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Abstract: This work proposes a sequential procedure to select the best model among

several nested non-linear models and to estimate efficiently the parameters of the

chosen model. At the first step of this procedure, a generalized DKL-optimum

design is computed that is optimal for the goals of model selection and parameter

estimation. Subsequently, at each step, an adaptive generalized DKL-optimum

design is computed from the data accrued and the tests previously performed.

The proposed sequential scheme selects the best non-linear model with probability

converging to one; moreover it allows efficient estimates of parameters, since the

adaptive sequential DKL-optimum designs converge to the D-optimum design for

the “true” model.
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1. Introduction

The classical theory of optimum design is based on the assumption that the

statistical model for the data is completely specified except for some unknown

parameters; therefore, the goal of an optimum design is to estimate efficiently

the parameters of the assumed model. However, more frequently, in applications

several rival models are available. Thus, both the aims of model selection and

parameter estimation should be achived by an optimum design. For this reason,

some authors have studied compound criteria that combine criteria for parameter

estimation (usually the D-criterion) and for model discrimination. In the liter-

ature there exist several optimality criteria which are useful to discriminate be-

tween models and may be applied in different settings (Ds-, T- and KL-criteria).

The Ds-criterion can be used when the rival models are nested; thus, in the

context of two nested regression models which differ by s > 1 parameters, Tsai

and Zen (2004) and Zen and Tsai (2004) have considered the DDs-compound

criterion, given by a weighted geometric mean of Ds- and D-efficiencies (the case

s = 1 is studied by Dette (1993)). Differently, the T-criterion can be applied
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to discriminate nested or separate models but they must be homoscedastic with

Gaussian errors; an extension of the T-criterion for non-homoscedastic errors is

given in Uciński and Bogacka (2005); Atkinson (2008) has proposed the DT-

criterion which is a weighted geometric mean of T- and D-efficiencies. Finally,

the KL-criterion (proposed by López-Fidalgo, Tommasi, and Trandafir (2007))

can be applied when the rival models are nested or not, homoscedastic or het-

eroscedastic, and with any error distribution. In this general context, Tommasi

(2009) has proposed the DKL-optimality criterion which is a weighted geometric

mean of KL- and D-efficiencies. In the present paper, the DKL-criterion is suit-

ably generalized to handle the case when more than two rival statistical models

are available, with the goal of selecting the correct model and estimating effi-

ciently its parameters. This new criterion is a weighted mean of a measure of

discrimination (based on the KL-criterion) and a measure of estimation (based

on the D-criterion) and is called generalized DKL-criterion.

Only compound criteria are considered in this paper. However, there exist

several ways to incorporate different goals in one design criterion. Some examples

are given in Dette, and Franke (2000, 2001), among others.

When the rival models are non-linear, the designs which maximize multi-

objective criteria are only locally optimum, because the optimality criterion func-

tions depend on the unknown parameters of the models. To go further, one might

follow a Bayesian approach; see for instance, Hill, Hunter, and Wichern (1968)

and Borth (1975). Variously, one could use a max-min criterion; some examples

are Dette, Melas, and Wong (2005) and Dette, and Pepelyshev (2008). In this

paper it is assumed that experiments can be performed sequentially and we adopt

rather a sequential adaptive approach; see, for instance, Chernoff (1975), Ford,

Titterington, and Kitsos (1989) and Wiens (2009).

In more detail, at the first step of the proposed sequential procedure some

nominal values for the parameters are guessed and a generalized DKL-optimum

design is computed; then a bivariate sample of independent experimental condi-

tions and responses are observed and some tests of hypotheses are performed to

select a model. Subsequently, at each step of the sequential procedure, an adap-

tive optimum design is computed maximizing an “updated” generalized DKL-

criterion with the unknown parameters estimated through the data obtained at

the previous step; in addition, the weights corresponding to the discrimination

and estimation measures are updated taking into account all the past statistical

hypothesis tests. Then, a bivariate sample of experimental conditions and re-

sponses are observed (conditionally independent to the past) and some statistical

tests are performed to select a model. The adaptive generalized DKL-optimum

design that maximizes this “updated” generalized DKL-criterion is called a se-

quential generalized DKL-optimum design. This scheme simultaneously achieves
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asymptotically the goals of correct model selection and efficient estimation of the

parameters of the “true” model; in fact, it selects the correct non-linear model

with probability that tends to one and the adaptive generalized DKL-optimum

designs converge to the D-optimum design for the true non-linear model.

Our methodology is partly anticipated in the sequential scheme proposed by

Biswas and Chaudhuri (2002) that is applicable only in the set up of nested linear

models. However, the proposed approach is different from that of Biswas and

Chaudhuri: in order to find an adaptive optimum design they do not update an

optimality criterion; in addition, they do not consider an adaptive design which

is also “good” for model discrimination. Biswas and Chaudhuri (2002), as well as

Montepiedra and Yeh (1998), use the sequential approach essentially to update

the information about the form of the unknown linear model. In addition, Dette

and Kwiecien (2004) have compared, through a simulation study, Biswas and

Chaudhuri’s sequential design with some non-sequential optimum designs. They

show the superiority of non-sequential methods. In this paper non-linear models

are considered, and a sequential procedure is considered a useful device to avoid

model parameter dependence.

The outline of the paper is as follows. In Section 2, the basic notation

is established, and KL- and D-optimality criteria are recalled. In Section 3,

a generalized DKL-criterion is proposed to discriminate among several nested

statistical models and to estimate model parameters. Section 4 is devoted to an

adaptive sequential procedure, where, at each step, a generalized DKL-optimum

design is computed on the basis of past data and performed tests. In Section

5, together with some important auxiliary results, fundamental properties of the

procedure are proved as the number of steps goes to infinity: the sequential

procedure selects the best statistical model with probability that tends to one;

the sequential generalized DKL-optimum design converges to the D-optimum

design for the true statistical model. In Section 6, some ideas about future

developements are discussed.

