWb(Uα)

)
+ a(ϕ)α′Qλα,

where 1Ni = (1, . . . , 1)′ ∈ IRNi×1, Y = (Y′
1, . . . ,Y

′
n)

′, Yi = (Yi1, . . . , YiNi)
′, U =

(U′
1, . . . ,U

′
n)

′,Ui = (U′
i1, . . . ,U

′
iNi

)′,U′
ij = X′

ijB(tij),W = diag(W1, . . . ,Wn),

Wi = diag
(
N−1

i , . . . , N−1
i

)
∈ IRNi×Ni a diagonal matrix with Ni on the diag-

onal, Qλ = diag(λ0D
′
k0
Dk0 , . . . , λdD

′
kd
Dkd) a block diagonal matrix with the

matrices λpD
′
kp
Dkp on the diagonal, and

B(t) =

B01(t; q0) . . . B0m0(t; q0) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bd1(t; qd) . . . Bdmd
(t, qd)

 .

Minimizing S2(α) with respect to α leads to the system of equations

U′W(Y − µ) = a(ϕ)Qλα, (2.1)

where µ = (µ′
1, . . . ,µ

′
n)

′ ∈ IRN×1, µi = (µi1, . . . , µiNi)
′ ∈ IRNi×1, and µij =

g−1(η(Xij)) = g−1(θij). This last equation is difficult to solve, since α appears

in the left hand side in a nonlinear fashion (through µ). Therefore we use the

idea of Gijbels and Verhasselt (2010) to approximate the mean in a linear way.

A first-order approximation of g−1(θ) for small θ is

g−1(θ(X(t))) ≈ g−1(0) +
dg−1

dθ

∣∣∣
0
θ(X(t)) = ζ + τθ(X(t)), (2.2)

where 0 < |τ | < ∞ and |ζ| < ∞, if a Taylor series for g−1(·) around 0 exists.

This results in a first order approximation for µ,

µ ≈ ζ + τUα,

where ζ = ζ1N . The approximation (2.2) is valid if g−1(·) is continuous differen-
tiable and the second derivative of g−1: d2g−1

dθ2
exists and if the remainder term

d2g−1

dθ2

∣∣∣
ξ
(θ(X(t)))2 (with |ξ| < |θ(X(t))|) is small with respect to dg−1

dθ

∣∣∣
0
θ(X(t)).

Note that we could use a Taylor series for g−1(θ(X(t))) around a constant

c(t), allowing for a different approximation of the mean at different time points,

but we restrict our attention to (2.2).

Using (2.2), (2.1) can be approximated by

U′W(Y − ζ) = (τU′WU+ a(ϕ)Qλ)α. (2.3)

Note that if λ0 = . . . = λd = 0, this system of equations corresponds to the

system of equations in (normal) varying coefficient models (1.1), with response

τ−1(Y (t)− ζ) (see Antoniadis, Gijbels, and Verhasselt (2012b)).
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If τU′WU+ a(ϕ)Qλ is invertible, then (2.3) has a unique solution

α̂ = (τU′WU+ a(ϕ)Qλ)
−1U′W(Y − ζ), (2.4)

where α̂ = (α̂′
0, . . . , α̂

′
d)

′ and α̂p = (α̂p1, . . . , α̂pmp)
′ for p = 0, . . . , d. The P-spline

estimate of β(t) is then

β̂(t) = B(t)α̂ = (β̂0(t), . . . , β̂d(t))
′ with β̂p(t) =

mp∑
l=1

Bpl(t; qp)α̂pl.

The existence of the P-spline estimator relies on the fact that τU′WU+a(ϕ)Qλ

is invertible.

Lemma 1. The matrix τU′WU+ a(ϕ)Qλ is invertible except, on an event with

probability tending to zero, if m
3/2
max λmax n−1 = o(1), where λmax = max06p6d λp.

The proof is deferred the Appendix. From the proof we have an approxi-

mation for (τU′WU+ a(ϕ)Qλ)
−1 and α̂ if m

3/2
maxλmaxn

−1 → 0 and mmaxn
−1 →

constant:

(τU′WU+ a(ϕ)Qλ)
−1 = τ−1(U′WU)−1 − a(ϕ)τ−2(U′WU)−1Qλ(U

′WU)−1

+oP

(m3/2
maxλmax

n

)
τ−1(U′WU)−1,

α̂ = τ−1(U′WU)−1U′W(Y − ζ)− a(ϕ)τ−2
(
(U′WU)−1Qλ(U

′WU)−1

−oP

(m5/2
maxλmax

n2

)
1dim×dim

)
·U′W(Y − ζ)

= α̂reg −
(
a(ϕ)τ−2(U′WU)−1Qλ(U

′WU)−1 − oP

(m5/2
maxλmax

n2

)
1dim×dim

)
·U′W(Y − ζ), (2.5)

where 1dim×dim ∈ IRdim×dim is a matrix consisting of ones and α̂reg is the regular

B-spline estimator in the varying coefficient model context, the solution of (2.3)

with λ0 = . . . = λd = 0, that corresponds to the response τ−1(Y (t)− ζ).

