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Abstract: Latin hypercube designs (LHDs) are commonly used in designing com-

puter experiments. A number of methods have been proposed to construct LHDs

with orthogonality among the main-effects. In this paper, we propose a new method

for constructing orthogonal LHDs (OLHDs) with 12, 16, 20, and 24 factors having

a flexible run size. Moreover, using these designs we provide new multiplication

methods and further constructions for OLHDs. These constructions lead to infi-

nite families of OLHD with many factors. For example, we show that when an

OLHD(n,m) exists, there also exist OLHDs with (runs, factors) ∈ {(24n, 12m),

(32n, 16m), (40n, 20m), (48n, 24m), (24n+1, 12m), (32n+1, 16m), (40n+1, 20m),

(48n+ 1, 24m)}.
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Latin hypercube design, periodic autocorrelation function.

1. Introduction

An experimental design with n runs and m factors is denoted by an n ×m

matrix X = [x1, x2, . . . , xm], where xj is the jth factor (column vector) and xij
is the level of factor j on the ith experimental run. A design X = L(n,m) is a

LHD with n runs and m factors if each column in the design matrix includes n

uniformly spaced levels.

Usually, in regression analysis, a polynomial model of degree k withm factors

is fitted, of the form

Y = β0 +
∑
i≤m

βixi +
∑

i1≤i2≤m

βi1i2xi1xi2 + . . .+
∑

i1≤...ik≤m

βi1...ikxi1 . . . xik + ϵ,

where xi are the independent variables, βi are the linear effects of xi, βi1 . . .it is

the effect of the t-order interaction of xi1 , . . . , xit . Here βii corresponds to the

quadratic effect of factor xi, while βi1i2 for i1 ̸= i2 corresponds to the second-

order interaction of factors xi1 and xi2 . It is desirable to include orthogonal

independent variables in a regression model so that the estimates of the regression

coefficients are uncorrelated. Orthogonal LHDs ensure independent estimation
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of the linear effects of the variables, where a LHD is said to be orthogonal if and

only if each pair of its factors has zero correlation.

For fitting a second-order model it is desirable that the LHD satisfies: (a)

each column is orthogonal to the others in the design, and (b) the element-wise

square of each column and the element-wise product of every two columns are

orthogonal to every column in the design. OLHDs were previously constructed

for run sizes a power of 2 (or a power of 2 plus 1) (Cioppa and Lucas (2007); Sun,

Liu and Lin (2009); Ye (1998); Lin et al. (2010)), but the problem is far from

completely solved. In the OLHDs constructed by Ye (1998), the run size n must

have form n = 2k or 2k+1 and the corresponding number of factors is m = 2k−2,

where k ≥ 2. In the OLHDs constructed by Steinberg and Lin (2006) the run size

must be n = 2k, with k being a power of two. Recently, Georgiou (2009), Geor-

giou and Stylianou (2011) and its corrigendum Georgiou and Stylianou (2012)

gave methods for constructing OLHDs and designs for computer experiments

using generalized orthogonal designs, orthogonal designs, and vectors with zero

autocorrelation function. These designs have run sizes that are not necessarily

a power of two, but their constructions require a computer search. Also, Lin et

al. (2010) provided some multiplication methods for constructing new large OL-

HDs using known designs and the Kronecker product. Sun, Liu and Lin (2009)

gave the construction of OLHD(2c+1, 2c), while Sun, Liu and Lin (2010) showed

how one could construct OLHD(2c+1r, 2c) using the results of Sun, Liu and Lin

(2009).

Let A = {Aj : Aj = (aj0, aj1, . . . , aj(n−1)), j = 1, . . . , ℓ} be a set of ℓ vectors

of length n. The periodic autocorrelation function PA(s) (abbreviated as PAF)

is defined, reducing i+ s modulo n, as

PA(s) =

ℓ∑
j=1

n−1∑
i=0

ajiaj,i+s, s = 0, . . . , n− 1. (1.1)

The set of vectors A is said to have zero PAF if PA(s) = 0, ∀s = 1, . . . , n − 1,

and is said to have constant PAF if PA(s) = γ, ∀s = 1, . . . , n − 1, for some

integer number γ. PA(s) = PA(n − s) and thus calculations are needed up to

s = [n/2], where [x] is the integer part of x. Sets of vectors with constant

PAF are used for the construction of LHDs that satisfy the properties a) and

b). Throughout, Rk denotes the back diagonal identity matrix of order k. A

circulant matrix is defined as a square matrix B = (bij) of order n with first

row b1 = (b1,0, b1,1, . . . , b1,n−1) and every next row being generated by a circulant

permutation of its previous row, bij = b1,j−i+1, where j − i+ 1 is taken modulo

n, i = 2, 3, . . . , n and j = 0, 1, . . . , n− 1.
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Lemma 1. (Geramita and Seberry (1979, Thm. 4.49)). If there exist four cir-

culant matrices A, B, C, D of order n satisfying

AAT +BBT + CCT +DDT = fIn,

then the Goethal-Seidel array

GS = GS(A,B,C,D) =


A BRn CRn DRn

−BRn A −DTRn CTRn

−CRn DTRn A −BTRn

−DRn −CTRn BTRn A


is an orthogonal matrix of order 4n.

Corollary 1. If there are four vectors A, B, C, D of length n with zero periodic

autocorrelation function, then can be used as the first rows of circulant matrices

that can be placed in the Goethals-Seidel array to form an orthogonal matrix of

order 4n.

