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Abstract: The problem of estimating treatment effects with censored two-sample

data is of importance in survival analysis and has received much attention in the

literature. A common procedure for dealing with censoring is the inverse probabil-

ity weighted method. However, this method only uses information from uncensored

data and can suffer from loss of efficiency. In this paper, we propose a unified semi-

parametric estimating equation approach to estimate various types of treatment

effects with censored data, including the mean difference between two populations,

the difference between two survival times at a given point, the probability that

the survival time from one population is greater than that from the other, and the

difference in mean residual life times, among others. Our approach uses all the

available data, thus it typically leads to gains in efficiency as compared with the

existing methods. We study the theoretical properties of the proposed estimator

and derive its consistent variance estimator. Our simulation studies demonstrate

that the proposed method tends to work better than the existing ones in finite

sample settings. We also analyze a data set to illustrate its application.

Key words and phrases: Treatment effect, semiparametric model, estimating equa-

tion, censored data, two sample problem.

1. Introduction

The estimation of treatment effects based on two sample data is a common

and important problem in survival analysis and biomedical studies. For example,

in comparing the efficacy of two treatments, we are often interested in the dif-

ference between the probabilities of survival for at least a certain length of time,

or whether the probability that the survival time of the patients under treat-

ment 1 is greater than that under treatment 2. Such questions are not directly

addressed by the existing two-sample test methods, such as log-rank and other

rank-based tests for censored data (Fleming and Harrington (1991)), since they

are constructed for testing general differences between two survival functions,

not for these specific questions.

http://dx.doi.org/10.5705/ss.2012.091
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There has been much work on estimating treatment effects with two sam-

ple data and a variety of methods have been proposed. For example, Goddard

and Hinberg (1990) proposed a method assuming data are normally distributed;

Campbell and Ratnaparkhi (1993) studied a receiver operating characteristic

curve (ROC) based procedure when data follow a Lomax distribution; Li, Ti-

wari, and Wells (1996) proposed a control percentile test, a chi-squared test, and

a Kolmogorov-type test for comparing two distributions with censored survival

data; Hollander and Korwar (1982) developed a nonparametric Bayesian estima-

tion of the horizontal distance between the distributions of two populations.

Several authors have considered a semiparametric approach for estimating

certain specific treatment effects based on two-sample data. In this approach, a

parametric model is assumed for one sample and a nonparametric one is used for

the other. This is attractive in many two-sample problems. For instance, when

evaluating the effect of a new treatment with respect to a standard treatment

in medical studies, more is often known about the standard treatment, since it

may have been used for a long time and a parametric model can often be formu-

lated based on historic data. In contrast, because there is limited data on a new

treatment, a nonparametric model is more appropriate. Qin (1997) studied vari-

ous differences in the two populations by an empirical likelihood approach in the

semiparametric model. Li, Tiwari, and Wells (1999) considered such an approach

for two-sample problems with one group modeled parametrically and the other

nonparametrically. Li and Lin (2009) conducted a semiparametric maximum

likelihood estimation of the parametric and nonparametric components based on

a semiparametric mixture model. Hsieh and Turnbull (1996) considered semi-

parametric estimation of the ROC assuming one of the samples follows a normal

distribution. Zhou and Liang (2005) proposed a general approach for treatment

estimation based on estimating equations with inverse probability weights for

censored data. They studied the inference of treatment effects based on normal

approximation and empirical likelihood-based methods. They observed that the

empirical likelihood-based method performs better than the normal approxima-

tion method in their simulation studies.

We propose a new approach for estimating treatment effects based on semi-

parametric estimating equations without resorting to inverse probability weight-

ing, and using all the observed data. Our method is reminiscent of the Buckley-

James method for the accelerated failure time models (Buckley and James (1979)),

in which the censored observations are estimated by their conditional expecta-

tions given all the observed data. In this way, the information contained in the

uncensored observations as well as censored observations is fully utilized. We

show that the proposed estimator is consistent and asymptotically normal under

mild regularity conditions. We also demonstrate via simulation studies that the

proposed method outperforms existing ones.
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The rest of the paper is organized as follows. In Section 2 we describe the
proposed method. In Section 3 we discuss its asymptotic properties. In Section
4 we use simulation studies to evaluate the finite sample performance of the
proposed method and compare it with existing ones. In Section 5, a data set
is analyzed to illustrate the application of the proposed method. Concluding
remarks are given in Section 6. The proofs of the theorems are given in the
appendix.

2. Semiparametric Estimation of Treatment Effects

2.1. The model and motivating examples

Let X0 and Y 0 be independent nonnegative random variables with survival
functions S and D, respectively. Consider the random censorship model, in
which X0 and Y 0 are subject to right censoring. Denote the censoring variables
by U and V , assumed to be independent with survival functions K and Q and
independent of X0 and Y 0. Suppose we can only observe (X, δ) and (Y,ϖ),
where X = min{X0, U}, δ = 1{X0 ≤ U}, Y = min{Y 0, V } and ϖ = 1{Y 0 ≤
V }. Denote the distribution functions of X0 and Y 0 by F (·) = 1 − S(·) and
G(·) = 1−D(·), respectively.

A semiparametric approach is often reasonable when there is more informa-
tion on one of the two samples. Here we assume that G(·) is of known form
depending on a d-dimensional parameter θ, G(y) = Gθ(y). Let gθ(y) be its
density function. Suppose the distribution of the censoring variable V does not
depend on θ.

The observed data consists of two samples, (Xi, δi), 1 ≤ i ≤ n, which are
independent and identically distributed as (X, δ); and (Yj , ϖj), 1 ≤ j ≤ m, which
are independent and identically distributed as (Y,ϖ). Let ς = m/n and τ1 =
sup{s : S(s) > 0}.

Let ∆ be the parameter representing the treatment effect of interest. Assume
that there exists a function φ such that

EF [φ(X
0,∆0; θ0)] = 0, (2.1)

where ∆0 and θ0 are the true values of parameters ∆ and θ, respectively. φ(·, ·, ·)
is called an unbias estimating function. We can estimate ∆ by constructing
estimating equations based on φ(X0,∆, θ0), and φ(X

0,∆; θ0) can be easily con-
structed in most applications.

Example 1 (Estimation of the mean difference). Here ∆ = E(X0)−E(Y 0) and
we can take φ(X0,∆, θ0) = X0 − EY 0 − ∆. When Y 0 follows a exponential
distribution with mean θ0, then φ(X

0,∆, θ0) = X0 − θ0 −∆. When Y 0 follows
a Weibull distribution with parameter θ0 = (θ1, θ2), then φ(X0,∆; θ0) = X0 −
θ1Γ1(1 + 1/θ2)−∆, where Γ1(·) is the gamma function.
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Example 2 (Estimation of the difference between two survival functions). For a

given time point t0, let ∆ = S(t0)− (1−Gθ0(t0)). Then φ(X
0,∆; θ0) = I(X0 >

t0) − (1 −Gθ0(t0)) −∆. When Y 0 follows a exponential distribution with mean

θ0, then φ(X0,∆; θ0) = I(X0 > t0) − exp(−t0/θ0) − ∆. When Y 0 follows a

Weibull distribution with parameter θ0 = (θ1, θ2), then φ(X
0,∆; θ0) = I(X0 >

t0)− exp(−(t0/θ1)
θ2)−∆.

Example 3 (Estimation of the probability that the failure time in one popula-

tion is greater than that in the other). For this problem, ∆ = P (X0 < Y 0).

We construct the estimating equation as φ(X0,∆; θ0) = 1 − Gθ0(X
0) − ∆.

When Y 0 follows a exponential distribution with mean θ0, then φ(X
0,∆; θ0) =

exp(−X0/θ0)−∆. When Y 0 follows a Weibull distribution with parameter θ0 =

(θ1, θ2), then φ(X
0,∆; θ0) = exp(−(X0/θ1)

θ2)−∆.