2.1. Consistency

We prove the consistency of the P-spline estimator in generalized varying

coefficient models when the number of knots increases with the number of in-

dividuals n. In this approach βp(t) is not a spline function itself, but can be

approximated by a spline function. Conversely, if βp is a spline function it can be

represented exactly in a B-spline basis with a fixed number of knots. A detailed

study on the influence of the smoothing parameter, the degree of the B-splines,
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the differencing order, and the number of knots is carried out in Gijbels and Ver-

hasselt (2010) for P-spline estimation in generalized linear models. The proof of

our consistency result is based on the consistency of the regular B-spline estimator

in varying coefficient models (Huang, Wu, and Zhou (2004)) and approximation

(2.5). We need some assumptions on the design and the B-spline basis:

Assumption 1.

1. The observation times tij, j = 1, . . . , Ni, i = 1, . . . , n, are chosen indepen-

dently according to a distribution function FT on T . Moreover, they are in-

dependent of the response and covariate process {(Yi(t),Xi(t))}, i = 1, . . . , n.

The distribution function FT has a Lebesgue density fT (t) that satisfies M3 6
fT (t) 6 M4 for t ∈ T and positive constants M3 and M4.

2. The eigenvalues η0(t), . . . , ηd(t) of Σ(t) = E (X(t)X(t)′) satisfy M5 6 η0(t) 6
· · · 6 ηd(t) 6 M6 for t ∈ T and positive constants M5 and M6.

3. There exist a positive constant M7 such that |Xp(t)| 6 M7 for t ∈ T and

p = 0, . . . , d.

4. There exist a positive constant M8 such that Var (Y (t)|X(t)) 6 M8 < ∞ for

t ∈ T .

5. lim supn
(
maxpmp/minpmp

)
< ∞.

6. K
3/2
maxλmax/n = o(1) and Kmax/n = O(1), where Kmax = max06p6dKp.

7. maxiNi < ∞.

Assumption 2. There exist positive constants M9 and M10 such that

M9||g||2L2
6 1

n

∑
i

1

Ni

∑
j g(tij)

2 6 M10||g||2L2
, g ∈ Gp, p = 0, . . . , d,

where ||g||L2 =
√∫

T g(t)2 dt is the L2-norm, assumed finite.

The independence of the tij can be relaxed by replacing Assumption 1.1

by the requirement that Assumption 2 holds with probability tending to 1. A

sufficient condition for Assumption 2 to hold is (see Huang, Wu, and Zhou (2004))

sup
t∈T

|Fn(t)− FT (t)| = o(
1

mmax
)

for some distribution function FT with Lebesgue density fT (t) that is bounded

away from zero and infinity uniformly over t ∈ T , where

Fn(t) =
1

n

∑
i

1

Ni

∑
j

1]−∞,t](tij),
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with 1A(t) the indicator function of the set A.

Note that Assumptions 1.1−1.6 are natural and have been used in Wang,

Li, and Huang (2008) and Antoniadis, Gijbels, and Verhasselt (2012b). Assump-

tion 1.7 is a sufficient condition for (τU′WU+ a(ϕ)Qλ)
−1 to exist.

We need some notation. Let dist(βp,Gp) = infg∈Gp supt∈T |βp(t) − g(t)| be
the L∞ distance between βp(·) and Gp. Let ρn = max06p6d dist(βp,Gp) the

approximation error due to spline approximation. Let β̃p(t) = E (β̂p(t)) be the

mean of β̂p(t) conditioning on X = {(Xij , tij); i = 1, . . . , n, j = 1, . . . , Ni}.
Theorem 2 gives the consistency of the P-spline estimator and Theorem 1

its existence. The proofs are deferred to the Appendix.

Theorem 1. Suppose Assumptions 1.1−1.6 hold, limn dist(βp,Gp) = 0 for p =

0, . . . , d, and limn(mmax log(mmax) n−1) = 0. Then β̂p(t) (p = 0, . . . , d) are

uniquely defined with probability tending to 1. Moreover, β̂p(t) (p = 0, . . . , d) are

consistent in the sense that ||β̂p(t)− βp(t)||L2 = oP (1).