Following Kharaghani (2000), a set {A1, . . . , A2k} of square matrices is said

to be amicable if
k∑

i=1

(
A2i−1A

T
2i −A2iA

T
2i−1

)
= 0. (1.2)

Lemma 2. (Kharaghani (2000, Thm. 1)). Let {Ai}8i=1 be an amicable set of

circulant matrices of order n, satisfying
∑8

i=1AiA
T
i = fIn. Then the Kharaghani

array

H =



A1 A2 A4Rn A3Rn A6Rn A5Rn A8Rn A7Rn

−A2 A1 A3Rn −A4Rn A5Rn −A6Rn A7Rn −A8Rn

−A4Rn −A3Rn A1 A2 −AT
8 Rn AT

7 Rn AT
6 Rn −AT

5 Rn

−A3Rn A4Rn −A2 A1 AT
7 Rn AT

8 Rn −AT
5 Rn −AT

6 Rn

−A6Rn −A5Rn AT
8 Rn −AT

7 Rn A1 A2 −AT
4 Rn AT

3 Rn

−A5Rn A6Rn −AT
7 Rn −AT

8 Rn −A2 A1 AT
3 Rn AT

4 Rn

−A8Rn −A7Rn −AT
6 Rn AT

5 Rn AT
4 Rn −AT

3 Rn A1 A2

−A7Rn A8Rn AT
5 Rn AT

6 Rn −AT
3 Rn −AT

4 Rn −A2 A1


is an orthogonal matrix of order 8n.

Remark 1. As in Corollary 1, we can use eight vectors of length n with zero

PAF to generate eight suitable circulant matrices for Lemma 2.

Lin et al. (2010) obtained an OLHD by stacking two orthogonal matrices

with mutually exclusive sets of levels. Let S denote the set of n levels of an

LHD of n runs, take S = S1
∪

S2 where S1
∩

S2 = ∅, and let n1 and n2 be the
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number of levels in S1 and S2, respectively. Suppose that there exist an n1 ×m
orthogonal matrix D1 with levels in S1 and an n2×m orthogonal matrix D2 with

levels in S2 where, for both D1 and D2, each level appears precisely once within
each column. Then the matrix

L =

[
D1

D2

]
is an n×m OLHD with n = n1 + n2. Note that D1 and D2 are not necessarily

LHD. In the same paper it was shown that if an OLHD(n,m) exists then an
OLHD(2an, am) exists for a = 1, 2, 4, 8. Using this approach Lin et al. (2010)
constructed OLHDs with n = 16k runs and m = 12 factors for k = 2, 3, 4, . . . .

(see Table 3 in Lin et al. (2010)).
Here, using circulant matrices and similar arrangements, we extend the above

results of Lin et al. (2010). In particular we show that an OLHD with n runs
and m factors exists for (n,m) ∈ [(24k, 12), (32k, 16), (40k, 20), (48k, 24)], for all

k = 1, 2, 3, . . . . Furthermore, we prove that if an OLHD(n,m) exists, then an
OLHD(2an, am) exists also for a = 12, 16, 20, and 24.

2. Criteria for Evaluating Computer Experiments

Even though the factors of LHDs can be scaled to be uniformly distributed
in [−1, 1], this does not ensure good space filling properties for a given number

of runs. Moreover, this uniformity does not guaranty that the design possesses
low correlations among its higher order terms, such as quadratic and two-factor
interactions.

Following Steinberg and Lin (2006), Georgiou (2009) defined general evalua-
tion criteria by calculating the alias matrices for fitting a first-order model when

second-order effects may be present. Suppose that X is an LHD with n runs and
m factors. Let X1 be the regression matrix for the first-order model, including a

column of ones and the m columns of X. Let Xint be the n×
(
m(m−1)/2

)
ma-

trix with all the possible two-factor interactions and Xquad be the n×m matrix

with all the pure quadratic terms. The alias matrices for the first-order model
associated with the two-factor interactions and pure quadratic terms are given by

T = Aint = (XT
1 X1)

−1XT
1 Xint,

Q = Aquad = (XT
1 X1)

−1XT
1 Xquad,

respectively. Designs that are suitable for screening are expected to have rela-
tively small absolute values in these bias matrices. To evaluate the performance

of an LHD concerning its two-factor interactions, the measures

ave(|t|) = E(|t|) =
2
∑m+1

i=1

∑m(m−1)/2
j=1 |tij |

m(m2 − 1)
, and max t = max

i,j
|tij |
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were proposed. Similarly, to evaluate the performance of an LHD concerning its

quadratic terms, the measures

ave(|q|) = E(|q|) =
∑m+1

i=1

∑m
j=1 |qij |

m(m+ 1)
, and max q = max

i,j
|qij |

were proposed.

Another useful criterion was proposed by Morris and Mitchell (1995). This

criterion is based on inter-point distances and can be used as a measure of the

space-filling ability of a design. The rectangular distance dR(s, u) of two points

(runs) s and u of the design matrix X is dR(s, u) =
∑m

i=1 |si − ui|, while their

Euclidean distance dE(s, u) is dE(s, u) = (
∑m

i=1(si − ui)
2)1/2. For a given design

and a selected distance (rectangular or Euclidean), define a distance list D =

(D1, . . . , Dℓ) in which the elements are the distinct values of inter-point distances,

sorted from the smallest to the largest. The value of the index can be as large as

n(n−1)/2. Let Ji be the number of pairs of runs in the design that have distance

Di. Then, a design X is called a maximin design if it sequentially maximizes

Di and minimizes Ji in the following order: (D1, J1, D2, J2, . . ., Dℓ, Jℓ). A

scalar-valued function which can be used to rank competing designs is needed.

The ranking should be done in such a way that the maximin design receives the

highest ranking. A family of such functions, indexed by p, is

Φp =
( ℓ∑

i=1

JiD
−p
i

)1/p
,

where p is a positive integer. For a large enough p, the design that minimizes ϕp

is a maximin design. When evaluating the designs in the examples to follow, we

give the row vectors D and J . This enables the reader to calculate Φp for any

value of p. As an example, in the given numerical results we present the values of

Φp for p = 100, that are obtained using both rectangular and Euclidean distance.

In D and J we assign a subscript E or R to distinguish them, similarly, in Φp.

Lemma 3. (Georgiou (2009, Lem. 1)). Let X be an OLHD in the unit cube

[−1, 1]n×m, with n runs and m factors having levels(
−n+ 1

n− 1
,
−n+ 3

n− 1
, . . . ,

n− 3

n− 1
,
n− 1

n− 1

)
.