2. Notation Setting and Description of the Models

Let an experimental condition X be generated by the experimenter from

a design ξ: X is a random variable (or a random vector) having probability

distribution ξ that has support on the experimental domain X , a compact subset

of R (or Rq, q ≥ 1). Let a random variable Y be the response to the experimental

condition X, and consider that there are k rival families of distribution functions

Fj(y|X;βj), with j = 1, . . . , k, for Y conditional on X, each one depending on a

vector of unknown parameters βj in Θj , an open subset of IRdj .
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Models Fj(y|X;βj) satisfy standard hypotheses of regularity as follows. For

each j = 1, . . . , k, Y has a conditional density fj(y|x;βj) that is twice differen-

tiable in βj and is supported independently of βj . We assume that the models

are identifiable.

Moreover assume that, for any j = 2, . . . , k, βT
j = (βT

j−1, τ
T
j ), where τj is

the vector of the last dj − dj−1 components of βj , and that assigning a specific

value τ 0
j to τj yields fj [y|x; (βT

j−1, τ
0T
j )T ] = fj−1(y|x;βj−1), i.e., fj(y|x;βj) and

fj−1(y|x;βj−1) are nested models.

In order to choose a specific model among the k rival models, given m inde-

pendent observations (Y1;X1), . . . , (Ym;Xm), some statistical tests can be carried

out in a stepwise manner until a specific statistical model is selected. The tests

are performed for the hypotheses{
H0,j : fj−1(y|x;βj−1) is the true model,

H1,j : fj(y|x;βj) is the true model,
(2.1)

for j = k, k − 1, . . . , 2. Thus, it is important to choose the design ξ in order

to get observations which enable us to discriminate well between fj(y|x;βj) and

fj−1(y|x;βj−1).

In order to discriminate between a pair of subsequent nested models fj(y|x;βj)

and fj−1(y|x;βj−1), the design ξ can be selected by maximizing the KL–optimality

criterion,

Ij−1,j(ξ;βj) = inf
βj−1∈Θj−1

∫
X

∫
Y
log

fj(y|x;βj)w(x)

fj−1(y|x;βj−1)w(x)
Fj(dy|x;βj) ξ(dx)

= inf
βj−1∈Θj−1

∫
X

∫
Y
log

fj(y|x;βj)

fj−1(y|x;βj−1)
Fj(dy|x;βj) ξ(dx), (2.2)

where Y ⊆ R is the support of Y and w(x) = ξ(dx)/ν(dx). If the larger

model is assumed to be completely known, then criterion (2.2) is the minumum

Kullback-Leibler divergence between the joint statistical models fj(y|x;βj)w(x)

and fj−1(y|x;βj−1)w(x). The KL-criterion (2.2) is a concave function of ξ (as

proved by Tommasi (2007)) and a design ξ∗j−1,j that maximizes Ij−1,j(ξ) for a

given βj is called KL–optimum.

Let

I(x,βj ,βj−1) =

∫
Y
log

fj(y|x;βj)

fj−1(y|x;βj−1)
Fj(dy|x;βj) (2.3)

be the conditional Kullback-Leibler divergence between the statistical models

fj(y|x;βj) and fj−1(y|x;βj−1). For a fixed value of βj , a design for which the

set

Ωj−1(ξ,βj) =

{
β̃j−1 : β̃j−1(ξ) = arg min

βj−1∈Θj−1

∫
X
I(x,βj ,βj−1) ξ(dx)

}
(2.4)
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is a singleton, is called a KL–regular design, otherwise it is called a KL–singular

design. Assuming that ξ∗j−1,j is regular, López-Fidalgo, Tommasi, and Trandafir

(2007) prove that ξ∗j−1,j is a KL-optimum design if and only if ψj−1,j(x, ξ
∗
j−1,j ,βj)

≤ 0 for any x ∈ X , where

ψj−1,j(x, ξ,βj)= I(x,βj , β̃j−1)−
∫
X
I(s,βj , β̃j−1) ξ(ds) (2.5)

is the directional derivative of the criterion function (2.2) at ξ in the direction of

δξx = ξx − ξ and ξx is the design which concentrates the whole mass at point x.

The quantity β̃j−1 in (2.5) is the assumed unique element of set (2.4).

The KL-efficiency of a design ξ relative to the optimum design ξ∗j−1,j is

Effj−1,j(ξ,βj) =
Ij−1,j(ξ,βj)

Ij−1,j(ξ∗j−1,j ,βj)
.

This efficiency is in (0, 1) and measures the goodness of a design ξ for discrimi-

nating purposes.

As previously established, to select a model among k rival models, some

statistical tests are carried out sequentially starting from H0k against H1k in

reverse order until a null hypothesis is rejected. If H0j is rejected for some

j ∈ {k, . . . , 2}, then fj(y|x;βj) is considered as the true model. Otherwise, if

no null hypothesis is rejected, then f1(y|x;β1) is considered as the true model.

Therefore, in any case, the parameter βj of the true model has to be estimated.