Example 4 (Difference of mean residual life times). Mean residual life function

(MRLF) is an important characteristic of a failure time, describing the remaining

life expectancy of an individual who has survived up to time t. We consider the

problem of estimating the difference between the residual life times in two samples

in the presence of a covariate. Consider the multiplicative model

E{X0 − Y 0|X0 > t, Y 0 > t,W ) = α(t)g(∆′W ),

where g(·) is a known function, W is a covariate. If ∆ = 0, then there is no

difference between the treatment group and control group after adjusting for the

covariate effect. Note that we have

E{(X0 − t)|X0 > t,W} − E{(Y 0 − t)|Y 0 > t,W}
= E{X0 − Y 0|X0 > t, Y 0 > t,W ) = α(t)g(∆′W ).

Therefore, we can construct an estimating function as

φ(X0,∆; θ0) = I(X0 > t)I(Y 0 > t)[(X0 − t)−m(t, θ0)− α(t)g(∆′W )]

where m(t, θ0) = Eθ0(Y
0 − t|Y 0 > t,W ) is a known function, up to an unknown

parameter θ0.

2.2. A semiparametric estimating equation approach

To describe the proposed approach, we first assume θ0 is known. If X0 is

fully observed, then by (2.1), we can use an estimating equation to estimate ∆ :

1

n

n∑
i=1

φ(X0
i ,∆; θ0) = 0. (2.2)
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For an unknown θ0, we replace it by a consistent estimator. However, with

censored data, the value of X0
i associated with δi = 0 is unobservable, so we

cannot estimate ∆ directly based on (2.2).

A commonly used procedure for dealing with censoring is based on the inverse

probability weighted method, or IPW (Robins, Rotnitzky, and Zhao (1995)).

Zhou and Liang (2005) provided an estimator based on this method. However,

the IPW method makes use of the uncensored data only, and generally results in

a loss of efficiency.

Rather than only using the uncensored data, we make use of all the informa-

tion from the uncensored and censored data. In this way, a more efficient esti-

mator can be obtained. We note that, in the presence of censoring, φ(X0
i ,∆, θ0)

is not an unbiased estimating function if only uncensored data is used. However,

we can construct an unbiased estimating function based on all the observations,

as follows. For simplicity, let S =: S(·) and

ϕ(Xi, δi,∆; θ0, S) = E
[
φ(X0

i ,∆; θ0)
∣∣Xi, δi

]
, (2.3)

and then the statistical inference for the treatment effect parameter ∆ can based

on ϕ(Xi, δi,∆, θ0, S). This is valid since

E
[
ϕ(X, δ,∆; θ0, S)

]
= E

[
φ(X0,∆; θ0)

]
= 0,

and ϕ is an unbiased estimating function for censored data using all the obser-

vations.

Expression (2.3) can be rewritten as

ϕ(Xi, δi,∆; θ0, S) = δiφ(X
0
i ,∆; θ0) + (1− δi)

∫ τ1
Xi
φ(s,∆; θ0)dF (s)

1− F (Xi)
. (2.4)

The estimating equation is

1

n

n∑
i=1

ϕ(Xi, δi,∆; θ0, S) = 0. (2.5)

Here both θ0 and S need to be estimated. When δi = 1, that is, X0
i is observed,

the term in (2.3) is φ(X0
i ,∆; θ0); when δi = 0, the term in (2.3) is estimated by

E
[
φ(X0

i ,∆; θ0)
∣∣Xi, δi = 0

]
=

∫ τ1
Xi
φ(s,∆; θ0)dF (s)

1− F (Xi)
.

This is similar to the Buckley-James estimator in the accelerated failure time

models (Buckley and James (1979)). See also Honoré, Khan, and Powell (2002),

Zhou, Wan, and Wang (2008) for a similar approach to deal with missing data

problems in the context of estimating equations.
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In (2.5), ∆ is the parameter of main interest, S and θ0 are nuisance param-

eters. Since S and θ0 are unknown, we need to estimate them. This can be done

with the maximum likelihood estimate.

The likelihood function for the observed data is

ℓ(F, θ) =

n∏
i=1

{F (Xi)−F (Xi−)}δi(1−F (Xi))
(1−δi)

m∏
j=1

gθ(Yj)
ϖj (1−Gθ(Yj))

(1−ϖj).

By maximizing the likelihood function ℓ(F, θ), we can obtain the maximum like-

lihood estimator of (F, θ0), denoted by (F̂ , θ̂MLE). It can be easily shown that

θ̂MLE is the maximum likelihood estimator based on the sample {(Yj , ϖj), j =

1, . . . ,m}, and F̂ is the Kaplan-Meier estimator (Kaplan and Meier (1958)),

F̂ (t) = 1−
∏
u≤t

(
1− dN(u)

Y (u)

)
,

where N(u) =
∑

(Xi ≤ u, δi = 1) and Y (u) =
∑

(Xi ≥ u). Let Ŝ(t) = 1 − F̂ (t)

be the Kaplan-Meier estimator of the survival function. By substituting Ŝ and

θ̂MLE into (2.5), a feasible estimator of ∆ can be obtained by solving

1

n

n∑
i=1

ϕ(Xi, δi,∆; θ̂MLE , Ŝ) = 0. (2.6)

This can be done with existing methods for estimating equations. In Examples

1-3, (2.6) can be solved explicitly, while in Example 4, (2.6) needs to be solved

numerically.

3. Large Sample Properties of the Estimator

In (2.5) there are two unknown nuisance parameters, θ0 and S, which make

it difficult to derive the large sample properties of ∆̂ directly. So we proceed

in two steps. We first assume θ0 is known, and replace the parameter S by the

Kaplan-Meier estimator Ŝ. The large sample properties of ∆̂ can be obtained.

In the second step, we replace θ0 by its maximum likelihood estimate and derive

the properties of estimator ∆̂ based on the result with a known θ0.

Consider the situation where θ0 is known. There is only one nuisance pa-

rameter S, which can be estimated by its Kaplan-Meier estimator Ŝ and then,

by solving (2.5), we can obtain the estimator ∆̂. Under this assumption, the

estimator is consistent and asymptotically normal.

Proposition 1. Suppose θ0 is known and the conditions (A1)−(A4) in the Ap-

pendix hold. Let the true value of ∆ be ∆0, Ŝ be the Kaplan-Meier estimator of



SEMIPARAMETRIC ESTIMATION IN TWO SAMPLE PROBLEM 127

S, and ∆̂ be the solution of the estimating equation

1

n

n∑
i=1

ϕ(Xi, δi,∆; θ0, Ŝ) = 0. (3.1)

Then ∆̂
P−→ ∆0.

Throughout, for a function f(x, y), let ḟx(x, y) , ∂f(x, y)/∂x. Let M(s) =

I{X ≤ t, δ = 1} −
∫ t
0 I(X ≥ t)dΛ(s), h(s) = S(s)K(s−) and

η =

∫ τ1

0
(1−K(s−))h−1(s)

[
φ(s)S(s) +

∫ τ1

s
φ(t)dS(t)

]
dM(s).

Proposition 2. Suppose θ0 is known and the conditions (A1)−(A4) in the Ap-

pendix hold. Let the true value of ∆ be ∆0, Ŝ be the Kaplan-Meier estimator of

S, and ∆̂ be the solution of the estimating equation

1

n

n∑
i=1

ϕ(Xi, δi,∆; θ0, Ŝ) = 0. (3.2)

Then √
n(∆̂−∆0)

L−→ N(0, A−1ΓA
′−1),

where A=E[ϕ̇∆(xi, δi,∆0; θ0, S)], Γ=E
[
(ϕ(X, δ,∆0; θ0, S)+η)(ϕ(X, δ,∆0; θ0, S)

+η)′
]
.

Next, we consider the more realistic situation where both θ0 and S are un-

known. In this case, we estimate θ0 by its maximum likelihood estimator θ̂MLE

and estimate S by the Kaplan-Meier estimator Ŝ. Then by solving (2.6), we

obtain the final estimator of ∆, the parameter of our main interest.

Theorem 1. Suppose conditions (A1)−(A8) in the Appendix hold. Let ∆̂ be the

solution of the estimating equation

1

n

n∑
i=1

ϕ(Xi, δi,∆; θ̂MLE , Ŝ) = 0.