Let X1 = [1n X] be the regression matrix for the first-order model, including

a column of ones and all columns of X. Then, the matrix (XT
1 X1)

−1 is a diagonal

matrix of order m+ 1 and its diagonal is (n−1, γ−1, γ−1, . . . , γ−1), where

γ =
n(n+ 1)

3(n− 1)
. (2.1)
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Lemma 4. (Georgiou (2009, Lem. 2)). Let X be as in Lemma 3. Then

E(|q|) ≥ γ

n(m+ 1)
= LBEq and max |qij | ≥

γ

n
= LBmax q,

where γ is given by (2.1).

Remark 2. A simple lower bound for E(|t|) and max|tij | is zero because in the
case of interactions one can construct LHDs with their two-factor interactions
mean orthogonal and also orthogonal to every column of the LHD.

A design that satisfies any of the lower bounds given in Lemma 4 is said
to be quadratic-optimal. Moreover, any design with E(|t|) = 0 or max|tij | = 0
is called interaction-optimal. Note that if a design is interactions-optimal for
max|tij |, then it is also interaction-optimal for E(|t|), and vice versa. In the
case of nonorthogonal designs, further research is needed to find sharper lower
bounds that probably depend on the number of runs n and the number of factors
m constituting the design.

3. The Main Constructions

Using suitable vectors with zero periodic autocorrelation functions we con-
struct new infinite families of OLHDs. To find such vectors is much easier than
searching for the whole design. The idea is to use orthogonal matrices and their
full fold-over to construct the OLHD.

Theorem 1. Let Db be an orthogonal n×n matrix with the absolute value of each
column a permutation of (b+1, b+3, . . . , b+2n−1), where b is any natural number.
Then there exists an OLHD with 2nk runs and n factors, for any k = 1, 2, . . . .

Proof. Since Db is orthogonal,

DT
b Db = zbIn, where zb =

n∑
i=1

(b+ 2i− 1)2 =
n(4n2 + 6bn+ 3b2 − 1)

3
.

For k = 1, 2, . . ., take

Xk =
(
DT

0 , D
T
2n, · · · , DT

2n(k−1), −DT
0 , −DT

2n, · · · , −DT
2n(k−1)

)T
.

It is easy to verify that the levels of each column of Xk are a permutation of
(1, 3, 5, . . . , 2nk − 1,−1,−3,−5, . . . ,−2nk − 1). The columns of Xk are pairwise
orthogonal since the columns of Db are pairwise orthogonal. So we have that

XT
k Xk =

( k−1∑
ℓ=0

DT
2nℓD2nℓ

)
In =

(
2

nk∑
j=1

(2j − 1)2
)
In

=
(2nk(2nk − 1)(2nk + 1)

3

)
In
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and thus matrix Xk is an OLHD.

For every suitable set of four or eight vectors, Theorem 1 provides a new mul-

tiplication method and infinite families of OLHD. To provide some multiplication

methods and give infinite families of LHDs with flexible run sizes, we describe

a simple algorithm for finding suitable sets of vectors. These vectors can then

be used in the Goethals-Seidel or Kharaghani array to provide the orthogonal

matrix needed in Theorem 1.

3.1. The algorithm

We apply a simple algorithm to search for suitable vectors. For finding an

OLHD(8n, 4n), we need only search for four vectors A1, A2, A3, A4 of length n

satisfying (1.1). Let Sn be the group of all permutations on n symbols. Our

algorithm can be described as follows:

1. Select a permutation π from S4n. Let v = (v1, v2, . . . , v4n) = π(1 + b, 3 +

b, . . . , 8n+ b− 1) be the corresponding vector for the permutation π and b an

indeterminate commuting variable.

2. Set A1 = (a1v1, a2v2, . . . , anvn), A2 = (an+1vn+1, an+2vn+2, . . . , a2nv2n),

A3=(a2n+1v2n+1, a2n+2v2n+2, . . . , a3nv3n), and A4=(a3n+1v3n+1, a3n+2v3n+2,

. . . , a4nv4n).

3. Using vectors A1, A2, A3, and A4 with equation (1.1), create a system of [n/2]

equations (for s = 1, . . . , [n/2]).

4. Solve this system to determine ais with the restriction ai ∈ {−1, 1}, i =

1, . . . , 4n.

5. If a solution in Step 4 does not exist, then go to Step 1 and continue.

Based on (1.1), for each solution of such vectors of length n there are 244!n4

equivalent solutions (24 possible multiplications of the vectors by −1, 4! per-

mutations of the four vectors and n cyclic permutation for each vector). This

suggests that there are a large number of solutions in the search space and it

would be easy to find one. If we wish to search for vectors that are suitable for

constructing an OLHD(8n+1, 4n), we replace the corresponding vector v in step

1 by u = (1, . . . , 4n) and apply the algorithm in the same way.

Selection of permutation π in Step 1 can either be random or one may chose

to do an exhaustive search (for this method) by selecting all permutations of

S4n one by one. For finding an OLHD(16n, 8n) or OLHD(16n+ 1, 8n), we can

search for either vectors, A1, A2, A3, A4 of length 2n satisfying (1.1) or vectors

A1, A2, A3, A4 A5, A6, A7, A8 of length n satisfying both (1.1) and (1.2). The

algorithm used in this case is similar.
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3.2. Results and examples

Using the results found by applying the algorithm, we establish here the

construction of OLHD with m = 12, 16, 20, 24 factors and flexible run sizes. The

examples shown in this section are helpful for understanding the construction

method and will be applied in Section 4 to provide some new multiplication

techniques.

Corollary 2 describes how one can construct OLHD(24k, 12) using Theorem

1. A set of the four vectors of length 3 is provided, and the required calculations

are given. To obtain the orthogonal matrix, we use the four vectors in the

Goethal-Seidel array and follow the proof of Theorem 1.

Corollary 2. There exists an OLHD with n = 24k runs and m = 12 factors for

any k = 1, 2, . . ..