Theorem 2. Suppose Assumptions 1.1−1.6 hold. If limn(mmax log(mmax) n
−1) =

0, then

||β̃p(t)− βp(t)||L2 = oP (ρn +m3/2
max λmax n−1),

||β̃p(t)− β̂p(t)||2L2
= oP (r

2
n),wherer

2
n =

1

n
+

mmax

n2

∑
i

1

Ni
.

Consequently

||β̂p(t)− βp(t)||L2 = oP (max(rn, ρn,m
3/2
max λmax n−1)).

Theorem 2 has a corollary, here the notation an ≍ bn is used when anb
−1
n

and bna
−1
n are bounded.

Corollary 1. Suppose Assumptions 1.1−1.7 hold and that βp(t) (p = 0, . . . , d)

have bounded qth order derivatives. Let Gp be a space of splines of degree no less

than q−1 and with Kp ≍
(
(1/n2)

∑n
i=1 1/Ni

)−1/(2q+1)
, λp =

(
(1/n2)

∑n
i=1 1/Ni

)−γ

for p = 0, . . . , d, with γ 6 (q − 1/2)/(2q + 1). Then

||β̂p(t)− βp(t)||L2 = OP

(( 1

n2

n∑
i=1

1

Ni

)q/(2q+1)
)
.

The proof of this corollary is similar to the proof of Corollary 1 in Antoniadis,

Gijbels, and Verhasselt (2012b), and is omitted here. Note that when q = 2 and

the number of observations for each individual is bounded, then Kp ≍ n1/5

and ||β̂p(t) − βp(t)||L2 = OP (n
−2/5). The rate of convergence is the optimal

rate for nonparametric regression with i.i.d. data under the same smoothness

assumptions on the βp (see Stone (1982)).
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3. Nonnegative Garrote

The nonnegative garrote has been proposed by Breiman (1995) for subset

regression in a classical multiple linear regression model. It starts with an initial

estimator (the ordinary least squares estimator) and it shrinks or puts some co-

efficients of the ordinary least squares estimator equal to zero. In the varying co-

efficient model setup, the nonnegative garrote shrinkage factors ĉ = (ĉ0, . . . , ĉd)
′

are defined as the solution ofmin
c

[ n∑
i=1

1

Ni

Ni∑
j=1

(
Yij −

d∑
p=0

X
(p)
ij cpβ̂

init
p (tij)

)2
+ γ

d∑
p=0

cp

]
,

s.t. 0 6 cp (p = 0, . . . , d),

(3.1)

where c = (c0, . . . , cd)
′, β̂init

p (·) is the initial P-spline estimator for the regres-

sion coefficient function βp(·), and γ > 0 is a regularization parameter. This

optimization problem is equivalent to
min
c

[ n∑
i=1

1

Ni

Ni∑
j=1

(
− 2Yij

d∑
p=0

X
(p)
ij cpβ̂

init
p (tij)+

( d∑
p=0

X
(p)
ij cpβ̂

init
p (tij)

)2)
+γ

d∑
p=0

cp

]
s.t. 0 6 cp (p = 0, . . . , d).

(3.2)

In the generalized varying coefficient model context, we replace the squared

loss in (3.1) by −2 times the loglikelihood. The nonnegative garrote shrinkage

factors ĉ = (ĉ0, . . . , ĉd)
′ in this context are defined as the solution of

min
c

[
− 2

n∑
i=1

1

Ni

Ni∑
j=1

(a(ϕ))−1
(
Yij

d∑
p=0

X
(p)
ij β̂init

p (tij)cp

−b
(∑d

p=0X
(p)
ij β̂init

p (tij)cp
))

+ γ

d∑
p=0

cp

]
s.t. 0 6 cp (p = 0, . . . , d).

(3.3)

In the asymptotic study we let γ depend on N , γ = γN . The nonnegative garrote

estimate of the pth coefficient function is then β̂NNG
p (t) = β̂init

p (t)ĉp.