Then ∆̂ is consistent and asymptotically normal with

√
n(∆̂−∆0)

L−→ N(0,Σ),

where Σ = A−1(Γ+BΣ1B
′)A

′−1, A = E[ϕ̇∆(xi, δi,∆0; θ0, S)], Γ=E
[
(ϕ(X, δ,∆0,

θ0, S) + η)(ϕ(X, δ,∆0; θ0, S) + η
)′]

, Σ1 = I(θ0)
−1/ς with I(θ) defined in (A8) in

the Appendix, and B = E
[
ϕ̇θ(X, δ,∆0, θ0, S)

]
.
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The proofs of Propositions 1 and 2 and Theorem 1 are given in the Appendix.

These results provide the theoretical justification for the proposed method,

and can be used as the basis for statistical inference. For example, to construct

confidence intervals for ∆, we first obtain consistent estimator of the variance

Σ using the method described in Honoré, Khan, and Powell (2002): take Σ̂ =

Â−1(Γ̂+ B̂Σ̂1B̂
′)Â′−1, where Â, B̂, Γ̂, and Σ̂1 are consistent estimators of A,B,Γ

and Σ1, respectively. Here, K̂ is the Kalpan-Meier estimator of K, Â and B̂ are

just sample analogous of A and B,

Â =
1

n

n∑
i=1

ϕ̇∆(xi, δi, θ̂MLE , ∆̂, Ŝ) and B̂ =
1

n

n∑
i=1

ϕ̇θ(xi, δi, θ̂MLE , ∆̂, Ŝ).

For Γ and Σ1, let

ϕ̂i = δiφ(xi, θ̂MLE , ∆̂) + (1− δi)

∫ τ1
xi
φ(s, ∆̂, θ̂MLE)dF̂ (s)

1− F̂ (xi)
,

Λ̂(s)=
( 1
n

n∑
i=1

δiI(xi ≤ s)
)( 1
n

n∑
i=1

I(xi ≥ s)
)−1

,

ĥ(s) =
1

n

n∑
i=1

(
δiI(xi > s) + (1− δi)I(xi ≥ s)

)
,

M̂i(s) = I(xi ≤ t, δ = 1)−
∫ t

0
I(xi ≥ s)dΛ̂(s),

η̂i =

∫ τ1

0
(1− K̂(s−))ĥ−1(s)

[
φ(s, θ̂MLE , ∆̂)Ŝ(s)

+

∫ τ1

s
φ(t, θ̂MLE , ∆̂)dŜ(t)

]
dM̂i(s).

We estimate Γ by Γ̂ = 1
n

∑n
i=1(ϕ̂i + η̂i)(ϕ̂i + η̂i)

′. Let ℓg(θ, yj) = gθ(yj)
ϖj (1 −

Gθ(yj))
(1−ϖj), then the information matrix I(θ0) can be estimated by

Î(θ̂MLE) = − 1

m

m∑
j=1

∂2 log ℓg(θ, yj)

∂θ∂θτ

∣∣∣
θ̂MLE

.

We estimate Σ1 by Σ̂1 = nÎ(θ̂MLE)/m.

4. Simulation Studies

We conducted simulation studies to evaluate the finite sample performance

of the proposed method and compare it with two methods studied in Zhou and

Liang (2005): a method based on the normality assumption, and a method based

on the empirical likelihood.
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Table 1. Simulation results based on the Norm, EL, and New methods for
exponential distributions. Here Norm refers to the method based on normal
distribution, EL refers to the method based on empirical likelihood method,
and New refers to the proposed method. Bias: the bias of the estimator;
SD: the mean of the standard deviation of the estimator; SE: the standard
error of the estimator; ECP(95%): the empirical 95% coverage probability;
C(%): the censoring probability in the two samples.

Bias SD SE ECP(95%) C(%)

Norm EL New Norm EL New Norm EL New Norm EL New X0 Y 0

n = 100

0.018 0.018 -0.003 0.0408 0.0408 0.0397 0.0442 0.0442 0.0405 90.4 94.0 94.2 37 33
0.019 0.019 -0.002 0.0402 0.0402 0.0392 0.0438 0.0438 0.0401 90.0 93.4 93.7 37 30
0.014 0.014 -0.002 0.0401 0.0401 0.0394 0.0423 0.0423 0.0402 91.6 93.2 94.2 31 33
0.014 0.014 -0.001 0.0395 0.0395 0.0388 0.0418 0.0418 0.0400 91.1 93.0 93.6 31 30

n = 200

0.012 0.012 -0.002 0.0293 0.0293 0.0286 0.0305 0.0305 0.0292 92.2 93.4 94.0 37 33
0.011 0.011 -0.003 0.0289 0.0289 0.0282 0.0302 0.0302 0.0285 92.6 93.2 94.3 37 30
0.009 0.009 -0.001 0.0286 0.0286 0.0282 0.0295 0.0295 0.0283 92.8 94.0 94.4 31 33
0.007 0.007 -0.002 0.0282 0.0282 0.0278 0.0288 0.0288 0.0276 93.2 94.8 93.7 31 30

Simulation study 1. Let X0 and Y 0 be independent random variables from

the exponential distributions with mean 6 and 10, respectively. The censored

random variables U and V were generated from the exponential distribution

with mean cx and cy, respectively. The parameter cx and cy were used to control

the censoring percentages of the two samples. Take the parameter of interest

to be ∆ = P (X0 < Y 0) with estimating function ψ(x,∆, θ) = exp(−x/θ) − ∆.

Simulation results are given in Table 1.

Simulation study 2. Let W (θ1, θ2) denote a two-parameter Weibull distribu-

tion. We took X0 ∼ W (10, 5) and Y 0 ∼ W (8, 2), with uniformly distributed

censoring variables. The parameter of interest here is ∆ = EX0 − EY 0 and the

corresponding estimating function is ψ(x,∆, θ1, θ2) = x − θ1Γ1(1 + 1/θ2) − ∆,

where Γ1(·) is the gamma function. Different censoring percentages were con-

sidered. Similar to the first example, the parameter was estimated and then

the results were compared with the methods in Zhou and Liang (2005). The

simulation results are given in Table 2.

We considered sample sizes, n = m = 100 and 200. The number of replica-

tions was 1,000. We evaluated the performance of the proposed estimator, the

Norm and the EL estimators. See Zhou and Liang (2005) for detailed description

of the last two.

It can be seen that all three estimators are unbiased and there is a good

agreement between SD and SE. The empirical 95% coverage probabilities are
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Table 2. Simulation results based on the Norm, EL, and New methods for
Weibull distributions. Here Norm refers to the method based on normal
distribution, EL refers to the method based on empirical likelihood method,
and New refers to the proposed method. Bias: the bias of the estimator;
SD: the mean of the standard deviations of the estimator; SE: the standard
error of the estimator; ECP(95%): the empirical 95% coverage probability;
C(%): the censoring probability in the two samples.

Bias SD SE ECP(95%) C(%)

Norm EL New Norm EL New Norm EL New Norm EL New X0 Y 0

n = 100

-0.012 -0.012 -0.015 0.5154 0.5154 0.5125 0.5234 0.5234 0.5239 94.5 92.9 94.3 47 35
-0.009 -0.009 -0.012 0.4896 0.4896 0.4865 0.4959 0.4959 0.4966 95.2 92.8 95.1 47 25
-0.006 -0.006 -0.007 0.5095 0.5095 0.5077 0.5147 0.5147 0.5145 95.0 93.2 95.0 40 35
-0.003 -0.003 -0.004 0.4834 0.4834 0.4815 0.4869 0.4869 0.4868 95.3 93.7 95.3 40 25

n = 200

-0.013 -0.013 -0.014 0.3646 0.3646 0.3635 0.3653 0.3653 0.3652 95.4 95.5 95.1 47 35
-0.010 -0.010 -0.011 0.3473 0.3473 0.3461 0.3452 0.3452 0.3451 95.1 95.1 95.1 47 25
-0.012 -0.012 -0.013 0.3602 0.3602 0.3595 0.3580 0.3580 0.3581 95.3 95.2 95.2 40 35
-0.009 -0.009 -0.010 0.3425 0.3425 0.3417 0.3458 0.3458 0.3459 95.3 94.8 95.0 40 25

reasonably close to the nominal level. As expected, the SD and SE decrease

when the sample size increases from 100 to 200. The SD of the Norm procedure

is similar to that of the EL procedure. This is consistent with the results of Qin

and Lawless (1994). Furthermore, the NEW method is relatively robust to the

censoring percentages when comparing with the other two methods, especially

in Simulation Study 1.