Proof. Define the vectors

A1 = (b+ 15,−(b+ 5), b+ 19), A2 = (b+ 17,−(b+ 21), b+ 23),

A3 = (b+ 1, b+ 3,−(b+ 7)), A4 = (b+ 9, b+ 11, b+ 13)

}
, (3.1)

where b can be any real number. It is easy to show that

PA1(0) + PA2(0) + PA3(0) + PA4(0) = 12b2 + 288b+ 2300,

PA1(s) + PA2(s) + PA3(s) + PA4(s) = 0 for s = 1, 2.

For a given k ∈ {1, 2, . . .}, set b = 24(k − 1) and define Db = GS(A1, A2, A3, A4)

to be the Goethal-Seidel array constructed by Corollary 1, where the vectors

A1, A2, A3, A4 are given as (3.1). It is obvious that

DT
b Db = zbI12,

where zb = 12b2 + 288b+ 2300. The result follows from Theorem 1.

We illustrate the result of Corollary 2 with the help of two examples in which

we construct OLHD(24k, 12) for k = 1 and for k = 2.

Example 1. Set k = 1 and b = 24(k − 1), so b = 0. Using Corollary 1 with the

four vectors as (3.1) and b = 0, we obtain a 12 × 12 orthogonal matrix D0. By

applying the method described in the proof of Theorem 1, we obtain an OLHD

X1 =

[
D0

−D0

]
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with 24 runs and 12 factors, where D0 is

D0 =



15 −5 19 23 −21 17 −7 3 1 13 11 9

19 15 −5 −21 17 23 3 1 −7 11 9 13

−5 19 15 17 23 −21 1 −7 3 9 13 11

−23 21 −11 15 −5 19 −11 −13 −9 1 −7 3

21 −11 −23 19 15 −5 −13 −9 −11 3 1 −7

−11 −23 21 −5 19 15 −9 −11 −13 −7 3 1

7 −3 −1 11 13 9 15 −5 19 21 −23 −17

−3 −1 7 13 9 11 19 15 −5 −17 21 −23

−1 7 −3 9 11 13 −5 19 15 −23 −17 21

−13 −11 −9 −1 7 −3 −21 23 17 15 −5 19

−11 −9 −13 −3 −1 7 17 −21 23 19 15 −5

−9 −13 −11 7 −3 −1 23 17 −21 −5 19 15



.

This design has E(|t|) = max |tij | = 0, E(|q|) = 25/897 = LBEq, max |qij | =
25/69 = LBmax q, DR = [164/23, 8, 188/23, 192/23, 200/23, 204/23, 208/23,

212/23, 216/23, 288/23], JR = [24, 24, 48, 24, 48, 24, 24, 24, 24, 12], ΦR
100 = 0.145,

DE = [2.949, 4.170], JE = [264, 12], and ΦE
100 = 0.359.

Example 2. Set k = 2 and b = 24(k− 1), so b = 24. Using Corollary 1 with the

four vectors as (3.1) and b = 24, we obtain a 12× 12 orthogonal matrix D24. By

applying the method described in the proof of Theorem 1 we obtain an OLHD

X2 =


D0

D24

−D0

−D24


with 48 runs and 12 factors, where D0 is as in Example 1, and

D24 =



39 −29 43 47 −45 41 −31 27 25 37 35 33

43 39 −29 −45 41 47 27 25 −31 35 33 37

−29 43 39 41 47 −45 25 −31 27 33 37 35

−47 45 −41 39 −29 43 −35 −37 −33 25 −31 27

45 −41 −47 43 39 −29 −37 −33 −35 27 25 −31

−41 −47 45 −29 43 39 −33 −35 −37 −31 27 25

31 −27 −25 35 37 33 39 −29 43 45 −47 −41

−27 −25 31 37 33 35 43 39 −29 −41 45 −47

−25 31 −27 33 35 37 −29 43 39 −47 −41 45

−37 −35 −33 −25 31 −27 −45 47 41 39 −29 43

−35 −33 −37 −27 −25 31 41 −45 47 43 39 −29

−33 −37 −35 31 −27 −25 47 41 −45 −29 43 39



.
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This design has E(|t|) = max |tij | = 0, E(|q|) = 49/1833 = LBEq, max |qij | =
49/141 = LBmax q, DR = [164/47, 184/47, 4, 192/47, 200/47, 204/47, 208/47,

212/47, 216/47, 288/47, 360/47, 364/47, 368/47, 392/47, 396/47, 400/47, 408/47,

412/47, 416/47, 420/47, 424/47, 428/47, 432/47, 436/47, 440/47, 444/47, 448/47,

452/47, 456/47, 464/47, 468/47, 472/47, 476/47, 480/47, 488/47, 492/47, 496/47,

500/47, 50447, 576/47, 864/47], JR = [24, 24, 48, 24, 48, 24, 24, 24, 24, 36, 8, 8,

8, 8, 8, 8, 8, 8, 20, 36, 48, 60, 72, 60, 48, 36, 20, 32, 8, 8, 8, 32, 48, 24, 48, 24, 32,

32, 32, 24, 12], ΦR
100 = 0.296,

DE = [1.443, 1.769, 2.041, 2.603, 2.620, 2.636, 2.733, 2.749, 2.765, 2.796, 2.812,

2.827, 2.843, 2.858, 2.873, 2.888, 2.903, 2.918, 2.933, 2.948, 2.962, 2.977, 3.006,

3.020, 3.035, 3.119, 3.133, 3.147, 3.681, 3.821, 5.403],

JE = [264, 24, 12, 8, 8, 8, 8, 8, 8, 8, 8, 20, 36, 48, 60, 72, 60, 48, 36, 20, 8, 8, 8,

8, 8, 8, 8, 8, 24, 264, 12], and ΦE
100 = 0.733.

Using similar arguments we present in Corollary 3 a construction method for

OLHD (32k, 16). A set of the eight required vectors of length 2 are presented

and, since in this setting we have eight vectors satisfying the desired properties,

we apply the Kharaghani array and Theorem 1 to get the result.