Using the first order approximation of g−1(θ) for small θ, we find a second

order approximation of b(θ):

b(θ) = b(0) + ζθ +
τ

2
θ2,

since db
dθ

∣∣
θ(X(t))

= µ(X(t)) = g−1(θ(X(t)))). The use of this approximation in

(3.3) gives an approximation for the nonnegative garrote optimization problem
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for generalized varying coefficient models:
min
c

[ n∑
i=1

1

Ni

Ni∑
j=1

−2(Yij−ζ)
d∑

p=0

X
(p)
ij β̂init

p (tij)cp+τ
( d∑
p=0

X
(p)
ij β̂init

p (tij)cp
)2−b(0)

a(ϕ)

+γ
d∑

p=0

cp

]
s.t. 0 6 cp (p = 0, . . . , d).

Since we minimize with respect to c, this last optimization problem is equiv-

alent to
min
c

[ n∑
i=1

1

Ni

Ni∑
j=1

(
− 2τ−1(Yij − ζ)

d∑
p=0

X
(p)
ij β̂init

p (tij)cp

+
( d∑
p=0

X
(p)
ij β̂init

p (tij)cp
)2)

+ γa(ϕ)τ−1
d∑

p=0

cp

]
s.t. 0 6 cp (p = 0, . . . , d).

(3.4)

Note that this o corresponds to (3.2) for (normal) varying coefficient models

(1.1) with response τ−1(Y (t) − ζ) and regularization parameter γa(ϕ)τ−1. The

estimation and variable selection consistency of the nonnegative garrote with P-

splines in generalized varying coefficient models is therefore an immediate corol-

lary of the consistency of the nonnegative garrote in regular varying coefficient

models (Theorem 4 of Antoniadis, Gijbels, and Verhasselt (2012b)).

Let κn = max(ρn, rn,m
3/2
maxλmaxn

−1). The nonnegative garrote estimator

with the P-spline estimator as initial estimator for βp(t) is f̂
NNG
p (t) = ĉpf̂

init
p (t),

and its estimation and variable selection consistency are given as follows.

Theorem 3. If the assumptions of Theorem 1 and Theorem 2 hold and

γa(ϕ)τ−1/N → 0 such that κn = o(γa(ϕ)τ−1/N), then

1. P (f̂NNG
p (t) = 0) → 1 for any p such that βp(t) = 0 for all t ∈ T ,

2. supp E (f̂NNG
p (t) − fp(t))

2 = OP (
(
γa(ϕ)τ−1/N

)2
) (where the expectation is

with respect to X ) for all t ∈ T .

This result is an immediate consequence of Theorem 4 in Antoniadis, Gijbels,

and Verhasselt (2012b), using regularization parameter γa(ϕ)τ−1 and response

τ−1(Y (t)− ζ).
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Table 1. Some distributions belonging to the exponential family.

Distribution Var (Y ) Canonical b(θ) a(ϕ) θ ζ τ
link g(µ)

N(µ, σ2) σ2 µ θ2/2 ϕ (σ2) µ 0 1
Poisson(µ) µ log(µ) eθ 1 log(µ) 1 1
Bin(n, p) np(1− p) log( µ

n−µ ) n log(1+eθ) 1 log( p
1−p ) n/2 n/4

4. Applications

4.1. Simulated data

We investigated the performance of the nonnegative garrote with P-splines

on simulated data from a Poisson, Bernoulli and normal distribution. Moreover,

if we use the normal distribution, we fall back on varying coefficient models (1.1).

The corresponding link and other functions are given in Table 1. The parameters

ζ and τ in this table are found by using a Taylor series of g−1(·) at 0.
The covariates were simulated in a similar fashion as in Antoniadis, Gijbels,

and Verhasselt (2012b). The simulated data examples consist of 100 samples of

size n = 200. We considered two settings with 4 nonzero regression coefficients

out of 11 (d = 10) and 21 (d = 20). The first three variables X(1)(t), X(2)(t) and

X(3)(t) and the intercept X(0)(t) were the relevant variables. X(0)(t) ≡ 1, X(1)(t)

uniformly distributed on [t/10, 2+t/10] for any t, X(2)(t), conditioned on X(1)(t),

normally distributed with mean 0 and variance (1 +X(1)(t))/(2 +X(1)(t)), and

X(3)(t), independent of X(1)(t) and X(2)(t), a Bernoulli random variable with

probability of success 0.6 (and thus it did not vary with t). The irrelevant vari-

ables X(p)(t) were independent realizations of a Gaussian process with mean zero

and Cov (X(p)(t), X(p)(s)) = 4 exp−|t−s|. The observation time points tij were the

same for all subjects (i = 1, . . . , n): {1, . . . , 30}.
We used P-splines with 10 equidistant knots, degree 3, and differencing order

2 for the estimation of all regression coefficients. The smoothing parameters

λ0, . . . , λd were chosen with the EM algorithm of Marx (2010). The shrinkage

parameter γ was found by minimizing BIC (Bayesian Information Criterion).