In general, the NEW approach performs better, with SD smaller than those

from the Norm and EL procedures. In particular, the proposed method tends

to have more accurate coverage probabilities that are closer to the nominal 95%

level. Although improvements are generally modest, the pattern is consistent in

almost all the cases we considered.

The simulation results suggest that the proposed method performs well in

finite sample situations and provides a useful alternative to the existing methods

for estimating treatment effects in two-sample problems with censored data.

5. Data Example

The data set is from a study on Primary biliary cirrhosis of the liver (PBC).

PBC is a rare but fatal chronic disease, with prevalence about 50 cases per million

population. A double-blinded randomized trial of PBC was conducted between

January 1974 and May 1984 at the Mayo clinic. One aim of the trial was to

study the effect of the drug D-penicillamine (DPCA) on PBC, compared with a
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Table 3. Estimation results of PBC data. Norm, EL and New represent
the Norm-based, EL-based and the proposed methods, respectively. Est:
estimator of the probability of the survival time of the DPCA group less
than that of the placebo group; Sd: standard deviation of the estimator; CI:
confidence interval.

Norm EL New
Est 0.4574 0.4574 0.4574
Sd 0.0420 0.0420 0.0384
95% CI (0.37, 0.54) (0.37, 0.54) (0.38, 0.53)

placebo. At the time of registration, there were 424 patients, among whom 312

agreed to participate in the randomized trial. A detailed description of the data

can be found in Fleming and Harrington (1991).

Let X0 and Y 0 denote the survival time of the population with DPCA and

placebo, respectively. We take the parameter of our interest to be ∆ = P (X0 <

Y 0).

After examining the Q-Q plot of the observations from the placebo group

(figure not shown), we used the exponential model for the placebo group in our

analysis. We compared our proposed method with the Norm-based and EL-based

methods. The estimated values of ∆ and their standard deviations are listed in

Table 3.

The 95% confidence intervals based on each of the methods contain 0.50,

which suggest that the drug (DPCA) has no significant effect on this disease.

This is consistent with the conclusion in Fleming and Harrington (1991). The

results from the methods are similar, with the proposed method providing a

slightly shorter confidence interval.

6. Concluding Remarks

The problem of comparing two treatment effects arises in many areas of sta-

tistical applications. This paper focuses on semiparametric inference of treatment

effect when data are subject to censoring. It develops a general method based

on estimating equations that can deal with a large class of two-sample problems.

The proposed method makes full use of the data. Asymptotic properties of the

proposed method are developed and simulation studies show that the proposed

estimator performs well when compared with existing methods. A data example

is also used to illustrate the application of the proposed method.

For simplicity, our method requires that the function φ(x,∆; θ0) is contin-

uous at θ0 and ∆. If it is discontinuous at θ0, our approach cannot be applied

directly. For example, for estimating the ROC curve, we can use the function

φ(X0, θ0,∆) = 1 − I{X0 ≤ G−1
θ0

(1 − p)} − ∆. However, this function is not
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differentiable. The theoretical results proved here are not applicable, and further
work is needed to deal with such non-smooth estimating functions.
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Appendix

In the Appendix, we prove the main results stated in the Section 3. We
require some technical assumptions.

(A1) The true parameter ∆0 is an interior point of the parameter space Θ, which
is compact.

(A2) τ1 ≤ τK , where τK = sup{s : K(s) > 0}, and F (X0 = τ1) − F (X0 =
τ1−) > 0.

(A3) φ(x,∆, θ) is continuous differentiable at ∆, with
∫ τ1
0 φ2(s)/K(s)dF (s) <

∞, and for an integral function L(s),

|φ(s,∆1, θ)− φ(s,∆2, θ)| ≤ L(s)|∆1 −∆2|,

with
∫
L(s)dF (s) <∞ and

∫
L2(s)/K(s)dF (s) <∞.

(A4) φ̇∆(X,∆, θ) is continuous and bounded by some function d(x) in a
neighborhood of the true value ∆0 and θ0, and

∫
d(s)dF (s) < ∞, and

Eφ̇∆(X,∆0, θ0) ̸= 0.

(A5) φ(x,∆, θ) and φ̇θ(x,∆, θ) are continuous and bounded by some integral
function d2(x) in a neighborhood of the true value θ0 for any ∆.

(A6) φ̇θ(x,∆, θ) is continuous in some neighborhood of the true value ∆0 for
any θ, and Eφ̇θ(X,∆, θ) ̸= 0.

(A7) The density function gθ(y) is three times differentiable with respect to θ on
A = {y : gθ(y) > 0}. For any y ∈ A and θ, there exists a function M1(y)
satisfying Eθ|M1(Y )| <∞.

(A8) The element Ii,j in the information matrix I(θ) has an expression

Ii,j = −
∫ τ2

0

∂2 log gθ(y)

∂θi∂θj
Q(y)gθ(y)dy−

∫ τ2

0

∂2 log{1−Gθ(y)}
∂θi∂θj

{1−Gθ(y)}dQ(y),
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for i, j = 1, . . . , d, where τ2 = sup{t : D(t)Q(t) > 0}. I(θ) is continuous

and positive definite.

The compactness condition on the parameter space usually holds in applica-

tions. The condition τ1 ≤ τK on the upper support of the survival function S en-

sures that S can be estimated properly on [0, τ1]. The positive mass on the upper

boundary of its support, ensures that (1−δ)/Ŝ(Xi) behaves well in the analysis of

the large sample properties, because Ŝ(Xi) > 0 with δ = 0. In fact, this condition

can be satisfied by artificially censoring all observations at some point in the ob-

served support of {Xi}. The Lipschitz condition (A3) simplifies the proof and is

satisfied in most applications. The conditions
∫ τ1
0 φ2(s)/K(s)dF (s) <∞ guaran-

tees that the variance of our proposed estimator exists. Conditions (A4)-(A6) are

common in the literatures and hold for general cases. Assumptions (A7)−(A8)

are regularity conditions needed for the maximum likelihood estimator of the

parameter θ when data are right censored.

Before proving the main results, we state several lemmas.

Lemma A.1. For any 0 < r < 1/2,

sup
t∈R+

∣∣Ŝ(t)− S(t)
∣∣ = op(n

−r).

Proof. This is Lemma A.4. of Honoré, Khan, and Powell (2002).

Lemma A.2. Let ∆̂ be a solution of the estimating equation of the form

1

n

n∑
i=1

ψ(Xi,∆) = 0,

where X1, . . . , Xn are i.i.d. X. Let q(∆) = Eψ(X,∆). Suppose that ∆0 is the

unique value such that q(∆0) = 0. Furthermore assume that the parameter space

Θ is compact and q(∆) is continuous with respect to ∆. If

sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

ψ(Xi,∆)− q(∆)
∥∥∥ = op(1),

then ∆̂
p−→ ∆0.

Proof. Since

sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

ψ(Xi,∆)− q(∆)
∥∥∥ = op(1),

if N (∆0, δ
∗) is a neighborhood of ∆0 for any given δ∗ > 0, we have

sup
∆/∈N (∆0,δ∗)

∥∥∥ 1
n

n∑
i=1

ψ(Xi,∆)− q(∆)
∥∥∥ = op(1).
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It follows that

inf
∆/∈N (∆0,δ∗)

∥∥∥ 1
n

n∑
i=1

ψ(Xi,∆)
∥∥∥ ≥ inf

∆/∈N (∆0,δ∗)
∥q(∆)∥ − op(1) > M,

where M is some positive constant. Hence ∆̂ ∈ N (∆0, δ
∗), so ∆̂ is consistent.