Hence, another important design goal is to choose the experimental conditions

in order to estimate efficiently the model parameters. Among all the design

criteria which are useful for parameter estimation, the D-optimality criterion is

indeed the most popular. See for instance, Fedorov (1972), Pázman (1986) and

Atkinson, Donev, and Tobias (2007). In the context of non-linear models (see

Silvey (1980)), the D-optimality criterion is defined as

ΦDj [Mj(ξ,βj)] =

{
log |Mj(ξ,βj)| if Mj(ξ,βj) is non-singular,

−∞ if Mj(ξ,βj) is singular,
(2.6)

where, except for the constant m of proportionality, Mj(ξ,βj) is the Fisher in-

formation matrix corresponding to the joint distribution fj(y|x;βj)w(x). Thus,

Mj(ξ,βj) = EX [Jj(x,βj)] =
∫
x∈X Jj(x,βj) ξ(dx) where Jj(X,βj) is the dj × dj

matrix whose (r, s)th element is EY |X [−∂2 log fj(y|x;βj)/∂βjr∂βjs], and the ex-

pected value is taken with respect to fj(y|x;βj), j = 1, . . . , k.

A design ξ∗Dj
is a D-optimum design for the parameter estimation of model

fj(y|x;βj) if and only if ψDj (x, ξ
∗
Dj
,βj) ≤ 0, x ∈ X , where

ψDj (x, ξ,βj) = tr[M−1
j (ξ,βj)Jj(x,βj)]− dj , j = 1, . . . , k (2.7)



68 CATERINA MAY AND CHIARA TOMMASI

is the directional derivative of the D-criterion function (2.6) at ξ in the direction
of δξx . The D-efficiency of a design ξ is then

EffDj (ξ,βj) =
|Mj(ξ,βj)|1/dj
|Mj(ξ∗Dj

,βj)|1/dj
, j = 1, . . . , k.

3. Generalized DKL-criterion for Several Nested Models

The DKL-optimality criterion to discriminate between two statistical models
and to estimate efficiently their parameters has been proposed in Tommasi (2009).
This criterion is here generalized to the case of k nested models by the weighted
geometric mean of efficiencies

ΦDKL(ξ,β,γ) =
k∏

j=2

(
Ij−1,j(ξ,βj)

Ij−1,j(ξ∗j−1,j ,βj)

)γD k∏
j=1

(
|Mj(ξ,βj)|
|Mj(ξ∗Dj

,βj)|

)γj/dj

, (3.1)

where β = (βT
1 , . . . ,β

T
k )

T , while γ = (γ1, . . . , γk, γD) is a vector of fixed constants
with 0 ≤ γj ≤ 1 for any j = 1, . . . , k, and 0 ≤ γD ≤ 1 , fulfilling the linear
constraint (k − 1)γD +

∑k
j=1 γj = 1. Note that the coefficient γD reflects the

importance of the discrimination goal while the coefficients γj , j = 1, . . . , k,
balance the importance of the parameter estimation in the k rival models.

Except for some terms that are constant with respect to ξ, the logarithm of
(3.1), provided that each matrix Mj(ξ,βj) is not singular, is

log ΦDKL(ξ,β,γ) ≈ γD

k∑
j=2

log Ij−1,j(ξ,βj) +
k∑

j=1

γj
dj

log |Mj(ξ,βj)|;

hence, maximizing ΦDKL(ξ,β,γ) is equivalent to maximizing the criterion func-
tion

ΨDKL(ξ,β,γ)=


γD

k∑
j=2

log Ij−1,j(ξ,βj)+

k∑
j=1

γj
dj

log |Mj(ξ,βj)| if |Mj(ξ,βj)| ̸=0,

for all j=1, . . . , k,

−∞ otherwise.
(3.2)

A generalized DKL-optimum design, ξ∗DKL, maximizes ΦDKL(ξ,β,γ) or
equivalently ΨDKL(ξ,β,γ).

In Theorem 3.1, a stronger definition of regular design is adopted.

Definition 1. A design ξ is regular for a given β if and only if all the sets
Ωj−1(ξ;βj), defined in (2.4), are singletons and all the Fisher information matri-
ces Mj(ξ;βj) are non singular, for any j = 1, . . . , k.
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Design criterion (3.2) is a concave function in the first argument since it is

a convex combination of concave functions, thus an equivalence theorem can be

stated.

Theorem 1. A regular design ξ∗DKL is generalized DKL-optimum if and only if

ψDKL(x, ξ
∗
DKL,β) ≤ 0, x ∈ X ,

where

ψDKL(x, ξ,β) = γD

k∑
j=2

ψj−1,j(x, ξ,βj)

Ij−1,j(ξ,βj)
+

k∑
j=1

γj
dj
ψDj (x, ξ,βj)

is the directional derivative of criterion function (3.2) at ξ in the direction of δξx.

The criterion of optimality (3.2) depends on the unknown parameter vector

β and on the choice of the weights γ; thus, a generalized DKL-optimum design is

only locally optimal when non-linear models are considered. In order to overcome

this problem an adaptive sequential design is proposed in the next section.

4. A Sequential Generalized DKL-optimum Design

Suppose that a number of experiments can be carried out sequentially with

the goal of discriminating between the k models described in Section 2 while

efficiently estimating the parameters of the true model. A generalized DKL-

optimum design as proposed in Section 3 can be computed to provide experiments

to be performed, but, since the models are non-linear, the optimality would be

reached only locally. To overcome the problem of the dependance on the unknown

parameter, let us perform the experiments in n sequential steps as follows, and

denote the stage of the sequential procedure by r = 0, 1, . . . , n.