Corollary 3. There exists an OLHD with n = 32k runs and m = 16 factors for

any k = 1, 2, . . ..

Proof. Take

A1 = (b+ 1, b+ 3), A2 = (b+ 5,−(b+ 7)), A3 = (b+ 9,−(b+ 11)),

A4 = (b+ 13, b+ 15), A5 = (b+ 17,−(b+ 19)), A6 = (b+ 21, b+ 23),

A7 = (b+ 25, b+ 27), A8 = (b+ 29,−(b+ 31))

,

(3.2)

where b can be any real number. The rest of the proof is similar to the proof of

Corollary 2 (using the Kharaghani array) and is omitted.

In the next example we show how one can construct an OLHD with n = 32k

runs and m = 16 factors for k = 1. Designs with such parameters were previously

known in the literature, constructed by a different approach (see, for example,

Sun, Liu and Lin (2010)).

Example 3. Set k = 1 and b = 32(k − 1), so b = 0. Using the eight vectors in

(3.2) with b = 0, we obtain the 16× 16 orthogonal matrix D0. By applying the

method described in the proof of Theorem 1, we obtain an OLHD

X1 =

[
D0

−D0

]
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with 32 runs and 16 factors, where D0 is

1 3 17 −19 23 21 −7 5 27 25 −11 9 −31 29 15 13

3 1 −19 17 21 23 5 −7 25 27 9 −11 29 −31 13 15

−17 19 1 3 −7 5 −23 −21 −11 9 −27 −25 15 13 31 −29

19 −17 3 1 5 −7 −21 −23 9 −11 −25 −27 13 15 −29 31

−23 −21 7 −5 1 3 17 −19 31 −29 15 13 27 25 11 −9

−21 −23 −5 7 3 1 −19 17 −29 31 13 15 25 27 −9 11

7 −5 23 21 −17 19 1 3 15 13 −31 29 11 −9 −27 −25

−5 7 21 23 19 −17 3 1 13 15 29 −31 −9 11 −25 −27

−27 −25 11 −9 −31 29 −15 −13 1 3 −17 19 −23 −21 −7 5

−25 −27 −9 11 29 −31 −13 −15 3 1 19 −17 −21 −23 5 −7

11 −9 27 25 −15 −13 31 −29 −17 19 1 3 −7 5 23 21

−9 11 25 27 −13 −15 −29 31 19 −17 3 1 5 −7 21 23

31 −29 −15 −13 −27 −25 11 −9 23 21 7 −5 1 3 17 −19

−29 31 −13 −15 −25 −27 −9 11 21 23 −5 7 3 1 −19 17

−15 −13 31 −29 −11 9 27 25 7 −5 −23 −21 −17 19 1 3

−13 −15 −29 31 9 −11 25 27 −5 7 −21 −23 19 −17 3 1



.

This design has E(|t|) = max |tij | = 0, E(|q|) = 11/527 = LBEq, max |qij | =
11/31 = LBmax q, DR = [272/31, 336/31, 352/31, 368/31, 384/31, 512/31], JR =

[32, 192, 128, 64, 64, 16], ΦR
100 = 0.118, DE = [3.370, 4.765], JE = [480, 16] and

ΦE
100 = 0.316.

A design with the same number of runs and factors was constructed in Sun,

Liu and Lin (2010). Their design has the same values of all criteria except for

DR and JR values, which are DR = [272/31, 288/31, 320/31, 384/31, 512/31] and

JR = [32, 64, 128, 256, 16]. Note that our design is better than the design of Sun,

Liu and Lin (2010) with respect to the rectangular distance, since they have

equal D1 and J1 as our design but a D2 less than ours.

Corollary 4. There exists an OLHD with n = 40k runs and m = 20 factors for

any k = 1, 2, . . ..

Proof. Take

A1 = (b+ 21, b+ 5,−(b+ 27), b+ 29, b+ 23),

A2 = (b+ 25, b+ 31, b+ 33, b+ 35,−(b+ 37)),

A3 = (b+ 39, b+ 1,−(b+ 3),−(b+ 7),−(b+ 9)),

A4 = (b+ 11, b+ 13,−(b+ 15), b+ 17,−(b+ 19))

 , (3.3)

where b can be any real number. The rest of the proof is similar to the proof of

Corollary 2 and is omitted.
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Example 4. Set k = 1 and b = 40(k − 1), so b = 0. Using Corollary 1 with

the vectors as (3.3) and b = 0, we obtain a 20 × 20 orthogonal matrix D0. By

applying the method described in the proof of Theorem 1, we obtain an OLHD

X1 =

[
D0

−D0

]
with 40 runs and 20 factors, where D0 is constructed by using the vectors as

(3.3) with b = 0 in Corollary 1. This design has E(|t|) = max |tij | = 0, E(|q|) =
41/2457 = LBEq, max |qij | = 41/117 = LBmax q, DR = [160/13, 484/39, 164/13,

512/39, 172/13, 40/3, 524/39, 176/13, 532/39, 536/39, 548/39, 184/13, 556/39,

560/39, 188/13, 568/39, 44/3, 192/13, 580/39, 584/39, 196/13, 200/13, 800/39],

JR = [40, 40, 40, 64, 32, 40, 40, 40, 16, 8, 8, 36, 64, 32, 72, 64, 24, 36, 8, 8, 8, 40,

20], ΦR
100 = 0.085, DE = [3.744, 5.295], JE = [760, 20], and ΦE

100 = 0.285.

Corollary 5. There exists an OLHD with n = 48k runs and m = 24 factors for

any k = 1, 2, . . ..

Proof. Take

A1 = (b+ 1, b+ 27, b+ 3), A2 = (b+ 5, b+ 7,−(b+ 9))),

A3 = (b+ 11,−(b+ 13),−(b+ 15)), A4 = (b+ 17, b+ 19,−(b+ 21)),

A5 = (b+ 23,−(b+ 25), b+ 29), A6 = (b+ 31, b+ 33,−(b+ 35)),

A7 = (b+ 37, b+ 39, b+ 41), A8 = (b+ 43, b+ 45,−(b+ 47))

 , (3.4)

where b can be any real number. The rest of the proof is similar to the proof of

Corollary 2 (using the Kharaghani array) and is omitted.