Proof of Proposition 1. Let q(∆) = E[φ(X0, θ0,∆)], and suppose ∆̂ solves

the estimating equation

1

n

n∑
i=1

ϕ(Xi, δi, θ0,∆, Ŝ) = 0.

In order to get the consistency of ∆̂, by Lemma A.2, it suffices to show that

sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

[ϕ(Xi, δi, θ0,∆, Ŝ)− q(∆)]
∥∥∥ P−→ 0. (A.1)

First note that the Kaplan-Meier estimator satisfies Lemma A.1 and, for all

∆ ∈ Θ,

sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

[ϕ(Xi, δi, θ0,∆, Ŝ)− ϕ(Xi, δi, θ0,∆, S)]
∥∥∥

≤ sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

(1− δi)

∫ τ1
Xi
φ(s,∆, θ0)d(F̂ (s)− F (s))

S(Xi)

∥∥∥
+ sup

∆∈Θ

∥∥∥ 1
n

n∑
i=1

(1− δi)

∫ τ1

Xi

φ(s,∆, θ0)dF (s)S(Xi)
−2(S(Xi)−Ŝ(Xi))

∥∥∥+op(1).
=: J11 + J12 (A.2)

Partition Θ intom nonoverlapping regions Θm
1 ,Θ

m
2 , . . . ,Θ

m
m and choosem enough

large such that max1≤j≤m ρ(Θ
m
j ) < ϵ1, for any ϵ1 > 0, where ρ(·) is the distance

between any two points in parameter space Θm
j . Let ∆1,∆2, . . . ,∆m be an

arbitrary sequence such that ∆i ∈ Θm
i , as similar to the proof of Theorem 4.2.1

of Amemiya (1985). Then we have, for any ε > 0,

P
(
sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

(1− δi)

∫ τ1
Xi
φ(s,∆, θ0)d(F̂ (s)− F (s))

S(Xi)

∥∥∥ > ε
)

(A.3)

≤
m∑
j=1

P
( 1

n

n∑
i=1

∥∥∥(1− δi)

∫ τ1
Xi
φ(s,∆j , θ0)d(F̂ (s)− F (s))

S(Xi)

∥∥∥ > ε

2

)

+

m∑
j=1

P
( 1

n

n∑
i=1

sup
∆∈Θm

j

∥∥∥(1−δi)∫ τ1
Xi
(φ(s,∆, θ0)−φ(s,∆j , θ0))d(F̂ (s)−F (s))

S(Xi)

∥∥∥> ε

2

)
.
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Now we show the first part in (A.3) is op(1).

Note that for all observations with δ = 0, S(X) is bounded away from zero, so[∥∥∥(1− δ)

∫ τ1
X φ(s,∆j , θ0)d(F̂ (s)− F (s))

S(X)

∥∥∥]
≤ C sup

s∈(0,τ1]

∣∣φ(s,∆j , θ0)| ·
τ1∨
0

(F̂ (s)− F (s)),

where C is some constant and
∨τ1

0 (F̂ (s) − F (s)) denotes the total variation of

(F̂ (s)−F (s)) on the interval [0, τ1]. Since (F̂ (s)−F (s)) is a function of bounded

variation, we can choose a partition of [0, τ1] : 0 = z1, . . . , zm0 = τ1 such that

m0 = O(n1/4) and

τ1∨
0

(F̂ (s)− F (s)) =

m0−1∑
j=1

∣∣∣F̂ (zj+1)− F (zj+1)− F̂ (zj) + F (zj)
∣∣∣

≤ 2m0 · sup
s∈[0,τ1]

∣∣F̂ (s)− F (s)
∣∣.

By Lemma A.1, sups∈[0,τ1]
∣∣F̂ (s)− F (s)

∣∣ = op(n
−1/3) for r = 1

3 , so we find

τ1∨
0

(F̂ (s)− F (s)) = op(1).

On the other hand it is easy to show that sups∈(0,τ1]
∣∣φ(s,∆j , θ0)| is bounded

almost sure everywhere, therefore

∥∥∥ 1
n

n∑
i=1

(1− δi)

∫ τ1
Xi
φ(s,∆j , θ0)d(F̂ (s)− F (s))

S(Xi)

∥∥∥ = op(1). (A.4)

Next we will show the second part in (A.3) is op(1).

Let

u(s,∆) = (φ(s,∆, θ0)− φ(s,∆j , θ0))I(Xi < s), F ∗
n(s) = F̂ (s)− F (s),

u1(s,∆) = φ(s,∆, θ0)− φ(s,∆j , θ0).

Under assumption (A3) and the property of Θm
j , we have

sup
∆∈Θm

j

∣∣u(s,∆)
∣∣ → 0, sup

∆∈Θm
j

∣∣u1(s,∆)
∣∣ → 0, (A.5)

in probability.
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Divide the interval [0, τ1] into subintervals [rk, rk+1], k = 1, . . . , kn+1 where

kn = O(n1/3). Then

sup
∆∈Θm

j

∥∥∥ ∫ τ1

0
u(s,∆)dF ∗

n(s)
∥∥∥ = sup

∆∈Θm
j

∥∥∥ kn∑
i=1

∫ ri+1

ri

u(s,∆)dF ∗
n(s)

∥∥∥
≤ 2 sup

∆∈Θm
j

sup
i

sup
ri≤s≤ri+1

∣∣∣u1(s,∆)− u1(ri+1,∆)
∣∣∣+ 4 sup

∆∈Θm
j

sup
i

∣∣∣u1(ri+1,∆)
∣∣∣

+ sup
∆∈Θm

j

kn sup
i

∣∣∣F ∗
n(ri+1)− F ∗

n(ri)
∣∣∣ sup

i

∣∣∣u1(ri+1,∆)
∣∣∣,

By Lemma A.1, we get kn supi
∣∣F ∗

n(ri+1) − F ∗
n(ri)

∣∣ = Op(1), because S(Xi) > 0

with δi = 0 and (A.5), and then

sup
∆∈Θm

j

∥∥∥(1− δi)
∫ τ1
Xi
(φ(s,∆, θ0)− φ(s,∆j , θ0))d(F̂ (s)− F (s))

S(Xi)

∥∥∥ P−→ 0.

Hence,

1

n

n∑
i=1

sup
∆∈Θm

j

∥∥∥(1− δi)

∫ τ1
Xi
(φ(s,∆, θ0)− φ(s,∆j , θ0))d(F̂ (s)− F (s))

S(Xi)

∥∥∥ = op(1).

(A.6)

Combining (A.3), (A.4), and (A.6),

J11 = sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

(1− δi)

∫ τ1
Xi
φ(s,∆, θ0)d(F̂ (s)− F (s))

S(Xi)

∥∥∥ P−→ 0. (A.7)

Note that S(Xi) > 0 when δi = 0 and

sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

(1− δi)

∫ τ1

Xi

φ(s,∆, θ0)dF (s)S(Xi)
−2

∥∥∥
P−→ sup

∆∈Θ

∥∥∥E[
(1− δi)E(I(Xi < X)φ(X,∆, θ0))S(Xi)

−2
]∥∥∥

≤ C1 sup
∆∈Θ

E
∣∣φ(X,∆, θ0)∣∣ = O(1),

where C1 is some positive constant. Since sups∈R+

∣∣S(s)− Ŝ(s)
∣∣ = op(1), we get

J12 = sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

(1− δi)

∫ τ1

Xi

φ(s,∆, θ0)dF (s)S(Xi)
−2(S(Xi)− Ŝ(Xi))

∥∥∥ P−→ 0.

(A.8)
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Hence, (A.7) together with (A.8) yield

sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

[ϕ(Xi, δi, θ0,∆, Ŝ)− ϕ(Xi, δi, θ0,∆, S)]
∥∥∥ P−→ 0.

The conditions of a Uniform Law of Large Numbers is satisfied by assump-

tions, and this implies sup∆∈Θ ∥(1/n)
∑n

i=1 ϕ(Xi, δi, θ0,∆, Ŝ)−q(∆)∥ P−→ 0. Now
(A.1) holds, so the estimator ∆̂ is consistent.