At the first stage r = 0, a design maximizing criterion (3.2) based on a

nominal value for β and on an arbitrary choice of values for γj (j = 1, . . . , k) is

computed. Let ξ∗DKL = ξ∗0 be such a generalized DKL-optimum design. Then

m independent experimental conditions are generated from ξ∗0 ; denote by X0 =

(X0,1, . . . , X0,m)T the random vector of these experimental conditions. Also, a

vector of m independent observations Y0 = (Y0,1, . . . , Y0,m)T is obtained from

these experimental conditions, and a statistic T0j is used for testing

H0,j : τj = τ 0
j against H1,j : τj ̸= τ 0

j (4.1)

for j = k, k − 1, . . . , 2, until a specific null hypothesis is rejected. Here (4.1) is

equivalent to (2.1) as the models are nested. Consider the -2 log-likelihood ratio

statistic

T j
0,m = −2 log

Lj−1
0 (β̂0,j−1)

Lj
0(β̂0,j)
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based on the likelihood

Ll(Y0,X0;βl) = Ll(Y0|X0;βl) · Ll(X0) ∝
m∏
s=1

fl(y0,s|x0,s;βl), (4.2)

so that, for l = j − 1, j, Ll
0(β̂0,l) is the likelihood evaluated at its maximum β̂0,l.

A null hypothesis H0,j is rejected with level α0,j if T j
0,m > c0,j , c0,j being the

cut-off point corresponding to the significance level α0,j .

For r = 1, . . . , n, we define, for instance, the following random weights: for

each j = 1, . . . , k, let γr−1,j to be the square of the proportion of times that

model fj(y|x;βj) has been selected up to the (r − 1)th step, provided that such

proportion is lower than 1; if the proportion for f̄ȷ(y|x;βȷ̄) is 1, then γr−1,̄ȷ =

1− 1/2r and γr−1,j = 0 for j ̸= ȷ̄. Finally, let

γr−1,D =
1−

∑k
j=1 γr−1,j

k − 1
.

With β̂r−1 = (β̂T
r−1,1, . . . , β̂

T
r−1,k)

T , an adaptive sequential DKL-optimum design

ξ∗r is found by maximizing the random criterion function

ΨDKL

[
ξ, β̂r−1(ω),γr−1(ω)

]
= γrD(ω)

k∑
j=2

log Ij−1,j

[
ξ, β̂r−1,j(ω)

]
+

k∑
j=1

γr−1,j(ω)

dj
log

∣∣∣Mj

[
ξ, β̂r−1,j(ω)

]∣∣∣ , (4.3)
if Mj [ξ, β̂r−1,j(ω)] is not singular for any j = 1, . . . , k. Otherwise

ΨDKL

[
ξ, β̂r−1(ω),γr−1(ω)

]
= −∞.

In (4.3), if r = 1, β̂r−1,j is the maximum likelihood estimator for βj based on

(4.2), with l = j; from the adaptive sequential DKL-optimum design ξ∗1 , a vector

X1 = (X1,1, . . . , X1,m)T of conditionally independent and identically distributed

random variables with respect to the past σ(Y0,X0), having conditional dis-

tribution ξ∗1 is generated. Given X1, a vector of m conditionally independent

responses Y1 = (Y1,1, . . . , Y1,m)T is observed.

If r ≥ 2, β̂r−1,j is the maximum likelihood estimator for βj based on the condi-

tional likelihood of (Yr−1,Xr−1) given all the past observations

Lj(Yr−1,Xr−1|Yr−2,Xr−2, . . . ,Y0,X0;βj). (4.4)

A vector of m experimental conditions Xr = (Xr,1, . . . , Xr,m)T , conditionally in-

dependent and identically distributed with respect to the past σ(Yr−1,Xr−1, . . .,
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Y0,X0), is generated from ξ∗r . GivenXr, a vector ofm conditionally independent

responses Yr = (Yr,1, . . . , Yr,m)T is observed. Note that the response vector Yr

depends on the past observations only through Xr, therefore the conditional dis-

tribution of Yr given σ(Xr,Yr−1,Xr−1, . . . ,Y0,X0) is equal to the conditional

distribution of Yr given Xr. Hence (4.4) satisfies

Lj(Yr−1,Xr−1|Yr−2,Xr−2, . . . ,Y0,X0;βj)

=Lj(Yr−1|Xr−1,Yr−2,Xr−2, . . . ,Y0,X0;βj)·Lj(Xr−1|Yr−2,Xr−2, . . . ,Y0,X0)

∝Lj(Yr−1|Xr,Yr−2,Xr−2, . . . ,Y0,X0;βj)

=Lj(Yr−1|Xr−1;βj) =

m∏
s=1

fj(yr−1,s|xr−1,s;βj), j = 1, . . . , k. (4.5)

In the notation of (4.3) it is stressed that the second and third arguments of

ΨDKL(·, ·, ·) are random, and hence the optimal designs ξ∗r , for an r ≥ 1, are

stochastic distributions.

Then, hypotheses (4.1) are tested through the statistic

T j
r,m = T j

r−1,m + T j
r,m, (4.6)

for j = k, k − 1, . . . , 2 until a specific null hypothesis is rejected, where

T j
r,m = −2 log

Lj−1
r (β̂r,j−1)

Lj
r(β̂r,j)

, (4.7)

is the log-likelihood ratio statistic based on the conditional likelihood

Ll(Yr,Xr|Yr−1,Xr−1, . . . ,Y0,X0;βj) ∝
m∏
s=1

fj(yr,s|xr,s;βj), j = 1, . . . , k,

and Ll
r(β̂r,l) is the corresponding conditional likelihood evaluated at its maximum

point β̂r,l, l = j − 1, j. A null hypothesis H0,j is rejected with level αr,j if

T j
r,m > cr,j , where cr,j is the cut-off point corresponding to the level αr,j .