Example 5. Set k = 1 and b = 48(k − 1), so b = 0. Using the vectors as(3.4)

with b = 0, we obtain the 24×24 orthogonal matrix D0. By applying the method

described in the proof of Theorem 1, we obtain an OLHD

X1 =

[
D0

−D0

]
with 48 runs and 24 factors, where D0 is constructed as (3.4) with b = 0.

This design has E(|t|) = max |tij | = 0, E(|q|) = 49/3525 = LBEq, max |qij | =
49/141 = LBmax q, DR = [612/47, 652/47, 736/47, 772/47, 780/47, 784/47,

788/47, 804/47, 808/47, 812/47, 828/47, 832/47, 836/47, 860/47, 1152/47], JR =

[48, 48, 288, 144, 48, 48, 48, 48, 48, 48, 48, 48, 48, 144, 24], ΦR
100 = 0.080,

DE = [4.084, 5.776], JE = [1104, 24], and ΦE
100 = 0.263.

Corollary 6 is our first construction with an odd number of runs (n = 24k+1).

These constructions are interesting since, by using them, one can obtain another

construction for OLHD with n− 1 runs (see Ye (1998, Sec. 2.2)).
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Corollary 6. There exists an OLHD with n = 24k+1 runs and m = 12 factors
for any k = 1, . . ..

Proof. Take

A1 = (b+ 7,−(b+ 2), b+ 9), A2 = (b+ 8,−(b+ 10), b+ 11),

A3 = (b, b+ 1,−(b+ 3)), A4 = (b+ 4, b+ 5, b+ 6)

}
, (3.5)

where b can be any real number. It is easy to show that

PA1(0) + PA2(0) + PA3(0) + PA4(0) = 12b2 + 132b+ 506,

PA1(s) + PA2(s) + PA3(s) + PA4(s) = 0 for s = 1, 2.

For b ∈ {1, . . .}, let Db = GS(A1, A2, A3, A4) by the Goethal-Seidel array using
Corollary 1 and the vectors as (3.5). Then DT

b Db = zbI12, where zb = 12b2 +
132b+ 506. For some k ∈ {1, . . .}, let[

DT
1 , D

T
13, . . . , D

T
12k−11, 0

T
1×12,−DT

1 ,−DT
13, . . . ,−DT

12k−11

]T
,

where 01×12 is the zero matrix of dimensions 1 × 12. We have to show that Xk

is the desired OLHD with m = 12 factors and n = 24k + 1 runs.

(i) For b ∈ {1, . . .} we have that each column of the matrix

[
Db

−Db

]
is a permu-

tation of (b, b+1, b+2, . . . , b+11,−b,−b− 1,−b− 2, . . . ,−b− 11). Thus, for
k ∈ {1, . . .}, each column of Xk is a permutation of (0, 1, 2, 3, 4, 5, 6, . . . ,
12k, −1, −2, −3, −4, −5, −6, . . . , −12k).

(ii) The columns of Xk are pairwise orthogonal since the columns of Db are
pairwise orthogonal. Thus

XT
k Xk = 2

k−1∑
ℓ=0

DT
12ℓ+1D12ℓ+1 = 2

12k∑
ℓ=1

ℓ2I12

= 2
k−1∑
ℓ=0

(
12(12ℓ+ 1)2 + 132(12ℓ+ 1) + 506

)
I12

=
(
4k(12k + 1)(24k + 1)

)
I12.

From (i) and (ii) we conclude that for k ∈ {1, . . . , }, the matrix Xk is the desired
OLHD with 24k + 1 runs and 12 factors.

Example 6. Set k = 1, b = 12k−11 ⇒ b = 1. Using Corollary 1 and the vectors
as (3.5) with b = 1, we obtain the 12 × 12 orthogonal matrix D1. By applying
the method described in the proof of Corollary 6, we obtain an OLHD

X1 =

 D1

01×12

−D1


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with 25 runs and 12 factors, where D1 is

D1 =



8 −3 10 12 −11 9 −4 2 1 7 6 5

10 8 −3 −11 9 12 2 1 −4 6 5 7

−3 10 8 9 12 −11 1 −4 2 5 7 6

−12 11 −9 8 −3 10 −6 −7 −5 1 −4 2

11 −9 −12 10 8 −3 −7 −5 −6 2 1 −4

−9 −12 11 −3 10 8 −5 −6 −7 −4 2 1

4 −2 −1 6 7 5 8 −3 10 11 −12 −9

−2 −1 4 7 5 6 10 8 −3 −9 11 −12

−1 4 −2 5 6 7 −3 10 8 −12 −9 11

−7 −6 −5 −1 4 −2 −11 12 9 8 −3 10

−6 −5 −7 −2 −1 4 9 −11 12 10 8 −3

−5 −7 −6 4 −2 −1 12 9 −11 −3 10 8



.

This design has E(|t|) = max |tij | = 0, E(|q|) = 1/36 = LBEq, max |qij | =
13/36 = LBmax q, DR = [13/2, 22/3, 49/6, 25/3, 17/2, 53/6, 9, 55/6, 28/3,
19/2, 13], JR = [24, 24, 24, 48, 24, 48, 24, 24, 24, 24, 12], ΦR

100 = 0.159, DE =
[2.125, 3.005, 4.249], JE = [24, 264, 12], and ΦE

100 = 0.486.

Corollary 7. There exists an OLHD with

i. n = 32k + 1 runs and m = 16 factors,

ii. n = 40k + 1 runs and m = 20 factors,

iii. n = 48k + 1 runs and m = 24 factors,

for any k = 1, . . ..

Proof. Take

i.