The selection performance of the nonnegative garrote with P-splines is evalu-

ated on the basis of criteria described in Table 2 based on 100 simulations. These

criteria were also used in Antoniadis, Gijbels, and Verhasselt (2012b). In addi-

tion a table with the appearance frequency of each variable in the 100 simulated

data sets is given for the setting with ten covariates.

We give a graph of the fitted mean (blue dashed-dotted line) and the true

mean (red solid line) for the simulated data set with median ‘linear estimation

error’:
∑n

i=1

∑Ni
j=1(ηij − η̂ij)

2 in each simulation setup. In addition we present

- for the simulation setups with d = 10 - the true (red solid line) and estimated
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Table 2. Evaluation criteria.

MS median number of selected coefficients
MTZ median of zero coefficients restricted to the true zero coefficients (β4, . . . , βd)
MFZ median of zero coefficients restricted to the true non-zero coefficients (β0, . . . , β3)
MTP median of the true positives
MFP median of the false positives
PercT percentage of replications that the exact true model was selected

AverR average of the number of relevant variables (X(1), X(2) and X(3)) selected in the model

AverI average of the number of irrelevant variables (X(4), . . . , X(d)) selected in the model

Table 3. Simulated examples. Appearance frequency of the variables for
models with d = 10.

Distribution X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10)

Poisson(µ(t)) 100 100 100 100 0 0 0 0 0 0 0
Bin(1, p(t)) 100 100 100 99 1 3 4 2 3 2 2
N(µ(t), 1) 100 100 100 100 0 0 0 0 0 0 0
N(µ(t), 1.252) 100 100 100 100 0 0 0 0 0 0 0
N(µ(t), 22) 100 100 100 100 2 1 0 0 0 0 0

regression coefficient functions (blue dashed-dotted line) for the same simulated

data set, as well as the estimates from the simulations corresponding to the first

and third quartile of the ‘linear estimation error’. Moreover we give a measure for

the estimation error (AISE) in Table 4: AISE= (1/R)
∑R

r=1(1/n)
∑n

i=1(β̂r(ti)−
βr(ti))

2, where R is the number of selected components and ti = i/30 for i =

1, . . . , 30.

Poisson distribution

The linear predictor for the Poisson varying coefficient model is

η(X(t)) = 5.5 + 0.1(β0(t) + β1(t)X
(1) + β2(t)X

(2) + . . .+ βd(t)X
(d)).

The coefficient functions of the relevant variables are

β0(t) = 15 + 20 sin
(
πt
60

)
, β1(t) = 2− 3 cos

(π(t−25)
15

)
,

β2(t) = 6− 0.2t, β3(t) = −4 + (20−t)3

2000 ,

and for the irrelevant variables βp(t) = 0 (p = 4, . . . , d).

From Figure 1 it is clear that in both settings, the estimated mean is close to

the true mean. The first four estimated regression coefficients for the model with

d = 10 are given in Figure 2. From both sets of figures we can conclude that the

nonnegative garrote performs well as an estimation technique. The estimation

of the baseline effect and the coefficient of X(3) is less good than the estimation

of the other coefficients. Overall, the estimation of the mean response is good
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(a) (b)

Figure 1. Simulated example Poisson(µ(t)). Data, true mean and fitted
mean. Model with (a) d = 10 and (b) d = 20.

with almost no variability over the simulations. Note that the ‘bad’, ‘median’

and ‘good’ estimates of the regression coefficient functions are almost exactly the

same.

Nonnegative garrote with P-splines performs well also as a selection tech-

nique, this is illustrated in Tables 4 and 3. The nonnegative garrote never re-

moves true non-zero covariates (MFZ= 0) and in all simulated data sets all rel-

evant covariates were included and all irrelevant covariates excluded (AverR= 3

and AverI= 0).

Bernoulli distribution

In the Bernoulli varying coefficient models the linear predictor is

η(X(t)) = −3 + 0.1(β0(t) + β1(t)X
(1) + β2(t)X

(2) + . . .+ βd(t)X
(d)),

where the regression coefficients are the same as in the Poisson setup.