Note that for ease of notation we have considered the same number, m,

of observations at each step; this could be straightforwardly generalized to the

case of mr observations at each step r = 0, . . . , n, assuming that the hypotheses

considered in the the rest of the paper hold form = min{mo, . . . ,mn}. Note that,

after n steps, N =
∑n

r=0mr dependent observations (Xr,s, Yr,s), s = 1, . . . ,mr

and r = 0, . . . , n, have been collected in the experiment.
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5. Selection of the Correct Model and Convergence to the Corre-

sponding D-optimal Design

The main results of this section are Theorem 2 and Theorem 3 which guar-

antee two basic properties of the sequential procedure. Some methods used in

Biswas and Chaudhuri (2002) are extended to the different scheme proposed in

this paper. Theorem 2 assures that the true model is asymptotically selected;

Theorem 3 states that the sequence of generalized DKL-optimum designs con-

verges in probability to the D-optimal design for the true model. In addition,

some auxiliary results are provided. The first one is Proposition 1 which gives the

asymptotic distribution, under the null hypothesis, of the test statistics defined

in (4.6), as the number m of observations increases to infinity.

From now on, let the true model for Y conditional on X be fj∗(y|x;βj∗),

j∗ ∈ {1, . . . , k}, and let β̄j∗ denote the true value of the parameter; this means

that, whenever j∗ ≥ 2, the last components of β̄j∗ satisfy τ̄j∗ ̸= τ 0
j∗ . Further

assumptions on the models are required.

Assumption 1. For any design ξ such that Mj∗(ξ,βj∗) is not singular:

1.1. second partial derivatives of fj∗(y|x;βj∗) may be passed under the integral

sign in
∫
Y fj∗(y|x;βj∗) G(dy|x);

1.2. |∂2fj∗(y|x;βj∗)/∂βj∗r∂βj∗s| ≤ k(y, x) for all βj∗ in some neighborhood of

β̄j∗, with ∫
X

∫
Y
k(y, x) Fj∗(dy|x; β̄j∗) ξ(dx) <∞;

1.3. ∫
X

∫
Y
log

fj∗(y|x; β̄j∗)

fj∗−1(y|x;βj∗−1)
Fj∗(dy|x; β̄j∗) ξ(dx)

has a unique minimum in β̃j∗−1;

1.4. | log fj∗−1(y|x;βj∗−1)| ≤ m(y, x) for all βj∗−1 in some neighborhood of

β̃j∗−1, with ∫
X

∫
Y
m(y, x) Fj∗(dy|x; β̄j∗) ξ(dx) <∞.

Note that the design ξ∗0 ensures that Mj(ξ,βj) is not singular for any j =

1, . . . , k, since it maximizes (3.2); for the same reason, this property is satisfied

by each ξ∗r , r ≥ 1, conditionally on the past.

Proposition 1. Under the null hypothesis H0,j, the test statistic T j
r,m converges

in distribution, as m→ ∞, to a chi-square, T j
r , having (r+1)(dj −dj−1) degrees

of freedom, for any r = 0, . . . , n.
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Proof. From Assumptions 1.1 and 1.2, T j
0,m converges to a chi-squared distribu-

tion with (dj − dj−1) degrees of freedom (see Ferguson (1996, Thm. 22)).

For any i = 1, . . . , r, the ith term T j
i,m of T j

r,m, defined at (4.7), is a function

of (Yi,Xi), and the response vector Yi depends on the corresponding exact

design Xi and on all the past response vectors Yi−1, . . . ,Y0 and exact designs

Xi−1, . . . ,X0 only through Xi; therefore

P (T j
i,m ≤ ti|Xi,Yi−1,Xi−1, . . . ,Y0,X0) = P (T j

i,m ≤ ti|Xi). (5.1)

Moreover, responses Yi,1, . . . , Yi,m are independent and identically distributed

conditionally to the exact design Xi, and hence, again from Assumptions 1.1 and

1.2, for m→ ∞,

P (T j
i,m ≤ ti|Xi) → P (T j

i ≤ ti), (5.2)

where T j
i is chi-square with (dj − dj−1) degrees of freedom. Equations (5.1) and

(5.2) imply that, for m growing to infinity, T j
i,m is asymptotically independent of

σ(Xi,Yi−1,Xi−1, . . . ,Y0,X0) and it is asymptotically distributed as chi-square

with (dj−dj−1) degrees of freedom. It follows that T j
r,m is a sum of asymptotically

independent, chi-squares, and hence

T j
r,m

d→ T j
r

as m → ∞, where T j
r =

∑r
i=1 T

j
i is a chi-square with (r + 1)(dj − dj−1) degrees

of freedom.

From now on, we denote by cjr the quantile of order (1−αj
r) of a chi-squared

distribution with (r + 1)(dj − dj−1) degrees of freedom. Then, at each stage r,

the null hypothesis H0,j is rejected if T j
r,m > cjr, with an αj

r asymptotic level of

significance. Moreover, for r = 0, . . . , n, and for j = k, k− 1, . . . , 2, let Zj
r be the

indicator of the event “the jth model is selected at stage r”, that is

Zj
r =

{
1, if T h

r,m ≤ chr for h = k, . . . , j + 1 and T j
r,m > cjr,

0, otherwise,

and for j = 1 let Z1
r be the indicator of the event “the smaller model is selected

at stage r”, that is

Z1
r =

{
1, if T h

r,m ≤ chr for h = k, . . . , 2,

0, otherwise.

Lemma 1. As m→ ∞,

(a) β̂0,j∗ and β̂0,j∗−1 converge almost surely to β̄j∗, and β̃j∗−1, respectively;
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(b) in some neighborhoods of β̄j∗, and β̃j∗−1, respectively,

sup
βj∗

∣∣∣∣∣ 1m
m∑
s=1

log fj∗(Y0,s|X0,s;βj∗)− E(log fj∗(Y0,s|X0,s;βj∗))

∣∣∣∣∣→ 0, a.s.,

sup
βj∗−1

∣∣∣∣∣ 1m
m∑
s=1

log fj∗−1(Y0,s|X0,s;βj∗−1)− E(log fj∗−1(Y0,s|X0,s;βj∗−1))

∣∣∣∣∣→ 0, a.s..