A1 = (b+ 1, b+ 2), A2 = (b+ 3,−(b+ 4)), A3 = (b+ 5,−(b+ 6)),

A4 = (b+ 7, b+ 8), A5 = (b+ 9,−(b+ 10)), A6 = (b+ 11, b+ 12),

A7 = (b+ 13, b+ 14), A8 = (b+ 15,−(b+ 16)),

ii.


A1 = (b+ 11, b+ 3,−(b+ 14), b+ 15, b+ 12),

A2 = (b+ 13, b+ 16, b+ 17, b+ 18,−(b+ 19)),

A3 = (b+ 20, b+ 1,−(b+ 2),−(b+ 4),−(b+ 5)),

A4 = (b+ 6, b+ 7,−(b+ 8), b+ 9,−(b+ 10)),

iii.


A1 = (b+ 1, b+ 14, b+ 2), A2 = (b+ 3, b+ 4,−(b+ 5)),

A3 = (b+ 6,−(b+ 7),−(b+ 8)), A4 = (b+ 9, b+ 10,−(b+ 11)),

A5 = (b+ 12,−(b+ 13), b+ 15), A6 = (b+ 16, b+ 17,−(b+ 18)),

A7 = (b+ 19, b+ 20, b+ 21), A8 = (b+ 22, b+ 23,−(b+ 24)),
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where b can be any real number. The rest of the proof is similar to the proof of

Corollary 6 (using the Kharaghani array for cases i and iii) and is omitted.

Remark 3. Note that another class of OLHD(n,m) with fold-over structure

can be constructed using the given OLHD(n + 1,m), as was described in Ye

(1998).

4. Designs Derived by Multiplication Techniques

Using the results of Section 3, we obtain several multiplication techniques

and new infinite families of OLHDs.

Lemma 5. Lin et al. (2010, Thm. 3). Suppose that an OLHD(n,m) is available,

where n is a multiple of 4, such that a Hadamard matrix of order n exists. Then:

(i) an OLHD(2an, am), for a = 1, 2, 4, 8, can be constructed;

(ii) an OLHD(2an+ 1, am), for a = 1, 2, 4, 8, can be constructed.

The multiplication in Lemma 5 is done by multiplying the number of runs

by 2c and the number of factors by 2c−1 for c = 1, 2, 3, 4. Note that for the

multiplication technique provided by Theorem 2, this is not a restriction.

Theorem 2. Suppose that an OLHD(n,m) is available where n is a multiple of

4 such that a Hadamard matrix of order n exists. Then:

(i) an OLHD(2an, am), for a = 12, 16, 20, 24, can be constructed;

(ii) an OLHD(2an+ 1, am), for a = 12, 16, 20, 24, can be constructed.

Proof. The proof provides a detailed procedure for the construction of these

OLHDs. The construction of the designs in (i) is given using the Kronecker

product construction of Theorem 1 in Lin et al. (2010), constructing the required

matrices A,B,C, andD for each case. We choose B to be the given OLHD(n,m).

Matrix D is obtained by taking m columns from a Hadamard matrix of order n.

Design C is chosen to be the OLHD(2a, a) constructed, for a = 12 in Example 1,

for a = 16 in Example 3, for a = 20 in Example 4, and for a = 24 in Example 5.

Note that design C has a fold-over structure and can be written as C =

[
D0

−D0

]
.

Now let A =

[
S0

S0

]
, where S0 is obtained by taking a columns from a Hadamard

matrix of order 2a. With our choices for A,B,C, and D, conditions (i), (ii), (iii),

and (iv) in Theorem 1 of Lin et al. (2010) are satisfied. This proves part (i) of

Theorem 2. The proof for part (ii) is similar.
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Note that by repeated application of Theorem 2, one can obtain many infinite

series of OLHDs.

5. Properties of the Derived Designs

In this section we investigate the properties of the constructed designs and

give some comparisons with known designs from the literature. In particular, we

compare the generated designs with those of Lin et al. (2010), Sun, Liu and Lin

(2009), and Sun, Liu and Lin (2010) with respect to the number of factors they

can examine, their orthogonality and their space-filling properties.

Corollary 8. Let X = (x1, . . . , x12) be an LHD with n = 2ak or n = 2ak + 1

runs and m = a factors, a = 12, 16, 20, 24 as constructed in this paper. Then,

(i) any quadratic effect of a factor or any two-factor interaction is orthogonal to

all the main effects in X.

(ii) X is a quadratic-optimal LHD with respect to the max|qij | and E(|q|) criteria.
(iii)X is an interaction-optimal LHD with respect to the max|tij | and E(|t|)

criteria.

Note that Corollary 8 also holds for some of the constructed designs given in

Lin et al. (2010), and for all the designs constructed by Sun, Liu and Lin (2009)

and Sun, Liu and Lin (2010).

In Table 1 we compare the number of factors that OLHDs of the same run

sizes can examine. In the first column of this table we give the run size, while

in the second we give the number of factors that our designs can examine. In

columns “LBST Factors” and “SLL Factors” we present the number of factor

of the designs constructed by Lin et al. (2010) and Sun, Liu and Lin (2010),

respectively. In the last three columns of that table we give the required param-

eters to be used in Theorem 2 to generate our designs. Note that the designs

up to 96 runs, presented in Table 1, can also be constructed by the methods in

Section 3 and thus can be of fold-over structure. The fold-over structure gives

designs that, in general, have better properties than the designs constructed by

Theorem 2, or by Lin et al. (2010).

In Table 1 there are three designs having the same run and factors sizes

as known designs in the literature. These are the OLHD(32, 16), discussed in

Example 3, the OLHD(94, 24) constructed by different methods in this paper

(Corollary 5, k = 2 and Theorem 2) and by Theorem 3 of Lin et al. (2010), and

the OLHD(192, 48) constructed by Theorem 2 of this paper and by Theorem 3

of Lin et al. (2010).

In Table 2 we give the criteria values for the three construction methods for

OLHD(96, 24). The results show that the design having the fold-over structure
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Table 1. OLHDs constructed by Theorem 2.