The estimation performance of the nonnegative garrote with P-splines is good

in both settings (see Figure 3, the estimated probability of success is close to the

true success probability, though there is more variability over the simulations

than in the Poisson model (see Figure 4 and Table 4). The selection performance

is also good, but in a few cases (less than 10%) an irrelevant variable is included

in the model and once (for d = 10) the third covariate is excluded (see Tables 3

and 4).
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(a) (b)

(c) (d)

Figure 2. Simulated example Poisson(µ(t)). Regression coefficients for model
with d = 10. Coefficient of (a) X(0), (b) X(1), (c) X(2) and (d) X(3).

Normal distribution

The linear predictor in this normal varying coefficient model is given by

η(X(t)) = β0(t) + β1(t)X
(1) + β2(t)X

(2) + . . .+ βd(t)X
(d),

where the regression coefficients are the same as before. We consider three vari-

ance levels for the normal distribution: 1, 1.252 and 22.

From Tables 3 and 4 we can see that when the variance increases a few

irrelevant variables are included in the selected model. Especially in the harder

setting with 20 covariates and when the variance of the error term is 4, more

irrelevant covariates are included, though relevant covariates are never excluded

from the selected model. The fitted mean coincides almost perfectly with the

true mean in all settings (see Figure 5). The estimated coefficients are almost
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Table 4. Simulated examples. Evaluation criteria for the different models.
The numbers in brackets are the standard deviation (·) or first and third
quartiles (·, ·).

Distribution d AISE MS MTZ MFZ MTP MFP PercT AverR AverI
optimal value 10/20 0 4 7/17 0 4 0 1 3 0
Poisson(µ(t)) 10 0.0847 4 7 0 4 0 1 3 0

(0.0004) (4,4) (7,7) (0,0) (4,4) (0,0) (0) (0)
Poisson(µ(t)) 20 0.0845 4 17 0 4 0 1 3 0

(0.0004) (4,4) (17,17) (0,0) (4,4) (0,0) (0) (0)
Bin(1, p(t)) 10 0.1167 4 7 0 4 0 0.91 2.9900 0.1700

(0.1268) (4,4) (7,7) (0,0) (4,4) (0,0) (0.1000) (0.6039)
Bin(1, p(t)) 20 0.1149 4 17 0 4 0 0.94 3 0.1400

(0.1066) (4,4) (17,17) (0,0) (4,4) (0,0) (0) (0.6034)
N(µ(t), 1) 10 0.0031 4 7 0 4 0 1 3 0

(0.0005) (4,4) (7,7) (0,0) (4,4) (0,0) (0) (0)
N(µ(t), 1) 20 0.0031 4 17 0 4 0 1 3 0

(0.0006) (4,4) (17,17) (0,0) (4,4) (0,0) (0) (0)
N(µ(t), 1.252) 10 0.0035 4 7 0 4 0 1 3 0

(0.0008) (4,4) (7,7) (0,0) (4,4) (0,0) (0) (0)
N(µ(t), 1.252) 20 0.0035 4 17 0 4 0 1 3 0

(0.0008) (4,4) (17,17) (0,0) (4,4) (0,0) (0) (0)
N(µ(t), 22) 10 0.0108 4 7 0 4 0 0.97 3 0.0300

(0.0329) (4,4) (7,7) (0,0) (4,4) (0,0) (0) (0.1714)
N(µ(t), 22) 20 0.0338 4 17 0 4 0 0.85 3 0.1500

(0.0691) (4,4) (17,17) (0,0) (4,4) (0,0) (0) (0.3589)

(a) (b)

Figure 3. Simulated example Bin(1, p(t)). Data, true mean and fitted mean.
Model with (a) d = 10 and (b) d = 20.
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(a) (b)

(c) (d)

Figure 4. Simulated example Bin(1, p(t)). Regression coefficients for model
with d = 10. Coefficient of (a) X(0), (b) X(1), (c) X(2) and (d) X(3).

exactly the same as the true regression coefficients (see Figures 6 and 7 for d = 10

and σ = 1 and 2 respectively).

4.2. Hong Kong environmental data

We consider the data set introduced in Section 1. We are interested in

estimating the number of hospital admissions for cardiovascular and respiratory

diseases on every Friday from January 1, 1994 to December 31, 1995, and in

determining which pollutants are most influencing the hospital admissions. For

each Friday, the concentration of nitrogen dioxide (X(1)), sulphur dioxide (X(2)),

dust (X(3)) and ozone (X(4)), temperature (X(5)), and humidity (X(6)) as well

as the total number of admissions for cardiovascular and respiratory diseases are

measured. This data set is also considered in Cai, Fan, and Li (2000). However,



GENERALIZED VARYING COEFFICIENT MODELS 163

(a) (b)

(c) (d)

(e) (f)
Figure 5. Simulated example N(µ(t), σ2). Data, true mean and fitted mean.
Model with (a) d = 10 , σ = 1; (b) d = 20 , σ = 1;(c) d = 10 , σ = 1.25; (d)
d = 20 , σ = 1.25; (e) d = 10 , σ = 2 and (f) d = 20 , σ = 2.
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(a) (b)

(c) (d)

Figure 6. Simulated example N(µ(t), σ2). Regression coefficients for model
with d = 10 and σ = 1. Coefficient of (a) X(0), (b) X(1), (c) X(2) and (d)
X(3).

they consider only the concentration of nitrogen dioxide, sulphur dioxide, and

dust as covariates.