Proof. (a) Assumptions 1.1 and 1.2 guarantees the the strong consistency of

the maximum likelihood estimator of the parameter of the true model (see for

instance Ferguson (1996, Thm. 18)). The convergence of the maximum likelihood

estimator of the misspecified model is guaranteed by Assumptions 1.3 and 1.4,

see White (1982, Thm. 2.2).

(b) To obtain the uniform law, apply Ferguson (1996, Thm. 16 (a)).

The next auxiliary lemma provides the “non-null” behavior of the test statis-

tic.

Lemma 2. There exists a constant k0 > 0 such that, almost surely,

lim
m→∞

T j∗

0,m

m
= k0.

Proof. For i = 0, the observations (Xi,s, Yi,s), s = 1, . . . ,m, are independent

and identically distributed, therefore

T j∗

0,m

m
=

1

m

m∑
s=1

−2 log
fj∗−1(Y0,s|X0,s; β̂0,j∗−1)

fj∗(Y0,s|X0,s; β̂0,j∗)
.

From the strong consistency of estimators and the Uniform Law of Large Num-

bers, guaranteed by Lemma 1, T j∗

0,m/m converges to

k0 = E
[
− 2 log

fj∗−1(Y |X; β̃j∗−1)

fj∗(Y |X; β̄j∗)

]
,

which is greater than zero by Jensen’s inequality.

Theorem 2. Let αj
n be a sequence of significance levels such that αj

n → 0 as

n → ∞ for any j = 2, . . . , k. Let m = m(n) be a non decreasing sequence of

integers such that m → ∞ as n → ∞, and cjn/m → 0 as n → ∞. Then, as the

number of stages n converges to infinity, the sequential procedure selects the true

model with probability converging to one, that is P (Zj∗
n = 1) → 1, as n→ ∞.
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Proof. If j∗ ∈ {k, . . . , 2} then

P (Zj∗
n = 1) = P (T k

n,m ≤ ckn, · · · , T j∗+1
n,m ≤ cj

∗+1
n , T j∗

n,m > cj
∗
n )

= 1− P ({T k
n,m > ckn} ∪ · · · {T j∗+1

n,m > cj
∗+1
n } ∪ {T j∗

n,m ≤ cj
∗
n })

≥ 1−
[ k∑
j=j∗+1

P (T j
n,m > cjn) + P (T j∗

n,m ≤ cj
∗
n )

]
. (5.3)

Under the true model fj∗(y|x;βj∗), it holds that P (T j
n,m > cjn) = αj

n for any

j > j∗ since the models are nested. Thus (5.3) becomes

P (Zj∗
n = 1) ≥ P (T j∗

n,m > cj
∗
n )−

k∑
j=j∗+1

αj
n. (5.4)

The right-hand term of (5.4) converges to 1 as n→ ∞ by the hypotheses on the

αj
n’s, and since

lim
n→∞

P (T j∗
n,m > cj

∗
n ) = lim

n→∞
P
(T j∗

n,m

m
>
cj

∗
n

m

)
= 1. (5.5)

Here (5.5) follows by taking into account that T j∗
n,m > T j∗

0,m and that

lim
n→∞

P
(T j∗

0,m

m
>
cj

∗
n

m

)
= 1, (5.6)

as a consequence of Lemma 2, since cj
∗
n /m→ 0 as n→ ∞.

In addition, if j∗ = 1 then

P (Z1
n = 1) = P (T k

n,m ≤ ckn, · · · , T 2
n,m ≤ c2n)

= 1− P ({T k
n,m > ckn} ∪ · · · {T 2

n,m > c2n})

≥ 1−
[ k∑
j=2

P (T j
n,m > cjn)

]
= 1−

k∑
j=2

αj
n. (5.7)

The right-hand term of (5.7) converges to 1 as n→ ∞ by the hypotheses on the

αj
n’s.

In order to prove Theorem 3, arguments of asymptotic theory for argmin

of convex random functions are used. References and some general results for

real-valued random functions can be found in Kato (2009). Since the stochastic

criterion function (4.3) takes values in the extended real axis R̄ = [−∞,+∞),

the results treated in Geyer (1996) and in Rockafellar (1970) are extended to

the metric space (S, dw), where S is the set of probability distributions ξ with



76 CATERINA MAY AND CHIARA TOMMASI

support X and dw is a metric which metrizes the weak convergence on X . For

instance, take the Kantorovich-Wasserstein metric (see Gibbs and Su (2002)):

dw(ξ1, ξ2) = inf{E(|X1 −X2|) : X1 ∼ ξ1, X2 ∼ ξ2}.

Since X is compact, the metric space (S, dw), which is an infinite-dimensional

space, is complete and compact (as a consequence of Prokhorov’s theorem).

At first, an auxiliary result about continuity and semi-continuity with respect

to ξ ∈ S, of D- and KL-criteria, respectively, is provided by Proposition 2. Given

a topological space S, a function h : S → R̄ is upper semi–continuous at x0
if and only if for every ε > 0 there exists a neighborhood U of x0 such that

h(x) ≤ h(x0) + ε for all x ∈ U , equivalently, lim supx→x0
h(x) ≤ h(x0). The

function h is called upper semi–continuous if it is upper semi–continuous at every

point of its domain, with a similar definition for lower semi–continuous.

Assumption 2. The Kullback-Leibler conditional divergence I(x,βj ,βj−1) at

(2.3) is continuous with respect to x, j = 2, . . . , k.

Proposition 2. Under Assumption 2,

(a) the D-criterion function from (S, dw) to [−∞,+∞), ξ 7→ ΦDj [Mj(ξ,βj)], is

continuous;

(b) the KL-criterion function from (S, dw) to [0,+∞), ξ 7→ Ij−1,j(ξ;βj), is upper

semi-continuous.