Construction
Runs Factors LBST Factors SLL Factors n m a

24 12 8 4 1 1 12
32 16 12 16 1 1 16
40 20 − 4 1 1 20
48 24 12 8 1 1 24
64 16 32 32 2 1 16
80 20 12 8 2 1 20
96 24 24 16 2 1 24

128 32 48 64 4 2 16
160 40 24 16 4 2 20
192 48 48 32 8 4 12
256 64 192 128 8 4 16
320 80 48 32 8 4 20
384 144 48 64 8 6 24
512 128 − 256 16 8 16
576 144 − 32 12 6 24
640 160 96 64 20 10 16
768 192 96 128 16 8 24
768 288 96 128 16 12 24
960 240 24 32 20 10 24
1024 256 384 512 32 16 16
1152 288 96 64 24 12 24
1280 320 192 128 32 16 20
1536 384 192 64 32 16 24
1600 400 − 32 40 20 20
1920 480 48 64 40 20 24
2304 576 192 128 48 24 24
4608 1152 192 256 96 48 24
9216 2304 384 512 192 96 24

(Corollary 5) is much better than the designs constructed by the Kronecker

product methods, given either in Theorem 2 or Lin et al. (2010), with respect to

the orthogonality and space-filling criteria. Note that the design of Theorem 2

is better than the design of Lin et al. (2010) with respect to orthogonality, while

the opposite seems to be true concerning the space-filling criteria.

In Table 3 we give the criteria values for the two construction methods for

OLHD(192, 48). The results show that designs constructed by Kronecker prod-

uct methods, in Theorem 2 or in Lin et al. (2010), have similar properties with

respect to both orthogonality and space-filling criteria. The design constructed

in Theorem 2 seems to be slightly superior to the design constructed in Lin et al.

(2010) with respect to space-filling criteria and correlation of the main effects,
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Table 2. OLHD(96,24) properties.

Corollary 5, k = 2 Theorem 2 Thm. 3, Lin et al. (2010)

E(|t|) 0 0 1647481
317917500 = 0.0052

max |tij | 0 0 109557
875425 = 0.1251

E(|q|) 97
7125 = 0.0136 97

7125 = 0.0136 446648
21885625 = 0.0204

max |qij | 97
285 = 0.3404 97

285 = 0.3404 97
285 = 0.3404

DE [2.021, 2.475, 2.858, . . .] [0.103, 3.994, 3.995, . . .] [2.304, 2.308, 2.320, . . .]

JE [1104, 48, 24, . . .] [48, 2, 2, . . .] [2, 2, 2, . . .]

ΦE
100 0.531 10.079 0.473

DR

[
612
95 , 652

95 , 736
95 , . . .

] [
45
95 ,

1208
95 , 1212

95 , . . .
] [

528
95 , 544

95 , 112
19 , . . .

]
JR [48, 48, 208, . . .] [48, 2, 20, . . .] [4, 4, 4, . . .]

ΦR
100 0.161 2.057 0.191

Table 3. OLHD(192,48) properties.

Theorem 2 Thm. 3, Lin et al. (2010)

E(|q|) 9370175
1035002451 = 0.0091 3037011

345000817 = 0.0088

max |qij | 193
573 = 0.3368 193

573 = 0.3368

E(|t|) 2906492
2316434057 = 0.0013 606716585

389160921576 = 0.0016

max |tij | 257600
7040833 = 0.0366 441333

7040833 = 0.0627

DE [3.867, 3.920, 3.921, . . .] [3.247, 3.253, 3.262, . . .]

JE [2, 4, 2, . . .] [1, 1, 1, . . .]

ΦE
100 0.265 0.318

DR

[
2280
191 , 2328

191 , 2376
191 , . . .

] [
1824
191 , 1840

191 , 1856
191 , . . .

]
JR [2, 2, 20, . . .] [4, 8, 4, . . .]

ΦR
100 0.085 0.107

while the opposite is true for the correlation of the quadratic effect.

6. Discussion

The LHD presented by Butler (2001) are orthogonal in a class of trigonomet-
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ric regression models, while Ye (1998) and Steinberg and Lin (2006) constructed

orthogonal designs with run sizes being a power of two; in particular, the designs

presented in Steinberg and Lin (2006) have a run size of 2k, where k = 2t. We

have proposed new procedures for constructing OLHDs with 12, 16, 20, and 24

factors and flexible run sizes, without the restrictions needed in Butler (2001),

Ye (1998), or Steinberg and Lin (2006).

We presented a multiplication technique that extends a known result of Lin

et al. (2010). In particular, we show that if an OLH(n,m) exists, then an

OLH(24n, 12m), an OLH(32n, 16m), an OLH(40n, 20m), an OLH(48n, 24m),

an OLH(24n+1, 12m), an OLH(32n+1, 16m), an OLH(40n+1, 20m), and an

OLH(48n + 1, 24m) exist. By applying the proposed methods, we gave several

examples of new OLHDs. So, in the provided examples we presented for the first

time an OLHD with n = 24k or n = 24k + 1 runs and m = 12 factors, n = 40k

or n = 40k + 1 runs and m = 20 factors, and n = 48k or n = 48k + 1 runs

and m = 24 factors for all k = 1, 2, 3, . . .. The obtained designs were compared

to known designs from the literature (Lin et al., 2010; Sun, Liu and Lin, 2009,

2010).

Finally, we showed that each of the proposed construction method generates

OLHDs with the property that any quadratic effect or any two-factor interaction

is orthogonal to all main effects in the constructed LHD.

The multiplication techniques for OLHDs are difficult. Known techniques

can be used to construct an OLH(2an, am) from an OLH(n,m), (for a =

1, 2, 4, 8, see Lin et al. (2010), and for a = 12, 16, 20, 24 in this paper) and these

techniques do not give the maximum possible number of factors. It would be

interesting to give construction methods for other values of a. Another open

problem is to find a way to double both the run size and the factor size of an

OLH(n,m). In general, it would be interesting to find how one may obtain an

OLH(an, am) from an OLH(n,m) for some positive integer a.
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