P-splines with 10 equidistant knots, degree 3 and differencing order 2 were

used for the estimation of all regression coefficients. The smoothing parameters

λ0, . . . , λ6 and the shrinkage parameter γ were chosen as in the simulated data

examples.

The nonnegative garrote procedure selects all covariates, except the concen-

tration of nitrogen dioxide. The fitted regression coefficients are given in Figure 8

and the logarithm of the fitted mean is presented in Figure 9. The fitted mean

follows the data cloud very well. Globally there is an increasing trend in the

number of hospital admissions over time with a peak around 65 weeks. This

peak is also prominent in the baseline coefficient β0(t). These results coincide
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(a) (b)

(c) (d)

Figure 7. Simulated example N(µ(t), σ2). Regression coefficients for model
with d = 10 and σ = 2. Coefficient of (a) X(0), (b) X(1), (c) X(2) and (d)
X(3).

with those of Cai, Fan, and Li (2000). Nevertheless in their analysis the concen-

tration of nitrogen dioxide is relevant. However, if we take the same covariates

as they do, the concentration of nitrogen dioxide is included in our model. In

fact none of the covariates is removed from the model when regressing on the

same covariates. The dust level has a globally decreasing effect over time on the

number of hospital admissions, while the effect of ozone and SO2 seem to be

higher in the last year.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Hong Kong environmental data. Regression coefficients of (a)
X(0), (b) SO2, (c) dust, (d) O3, (e) temperature and (f) humidity.
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Figure 9. Hong Kong environmental data. Logarithm of the number of
hospital admissions.
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Appendix

A.1. Proof of Lemma 1

We need some notation. If A = (Aij) is an m×n real valued matrix, an and

bn sequences of positive numbers, then the ∞-norm of A is ∥A∥∞ = max16i6m∑n
j=1 |Aij |, for 1 < ν < ∞, the ν-norm of A is ∥A∥ν = (

∑m
i=1

∑n
j=1 |Aij |ν)1/ν ,

and an . bn means that an/bn is bounded and an ≍ bn means that an/bn and

bn/an are bounded.

Proof. From Lemma A.3 of Huang, Wu, and Zhou (2004) there exist pos-

itive constants M1 and M2 such that, except on an event whose probability

tends to zero, all the eigenvalues of (mmax/n)U
′WU fall between M1 and M2,

and consequently U′WU is invertible. Therefore ||(mmax/n)U
′WU||2 ≍ 1 and

||((mmax/n)U
′WU)−1||2 ≍ 1. Moreover from Gijbels and Verhasselt (2010)

(Proposition 1 and the proof of Theorem 1) we know that

(τU′WU+ a(ϕ)Qλ)
−1 =

∞∑
j=0

(−1)j(τU′WU)−1
(
a(ϕ)Qλ(τU

′WU)−1
)j

and the series converges if ||a(ϕ)Qλ(τU
′WU)−1||2 < 1.
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We now show that ||a(ϕ)Qλ(τU
′WU)−1||2 = O(m

3/2
maxλmax/n) except on an

event with probability tending to zero:

||a(ϕ)Qλ(τU
′WU)−1||2 6

∣∣∣a(ϕ)
τ

∣∣∣||Qλ||2||(U′WU)−1||2 .
mmax

n

√√√√ d∑
p=0

mp||Qλ||2∞

6 mmax

n

√
d mmax||Qλ||∞ 6 m

3/2
max

n

√
dλmax max

06p6d
4kp

= O
(m3/2

maxλmax

n

)
,

since ||λpD
′
kp
Dkp ||∞ = λp4

kp (see Gijbels and Verhasselt (2010), proof of Theo-

rem 1) with kp fixed, a(ϕ) < ∞, and 0 < |τ | < ∞.