Lemma A.3. With X = X0 ∧ U , δ = I(X0 ≤ U), H(t) = P (X ≥ t), and Λ(·)
the cumulative hazard function of X0, if

N(t) =

n∑
i=1

I{Xi ≤ t, δi = 1},Mj(t) = I{xj ≤ t, δj = 1} −
∫ t

0
I(xj ≥ s)dΛ(s),

Y (t) =

n∑
i=1

I(Xi ≥ t), M(t) =

n∑
i=1

Mj(t) = N(t)−
∫ t

0
Y (s)dΛ(s),

then for the Kaplan-Meier estimator,

Ŝ(t)− S(t) = −S(t) 1
n

∫ t

0
(1−∆Λ(s))−1H(s)−1dM(s) +Rn(t)

= −S(t) 1
n

∫ t

0
h(s)−1dM(s) +Rn(t),

where h(s) = S(s)K(s−), and sup
0≤t<∞

|Rn(t)| = op(n
−1/2).

Proof. The proof follows from Lemma A.2 of Honoré, Khan, and Powell (2002).

Lemma A.4. Under (A2), we have

1

n

n∑
i=1

[ϕ(Xi, δi, θ0,∆0, Ŝ)− ϕ(Xi, δi, θ0,∆0, S)] =
1

n

n∑
j=1

ηj + op(n
−1/2), (A.9)

where

ηj =

∫ τ1

0
(1−K(s−))h(s)−1

[
φ(s)S(s) +

∫ τ1

s
φ(t)dS(t)

]
dMj(s).

Proof. The left-hand side of (A.9) is

LHS =
1

n

n∑
i=1

(1− δi)

{∫ τ1
Xi
φ(s,∆0, θ0)dF̂ (s)

Ŝ(Xi)
−

∫ τ1
Xi
φ(s,∆0, θ0)dF (s)

S(Xi)

}

=
1

n

n∑
i=1

(1− δi)
{∫ τ1

Xi
φ(s,∆0, θ0)d(F̂ (s)− F (s))

S(Xi)

+

∫ τ1

Xi

φ(s,∆0, θ0)dF (s)S(Xi)
−2[S(Xi)− Ŝ(Xi)]

}
+ op(n

−1/2). (A.10)
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For suitable U , V , and W ,{
U(t)V (t) = U(0)V (0) +

∫ t
0 U(s−)dV (s) +

∫ t
0 V (s)dU(s),

d{W (s)}−1 = −{W (s)W (s−)}dW (s).

If U(t) = F̂ (t)− F (t), V (t) = S(t)−1,W (t) = S(t) = V (t)−1, then we have

d(F̂ (t)− F (t)) = S(t)d

(
F̂ (t)− F (t)

S(t)

)
+
S(t−)− Ŝ(t−)

S(t−)
dS(t).

Lemma A.3 implies that

d(F̂ (t)−F (t)) = 1

n
S(t)h(t)−1dM(t)+

S(t−)− Ŝ(t−)

S(t−)
dS(t)+ op(n

−1/2). (A.11)

Thus, (A.10) is

LHS =
1

n

∫ τ1

0

{ 1

n

n∑
i=1

(1− δi)S(Xi)
−1I(Xi < s)

}
φ(s,∆0, θ0)S(s)h(s)

−1dM(s)

+
1

n

n∑
i=1

(1− δi)S(Xi)
−1

∫ τ1

Xi

φ(s,∆0, θ0)
{ Ŝ(Xi)

S(Xi)
− Ŝ(s−)

S(s−)

}
dS(s)

+op(n
−1/2). (A.12)

Since Ŝ(Xi)/S(Xi)− Ŝ(t−)/S(t−) = (1/n)
∫ t−
Xi
h(s)−1dM(s) + op(n

−1/2), so the

second term in last equation can be written as

1

n

n∑
i=1

(1− δi)S(Xi)
−1 1

n

∫ τ1

Xi

h(s)−1

∫ τ1

s
φ(t,∆0, θ0)dS(t)dM(s).

Noting that the i = j term is asymptotically negligible, (A.12) yields a U statistic:

1

n

n∑
i=1

(1−δi)S(Xi)
−1 1

n−1

∫ τ1

Xi

h(s)−1
[
φ(s)S(s)+

∫ τ1

s
φ(t)dS(t)

]
dM(s)+op(n

−1/2).

The kernel function of the U statistic is denoted by F1(Z1i, Z1j) where Z1i =

(Xi, δi).

Note that

2

n

n∑
j=1

E
[
F1(Z1i, Z1j)|Z1j

]
=

1

n

∫ τ1

0
E
[
(1− δi)S

−1(Xi)I(Xi < s)
][
φ(s)S(s) +

∫ τ1

s
φ(t)dS(t)

]
dM(s).
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Under (A2) and (A3) one has E
[
F1(Z1i, Z1j)

]
= 0, E2

[
F1(Z1i, Z1j)

]
< ∞; by a

standard projection theorem for U statistics, LHS = (1/n)
∑n

j=1 ηj + op(n
−1/2),

where

ηj =

∫ τ1

0
E
[
(1− δ)S(X)−1I(X < s)

]
h(s)−1

[
φ(s)S(s) +

∫ τ1

s
φ(t)dS(t)

]
dMj(s)

=

∫ τ1

0
(1−K(s−))h(s)−1

[
φ(s)S(s) +

∫ τ1

s
φ(t)dS(t)

]
dMj(s).

The proof is completed.

Lemma A.5. Under (A1)−(A4), for any r ∈ (0, 1/2), then we have |∆̂−∆0| =
op(n

−r), where ∆̂ is the solution of (3.1).

Proof. It follows from a Taylor expansion of (3.1) that

1

n

n∑
i=1

ϕ(Xi, δi, θ0,∆0, Ŝ) +
( 1

n

n∑
i=1

ϕ̇∆(Xi, δi, θ0,∆0, Ŝ) + op(1)
)
(∆̂−∆0) = 0.

After transformation the last equation is:

1

n

n∑
i=1

ϕ(Xi, δi, θ0,∆0, S) +
1

n

n∑
i=1

[
ϕ(Xi, δi, θ0,∆0, Ŝ)− ϕ(Xi, δi, θ0,∆0, S)

]
+
( 1

n

n∑
i=1

ϕ̇∆(Xi, δi, θ0,∆0, Ŝ) + op(1)
)
(∆̂−∆0) = 0. (A.13)

Lemma A.4 and the limit theory for i.i.d random variables imply that, for any

r ∈ (0, 1/2),∥∥∥ 1
n

n∑
i=1

[
ϕ(Xi, δi, θ0,∆0, Ŝ)− ϕ(Xi, δi, θ0,∆0, S)

]∥∥∥ = op(n
−r).

Similar to the proof of Proposition 1, we can show that∥∥∥ 1
n

n∑
i=1

[
ϕ̇∆(Xi, δi, θ0,∆0, Ŝ)− ϕ̇∆(Xi, δi, θ0,∆0, S)

]∥∥∥ = op(1),

and, together with the fact that (1/n)
∑n

i=1 ϕ̇∆0(Xi, δi, θ0,∆0, S)
P−→ E

[
φ̇∆(Xi,

∆0, S)
]
, we get (1/n)

∑n
i=1 ϕ̇∆(Xi, δi, θ0,∆0, Ŝ)

P−→ E
[
φ̇∆(Xi,∆0, S)

]
. In ad-

dition the first term in (A.13) = Op(n
−1/2) and E

[
φ̇∆(Xi,∆0, S)

]
̸= 0, so

|∆̂−∆0| = op(n
−r).
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Lemma A.6. Under (A1)−(A4), we have

1

n

n∑
i=1

[
ϕ(Xi, δi, θ0, ∆̂, Ŝ)− ϕ(Xi, δi, θ0, ∆̂, S)− ϕ(Xi, δi, θ0,∆0, Ŝ)

+ϕ(Xi, δi, θ0,∆0, S)
]
= op(n

−1/2). (A.14)

Proof. It is easy to show that the representation (A.14) is bounded by∥∥∥ 1
n

n∑
i=1

1− δi
S(Xi)

( ∫ τ1

Xi

φ(s, ∆̂, θ0)dF̂ (s)−
∫ τ1

Xi

φ(s, ∆̂, θ0)dF (s)

−
∫ τ1

Xi

φ(s,∆0, θ0)F̂ (s) +

∫ τ1

Xi

φ(s,∆0, θ0)dF (s)
)∥∥∥

+
∥∥∥ 1
n

n∑
i=1

(1−δi)S(Xi)
−2

∫ τ1

Xi

[φ(s, ∆̂, θ0)−φ(s,∆0, θ0)]dF (s)
(
Ŝ(Xi)−S(Xi)

)∥∥∥
+op(n

−1/2)

=: I1 + I2 + op(n
−1/2).