Proof. (a) Recall that Mj(ξ,βj) =
∫
x∈X Jj(x,βj) d ξ(x), where Jj(x,βj) is a

dj × dj matrix whose components are bounded continuous functions from X to

R. It follows that the map ξ 7→ Mj(ξ,βj) is continuous because dw metrizes

the weak convergence. Since also Mj(ξ,βj) 7→ ΦDj [Mj(ξ,βj)] is continuous as

shown in Pázman (1986, Proposition IV.2), this proves the result.

(b) Let z(ξ,βj ,βj−1) =
∫
x∈X I(x,βj ,βj−1) d ξ(x), where I(x,βj ,βj−1) is de-

fined at (2.3). The map ξ 7→ z(ξ,βj ,βj−1) from (S, dw) to R is continuous

because I(x,βj ,βj−1) is a continuous function from X to R from Assumption

2, and dw metrizes the weak convergence. As a consequence of the continu-

ity of z(ξ,βj ,βj−1) with respect to ξ, the KL-criterion function Ij−1,j(ξ;βj) =

infβj−1∈Θj−1
z(ξ,βj ,βj−1) (see equation (2.2)) is upper semi-continuous.

Lemma 3. Let R be the set of designs ξ such that every matrix Mj(ξ,βj),

j = 1, . . . , k, in (3.2) is not singular for any value of βj. Then R is dense in S.

Proof. Given a design ξ and a specific value for βk, it is well known that if

Mk(ξ,βk) is positive definite then all the principal minors are positive. Since

the models are nested, if Mk(ξ,βk) is positive definite for any value of βk ∈ Θk,
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then |Mj(ξ,βj)| > 0 for every j = 1, . . . , k and βj ∈ Θj ; thus ξ ∈ R. Therefore

if ξs is a design in S \ R then Mk(ξs,βk) needs to be a non-negative definite

matrix at least for some values of βk. Let us show that there exists a sequence

ξn of elements in R such that limn→∞ dw(ξn, ξs) = 0.

For this purpose, let ξr be a design in R and let αn be a sequence of real

constants in (0, 1) such that αn → 0 as n → ∞. The sequence of designs

ξn = (1−αn)ξs+αnξr belongs to R, because Mk(ξn,βk) = (1−αn)Mk(ξs,βk)+

αnMk(ξr,βk) is positive definite. Moreover ξn converges to ξs weakly as n→ ∞,

and hence the result is proved.

Assumption 3. The equality ψDj∗ (x, ξ
∗
Dj∗

, β̄j∗) = 0 has exactly dj∗ solutions,

where ψDj∗ (x, ξ
∗
Dj∗

, β̄j∗) is the directional derivative (2.7) evaluated at the D-

optimum design for the true distribution fj∗(y|x; β̄j∗).

Remark 1. Assumption 3 implies the uniqueness of the D-optimum design for

model fj∗(y|x;βj∗) by the Equivalence Theorem for the D-optimality criterion.

For more details see Fedorov, and Hackl (1997, Thm. 2.4.1).

Theorem 3. If the hypotheses of Theorem 2 hold and
∑

n α
j
n <∞, then, for the

sequence of designs ξ∗n,

P
(
dw

[
ξ∗n(ω), ξ

∗
Dj∗

]
< ε

)
→ 1,

for any ε > 0, as n grows to infinity.

Proof. First, let us prove that, whenever
∑

n α
j
n <∞,

P (Zj∗
n = 1, ev.) = 1. (5.8)

Let j∗ ∈ {k, . . . , 2}. From Lemma 2 and from the hypothesis that cj
∗
n /m→ 0, it

follows that

P
(T j∗

0,m

m
>
cj

∗
n

m
, ev.

)
= 1, and, a fortiori,P

(T j∗
n,m

m
>
cj

∗
n

m
, ev.

)
= 1,

since T j∗
n,m > T j∗

0,m. Thus, for any ε > 0 there exists N1 = N1(ε) such that

P
(T j∗

n,m

m
>
cj

∗
n

m
, for all n ≥ N1

)
≥ 1− ε. (5.9)

Since
∑

n α
j
n <∞, there exists also N2 = N2(ε) such that

∑
n≥N2

k∑
j=j∗+1

αj
n < (k − j∗ + 1) ε. (5.10)
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Now let N = max(N1, N2); with analogous calculations of (5.3),

P
(
Zj∗
n =1, for all n ≥ N

)
= P

( ∩
n≥N

{
T k
n,m≤ckn, . . . , T j∗+1

n,m ≤ cj
∗+1
n , T j∗

n,m > cj
∗
n

})
= 1− P

( ∪
n≥N

{
{T k

n,m > ckn} ∪ · · · {T j∗+1
n,m > cj

∗+1
n } ∪ {T j∗

n,m ≤ cj
∗
n }

})

≥ 1−
[ ∑
n≥N

k∑
j=j∗+1

P
(
T j
n,m > cjn

)
+ P

( ∪
n≥N

{
T j∗
n,m ≤ cj

∗
n

})]

= P
( ∩

n≥N

{
T j∗
n,m > cj

∗
n

})
−

∑
n≥N

k∑
j=j∗+1

αj
n. (5.11)

From (5.9) and (5.10), the last term of the (5.11) is greater then 1−(k−j∗+2) ε,

and this proves (5.8) for j∗ ∈ {k, . . . , 2}.
If j∗ = 1, then

P
(
Z1
n = 1, for all n ≥ N

)
= P

( ∩
n≥N

{
T k
n,m ≤ ckn, · · · , T 2

n,m ≤ c2n

})
= 1− P

( ∪
n≥N

{
{T k

n,m > ckn} ∪ · · · {T 2
n,m > c2n}

})

≥ 1−
∑
n≥N

k∑
j=2

P
(
T j
n,m > cjn

)
= 1−

∑
n≥N

k∑
j=2

αj
n > 1− (k − j∗ + 1) ε

and this proves (5.8) for j∗ = 1.