A.2. Proofs of Theorems 1 and 2

Proof of Theorem 1. The existence of the P-spline estimates of the coefficients

α and thus also the existence of the P-spline estimates β̂p(t) (p = 0, . . . , d) follows

from (2.4) and Lemma 1. The consistency of β̂p(t) (p = 0, . . . , d) is a consequence

of Theorem 2.

Let Ỹij = µij − ζ, Ỹi = (Ỹi1, . . . , ỸiNi)
′, Ỹ = (Ỹ1, . . . , Ỹn)

′ and

α̃ =
(
τU′WU+ a(ϕ)Qλ

)−1
UWỸ.

Then E (α̂) = α̃ and E (β̂(t)) = β̃(t) = B(t)α̃ for t ∈ T , where the expectation

is taken conditioning on X . Let α̂reg be the regular B-spline estimator, (2.4)

with λ0 = . . . = λd = 0, and write E (α̂reg) = α̃reg.

Proof of Theorem 2. First note that from the properties of B-spline functions

(see for example Lemma A.1. in Huang, Wu, and Zhou (2004)) we know that

||βp(t)||2L2
≍ ||αp||22/mp for p = 0, . . . , d.

We first find the rate of ||β̂− β̃||2L2
, with ||β||L2 =

√∑d
p=0 ||βp||2L2

, based on

the rates of the regular B-spline estimator of Huang, Wu, and Zhou (2004).

From (2.5) we have that

α̂− α̃ =
(
τ−1(U′WU)−1 − a(ϕ)τ−2(U′WU)−1Qλ(U

′WU)−1

+oP
(m3/2

maxλmax

n

)
τ−1(U′WU)−1

)
U′W(Y − ζ − Ỹ)

= α̂reg − α̃reg − a(ϕ)τ−2(U′WU)−1Qλ(U
′WU)−1U′W(Y − ζ − Ỹ)

+τ−1oP
(m3/2

maxλmax

n

)
(U′WU)−1U′W(Y − ζ − Ỹ).
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Consequently

||α̂−α̃||2 6 ||α̂reg − α̃reg||2+
(
|a(ϕ)τ−1|||(U′WU)−1||2||Qλ||2+oP

(m3/2
maxλmax

n

))
·τ−1|||(U′WU)−1U′W(Y − ζ − Ỹ)||2.

From the proof of Lemma 1 we know that |a(ϕ)τ−1|||(U′WU)−1||2||Qλ||2 =
OP (m

3/2
maxλmax/n), Lemma A.4 and A.5 of Huang, Wu, and Zhou (2004) give that

(by Assumption 1.4 and the fact that a(ϕ) < ∞ and 0 < |τ | < ∞),

||τ−1(U′WU)−1U′W(Y − ζ − Ỹ)||22 = OP

(m2
max

n2

∑
i

( 1

Ni
+

1

mmax

(
1− 1

Ni

)))
||α̂reg − α̃reg||22 = OP

(m2
max

n2

∑
i

( 1

Ni
+

1

mmax

(
1− 1

Ni

)))
.

Therefore

||α̂− α̃||22 = OP

(m2
max

n2

∑
i

( 1

Ni
+

1

mmax

(
1− 1

Ni

))(
1 +

m
3/2
maxλmax

n

)2)
= OP

(
mmaxr

2
n

(
1 +

m
3/2
maxλmax

n

)2)
= OP

(
mmaxr

2
n

)
,

||β̂ − β̃||2L2
= OP

(
r2n
(
1 +

m
3/2
maxλmax

n

)2)
= OP (r

2
n),

since Assumption 1.5 and 1.6 hold.

Finally we prove the rate of ||β̃ − β||2L2
. First note that

α̃ = α̃reg − a(ϕ)τ−2(U′WU)−1Qλ(U
′WU)−1U′WỸ

+oP

(m3/2
maxλmax

n

)
τ−1(U′WU)−1U′WỸ

=
(
1−OP

(m3/2
maxλmax

n

))
α̃reg,

consequently

β̃ =B(t)α̃ = β̃reg

(
1−OP

(m3/2
maxλmax

n

))
||β̃ − β||L2 6 ||β̃reg − β||L2 +OP

(m3/2
maxλmax

n

)
||β̃reg||L2 ,

where β̃reg = B(t)α̃reg.

From Theorem 2 of Huang, Wu, and Zhou (2004) we know that ||β̃reg −
β||L2 = OP (ρn). Since a spline βp(·) is a continuous function on T = [0, T ],

||β̃reg||L2 is bounded and therefore ||β̃ − β||L2 = OP

(
ρn +m

3/2
maxλmax/n

)
.
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