So it suffices to show that both I1 and I2 are op(n
−1/2).

We first show that I2 = op(n
−1/2). Note that S(Xi) > 0 with δi = 0.

Since φ(X; θ0,∆) is Lipschitz with respect to ∆, it is Euclidean for the envelope
|φ(·, θ0,∆∗) +M1L(·)| by Lemma 2.13 in Pakes and Pollard (1989), where ∆∗ is
some point of Θ and M1 = 2 supΘ |∆−∆0|. Therefore, by Lemma 5 in Sherman
(1994), the class of functions of Xi, δi, indexed by ∆,

(1− δi)S(Xi)
−2

∫ τ1

Xi

(φ(s,∆, θ0)− φ(s,∆0, θ0))dF (s), (A.15)

is Euclidean for a constant envelope.
Next, we will show that (1− δi)S(Xi)

−2
∫ τ1
Xi
(φ(s,∆, θ0)− φ(s,∆0, θ0))dF (s)

is continuous with respect to ∆ in L2 space. Here

lim
∆̂→∆0

E
(
(1− δi)S(Xi)

−2

∫ τ1

Xi

(φ(s, ∆̂, θ0)− φ(s,∆0, θ0))dF (s)
)2

≤ C lim
∆̂→∆0

[

∫ τ1

0
L(s)dF (s)]2|∆̂−∆0|2,

where C is a constant. This functional class is L2(p) continuous with ∆. Let
δ∗ = 1/3. By Lemma 2.17 of Pakes and Pollard (1989), we have

sup
∥∆−∆0∥≤n−δ∗

∥∥∥ 1
n

n∑
i=1

((1− δi)S(Xi)
−2

∫ τ1

Xi

(φ(s,∆, θ0)− φ(s,∆0, θ0))dF (s))

−E((1− δi)S(Xi)
−2

∫ τ1

Xi

(φ(s,∆, θ0)− φ(s,∆0, θ0))dF (s))
∥∥∥ = op(n

−1/2).
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On the other hand, by the Lipschitz assumption on φ(x,∆, θ),

sup
∥∆−∆0∥≤n−δ∗

∥∥∥E((1− δi)S(Xi)
−2

∫ τ1

Xi

(φ(s,∆, θ0)− φ(s,∆0, θ0))dF (s))
∥∥∥

= Op(∥∆−∆0∥).

With r = 1/3, by Lemma A.5 we have

sup
∥∆̂−∆0∥≤n−δ∗

∥∥∥ 1
n

n∑
i=1

((1− δi)S(Xi)
−2

∫ τ1

Xi

(φ(s, ∆̂, θ0)− φ(s,∆0, θ0))dF (s)
∥∥∥

= op(n
−r). (A.16)

Combine the fact that sups∈R+

∣∣∣Ŝ(s) − S(s)
∣∣∣ = op(n

−r), and (A.16) to obtain

I2 = op(n
−1/2).

Now have to show that I1 = op(n
−1/2). Using (A.11),

I1 =
∥∥∥ 1
n

n∑
i=1

(1− δi)

S(Xi)
(

∫ τ1

Xi

(φ(s, ∆̂, θ0)− φ(s,∆0, θ0))d(F̂ (s)− F (s)))
∥∥∥

≤
∥∥∥ 1
n

n∑
i=1

(1− δi)

S(Xi)

∫ τ1

Xi

[φ(s, ∆̂, θ0)− φ(s,∆0, θ0)]n
−1h(s)−1S(s)dM(s)

∥∥∥
+
∥∥∥ 1
n

n∑
i=1

(1− δi)

S(Xi)

( ∫ τ1

Xi

[φ(s, ∆̂, θ0)− φ(s,∆0, θ0)]
(
1− Ŝ(s−)

S(s−)

)
dS(s)

)∥∥∥
+op(n

−1/2)

=: I11 + I12 + op(n
−1/2).

We first show I12 = op(n
−1/2). Let r = 1/3, since sups∈R+ |S(s) − Ŝ(s)| =

op(n
−r), 1− δi, S(s−) > 0 with s < τ1 and (1− δi)S(Xi)

−1 are both bounded, it
suffices to show that

sup
∥∆−∆0∥≤n−δ∗

∥∥∥ 1
n

n∑
i=1

∫ τ1

Xi

(φ(s,∆, θ0)− φ(s,∆0, θ0))dS(s)
∥∥∥ = op(n

−r).

This holds by a similar method as used in the proof of equation (A.16).
Next we show I11 = op(n

−1/2). Note that it is a U statistic since the
own observation terms are asymptotically negligible. Let Zi = (Xi, δi,∆) and
F(Zi, Zj ,∆) be the kernel function of the U statistic and

F(Zi, Zj ,∆) =
1

2

(1− δi)

S(Xi)

∫ τ1

Xi

[φ(s,∆, θ0)− φ(s,∆0, θ0)]h(s)
−1S(s)dMj(s)

+
1

2

(1− δj)

S(xj)

∫ τ1

xj

[φ(s,∆, θ0)− φ(s,∆0, θ0)]h(s)
−1S(s)dMi(s).
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Since

I11 ≤
∥∥∥ 2
n

n∑
j=1

E[F(Zi, Zj , ∆̂)|Zj ]
∥∥∥

+
∥∥∥ 2

n(n− 1)

∑
i<j

F(Zi, Zj , ∆̂)− E[F(Zi, Zj , ∆̂)|Zj ]
∥∥∥,

with Lemma A.5, it is sufficient to show that

J1 =: sup
∥∆−∆0∥≤n−δ∗

∥∥∥ 2
n

n∑
j=1

E[F(Zi, Zj ,∆)|Zj ]
∥∥∥ = op(n

−1/2), (A.17)

J2 =: sup
∥∆−∆0∥≤n−δ∗

∥∥∥ 2

n(n− 1)

∑
i<j

F(Zi, Zj ,∆)−E[F(Zi, Zj ,∆)|Zj ]
∥∥∥

= op(n
−1/2), (A.18)

where δ∗ = 1/3.

Let ξj(X,∆) =
∫ τ1
0 (1 −K(s−))φ(s,∆, θ0)h(s)

−1S(s)dMj(s), so ξj(X,∆) is

a zero mean process. Then J1 = ∥(1/n)
∑n

j=1

[
ξj(x,∆) − ξj(x,∆0)

]
∥. By (A3),

φ(X; θ0,∆) satisfies a Lipschitz condition, and (1−K(s−)), h(s)−1S(s),M(·) is
Euclidean for a constant envelope under (A1)−(A4), so ξj(X,∆) is Euclidean

for a constant envelope. Similar arguments as above can be used to establish an

analogous L2(p)-continuity of ξj(x,∆), specifically,

E
[
ξj(x,∆)−ξj(x,∆0)

]2≤E(∫ τ1

0
(1−K(s−))2K(s)−1L2(s)dF (s)

)(
∆−∆0

)2
.

Hence, as ∆ → ∆0, we get L2(p)-continuity of ξj(x,∆), and by Lemma 2.17 of

Pakes and Pollard (1989), we have

sup
∥∆−∆0∥≤n−δ∗

∥∥∥ 1
n

n∑
j=1

[
ξj(x,∆)− ξj(x,∆0)

]∥∥∥ = op(n
−1/2),

so (A.17) holds.