Equation (5.8) implies that limn→∞ Zj∗
n = 1, almost surely, and then, from

Cesaro’s lemma (see Williams (1991, p.116)), limn→∞
∑n

i=1 Z
j∗

i /n = 1, almost

surely. Hence

lim
n→∞

γnj∗ = lim
n→∞

(∑n
i=1 Z

j∗

i

n

)2

= 1, (5.12)

almost surely. Moreover, since Zj∗
n = 1−

∑
j ̸=j∗ Z

j
n, it also follows that

lim
n→∞

γnj = 0, a.s., for any j ̸= j∗, and lim
n→∞

γnD = 0, a.s.. (5.13)

From (4.5), the maximum likelihood estimator β̂n,j∗ for the true parameter of

the true model is obtained from a proper likelihood function which does not

depend on the past; if n → ∞ then also m → ∞, as assumed in the hypotheses

of Theorem 2; hence we have, as in Lemma 1(a),

β̂n,j∗ → β̄j∗ , (5.14)
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a.s.. Since ΦDj∗ [Mj∗(ξ, βj∗ )] is continuous with respect to the second argument,

the Continuous Mapping Theorem, together with the (5.12) and (5.13), assures

that, for any ξ such that every matrix Mj(ξ,βj), j = 1, . . . , k, in (3.2) is not

singular and for n→ ∞,

ΨDKL(ξ, β̂n,γn) →
1

dj∗
log |Mj∗(ξ, β̄j∗)|, (5.15)

in probability. The limit in (5.15) is proportional to the D-optimality criterion

function for the true model fj∗(y|x;βj∗). Let

gn(ξ)(ω) = −ΨDKL

[
ξ, β̂n(ω),γn(ω)

]
,

g(ξ) = − 1

dj∗
log |Mj∗(ξ, β̄j∗)|.

The sequence of random functions gn(ξ)(ω) converges in probability, and then

also in distribution, to the function g(ξ) for any ξ ∈ R, which is a dense subset

of S by Lemma 3. Now gn(ξ)(ω), for any n ≥ 0, and the limit g(ξ) are convex

functions with respect to ξ, as shown in Section 3. Moreover gn(·)(ω) is lower

semi-continuous because, from Proposition 2, it is a linear combination of lower

semi-continuous functions on (−∞,+∞], while g(·) is continuous. As a conse-

quence of compactness and convexity of the space S and of the continuity of

the D-criterion, gn(ξ)(ω) and g(ξ) are finite on some open set. Finally, from As-

sumption 3, the infimum of g(ξ) is achieved at a unique point ξ∗Dj∗
. From Lemma

3.1 and Theorem 3.2 in Geyer (1996) it follows that ξ∗n(ω) converges in distribu-

tion to ξ∗Dj∗
. Since this limit is not random, this is equivalent to convergence in

probability (see Billingsley (1999)), and this proves the result.

6. Conclusion and Further Developments

The DKL-criterion of optimality, proposed by Tommasi (2009), is useful to

choose experimental conditions which are “good” for discriminating between two

rival models, as well as to estimate efficiently the parameters of the selected

model. We tackle the problem when there are more than two rival models to

be considered. To handle the case of several nested non-linear models, a modifi-

cation of the DKL-criterion is given, termed the generalized DKL-criterion. We

prove the continuity and the upper semi-continuity, with respect to the design

ξ, of the D- and the KL-criterion functions, respectively. As a consequence, the

generalized DKL-criterion is also upper semi-continuous.

The generalized DKL-criterion depends on the values of the model param-

eters both for non-linear models and some linear models (when two subsequent

linear models differ by more than one coefficient). To overcome the problem that
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the true values of the parameters are unknown, we propose a sequential proce-

dure. Our sequential procedure selects the true model with probability that tends

to one; moreover, the sequential generalized DKL-optimum design converges in

probability to the D-optimum design for the true model, as the number of stages

increases to infinity. In order to investigate after how many steps the sequential

procedure could be stopped, a simulation study will be developed in future work.

In addition, the asymptotic distribution of the test statistic (used at each step

of the sequential scheme) will be compared with its Monte-Carlo distribution, to

determine how many observations should be taken at each stage.

The choices of the weights in Section 4 and of the cut-off points in Section

5 are at the moment based on a simple rule, and they are very general. It is of

interest to develop some theory leading to optimum choices in order to improve

as much as possible the speed of convergence to the D-optimum design for the

true model.

Since the rival models considered in this paper are nested and the Ds-criterion

is useful to discriminate between nested models, a weighted geometric mean of

D- and Ds-efficiencies is another criterion of optimality instead of the generalized

DKL-criterion. Let us call generalized DDs-criterion this possible combination

of efficiencies. In this way, the criterion proposed by Tsai and Zen (2004) would

be extended to the case of k models. In addition, a sequential adaptive DDs-

optimum design could be performed in a similar way to the sequential procedure

proposed here. The comparison between the performances of these two sequential

adaptive designs will be a matter of future investigation.

Differently from the Ds-criterion, the KL-criterion can be used to discrim-

inate between separate models. Thus, a possible extension of our sequential

procedure to the situation of several non-nested models would be of great inter-

est. Such generalization is however not straightforward. For instance, testing

separate models requires that all the models need to be compared in pairs; for

each comparison two tests have to be performed- interchanging the role of the

null and the alternative hypothesis- and multiple answers may be reached. This

extension will be object of the future research, as well.
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