Now we show (A.18). The left hand side of (A.18) can be written as

J2 = sup
∥∆−∆0∥≤n−δ∗

∥∥∥ 1
n

n∑
j=1

∫ τ1

0

1

n−1

j−1∑
i=1

1− δi
S(Xi)

I(Xi < s)(φ(s,∆, θ0)−φ(s,∆0, θ0))

h(s)−1S(s)dMj(s) +
1

n

n∑
i=1

∫ τ1

0

1

n− 1

n∑
j=i+1

1− δj
S(xj)

I(xj < s)(φ(s,∆, θ0)

−φ(s,∆0, θ0))h(s)
−1S(s)dMi(s)−

2

n

n∑
j=1

E[F(Zi, Zj ,∆)|Zj ]
∥∥∥
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= sup
∥∆−∆0∥≤n−δ∗

∥∥∥ 1
n

n∑
j=1

∫ τ1

0

( 1

n− 1

n∑
i=1,i̸=j

1− δi
S(Xi)

I(Xi < s)− (1−K(s−))
)

(
φ(s,∆, θ0)− φ(s,∆0, θ0)

)
h(s)−1S(s)dMj(s)

∥∥∥.
Furthermore, (1 − δi)/S(Xi)I(Xi < s) is Euclidean for a constant envelope by
Lemma 2.8 in Pakes and Pollard (1989). We have for fixed j,

sup
s∈[0,τ1]

∥∥∥ 1

n− 1

n∑
i=1,i ̸=j

1− δi
S(Xi)

I(Xi < s)− (1−K(s−)
∥∥∥ = op(1).

Similar arguments as used for ξj(X,∆) can be used to show that

sup
∥∆−∆0∥≤n−δ∗

∥∥∥ 1
n

n∑
j=1

∫ τ1

0

(
φ(s,∆, θ0)−φ(s,∆0, θ0)

)
h(s)−1S(s)dMj(s)

∥∥∥=op(n−1/2),

therefore (A.18) holds. Hence, I1 = op(n
−1/2). This leads to the conclusion of

Lemma A.6.

Proof of Proposition 2. First,

0 =
1

n

n∑
i=1

ϕ(Xi, δi, θ0, ∆̂, Ŝ) =
1

n

n∑
i=1

ϕ(Xi, δi, θ0, ∆̂, S)

+
1

n

n∑
i=1

[
ϕ(Xi, δi, θ0,∆0, Ŝ)− ϕ(Xi, δi, θ0,∆0, S)

]
+

1

n

n∑
i=1

[
ϕ(Xi, δi, θ0, ∆̂, Ŝ)

−ϕ(Xi, δi, θ0, ∆̂, S)− ϕ(Xi, δi, θ0,∆0, Ŝ) + ϕ(Xi, δi, θ0,∆0, S)
]
.

By a Taylor expansion

1

n

n∑
i=1

ϕ(Xi, δi, θ0, ∆̂, S)

=
1

n

n∑
i=1

ϕ(Xi, δi, θ0,∆0, S) +
1

n

n∑
i=1

ϕ̇∆(Xi, δi, θ0, ∆̃, S)(∆̂−∆0),

where ∆̃ lies between ∆0 and ∆̂. Together with Lemma A.4 and Lemma A.6, we
get

√
n(∆̂−∆0)=

( 1

n

n∑
i=1

ϕ̇∆(Xi, δi, θ0, ∆̃, S)
)−1 1√

n

n∑
i=1

[
ϕ(Xi, δi, θ0,∆0, S)+ηi

]
+op(1).

Under (A4), it follows from the Law of Large Numbers and the consistency of ∆̂
that

1

n

n∑
i=1

ϕ̇∆(Xi, δi, θ0, ∆̃, S)
P−→ E[ϕ̇∆(Xi, δi, θ0,∆0, S)].
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Let A = E[ϕ̇∆(Xi, δi, θ0,∆0, S)] and Γ = E
[
(ϕ(X, δ, θ0,∆0, S)+η

)
(ϕ(X, δ, θ0,

∆0, S) + η
)′]
. The Central Limit theorem of i.i.d random variables yields

1√
n

n∑
i=1

[
ϕ(Xi, δi, θ0,∆0, S) + ηi

] L−→ N(0,Γ),

so
√
n(∆̂−∆0)

L−→ N(0, A−1ΓA
′−1).

Proof of Theorem 1. Since θ0 is unknown, we replace θ0 with the MLE of θ0,

θ̂MLE in the estimating equation. This implies ∆̂ is the solution to

1

n

n∑
i=1

ϕ(Xi, δi, θ̂MLE , ∆̂, Ŝ) = 0.

The observations for the parameter θ are (Yj , ϖj), j = 1, . . . ,m, and the

likelihood function about θ is L(θ; y) = Πm
j=1gθ(yj)

I(ϖj=1)(1 − Gθ(yj))
I(ϖj=0),

with

θ̂MLE = argmax
θ∈Ω

logL(θ; y),

where Ω is the parameter space of θ.

From maximum likelihood theory,
√
m(θ̂MLE − θ0)

L−→ N(0, I(θ)−1), where

I(θ) is defined in (A8).

To obtain the consistency of ∆̂, it suffices to show that

sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

[ϕ(Xi, δi, θ̂MLE ,∆, Ŝ)− h1(∆)]
∥∥∥ = op(1),

where h1(∆) = E
[
ϕ(Xi, δi, θ0,∆, S)

]
.

After transformation and a Taylor expansion, the left hand side of the last

equation is

sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

(
ϕ(Xi, δi, θ0,∆, Ŝ)− h1(∆) + [ϕ̇θ(Xi, δi, θ0,∆, S)

+
(
ϕ̇θ(Xi, δi, θ0,∆, Ŝ)− ϕ̇θ(Xi, δi, θ0,∆, S)

)
+ op(1)](θ̂MLE − θ0)

)∥∥∥.(A.19)

By (A.1) and (A5),

(A.19) ≤ sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

{
ϕ(Xi, δi, θ0,∆, Ŝ)− h1(∆)}

∥∥∥
+
{
sup
∆∈Θ

∥∥∥ 1
n

n∑
i=1

ϕ̇θ(Xi, δi, θ0,∆, S)
∥∥∥+ sup

∆∈Θ

∥∥∥ 1
n

n∑
i=1

{
ϕ̇θ(Xi, δi, θ0,∆, Ŝ)
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−ϕ̇θ(Xi, δi, θ0,∆, S)
}∥∥∥}∥θ̂MLE − θ0∥

= op(1) + (C2 + op(1))∥θ̂MLE − θ0∥,

where C2 is some positive constant, since θ̂MLE is a consistent estimator of θ0.

So (A.19) = op(1), and ∆̂ is consistent.

Note that both φ(x, θ, δ), and φ̇θ(x, θ, δ) are continuous in some neighbor-

hood of θ0, thus we have

0 =
1

n

n∑
i=1

ϕ(Xi, δi, θ̂MLE , ∆̂, Ŝ)

=
1

n

n∑
i=1

ϕ(Xi, δi, θ0, ∆̂, Ŝ) +
1

n

n∑
i=1

ϕ̇θ(Xi, δi, θ̃, ∆̂, Ŝ)(θ̂MLE − θ0),

where θ̃ lies between θ̂MLE and θ. Let Σ1 = (1/ς)I(θ)−1, and B = E
[
ϕ̇θ(X, δ, θ0,

∆0, S)
]
. Since θ̂MLE is a consistent estimator of θ0, with (A5) and (A6), we can

show that
1

n

n∑
i=1

ϕ̇θ(Xi, δi, θ̃, ∆̂, Ŝ)
P−→ B.

Again using a Taylor expansion with respect to ∆0, we have

√
n(∆̂−∆0) = −A−1 1√

n

n∑
i=1

[ϕ(Xi, δi, θ0,∆0, S) + ηi]−A−1√nB(θ̂MLE − θ0)

+op(1).

Since X0 and Y 0 are independent, the terms on the right hand side are uncorre-

lated. Hence
√
n(∆̂−∆0)

L−→ N(0, A−1(Γ +BΣ1B
′)A

′−1).

This completes the proof of Theorem 1.
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