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Abstract: In the context of a nonparametric model for the unbalanced heteroscedas-

tic two-fold nested design, we consider the problem of testing for the sub-class effect.

The asymptotic theory pertains to cases with a large number of sub-classes, and

small number of classes. It is shown that the classical F -statistic is very sensitive to

departures from homoscedasticity, even in balanced designs. We propose new test

statistics when heteroscedasticity is of the between-classes type, as well as for the

general heteroscedastic design. Their asymptotic distributions, both under the null

and local alternative hypotheses, are established. The ramifications of these results

to the hypothesis of no covariate effect in the nonparametric analysis of covariance

are discussed. Simulation studies compare the finite sample performance of the

proposed statistics with those of the classical F -test and the GEE test. Two data

sets are analyzed.

Key words and phrases: Asymptotic distributions, heteroscedasticity, nonparamet-
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1. Introduction

The classical ANOVA model assumes that the error terms are i.i.d. normal,

in which case F -statistics have certain optimality properties (cf., Arnold (1981,

Chap. 7)). Arnold (1980) showed that the classical F -test is robust to the nor-

mality assumption if the sample sizes are large while the number of factor levels

or groups is small. The past decade has witnessed the generation of large data

sets, involving a multitude of factor levels, in several areas of scientific investiga-

tion. For example, in agricultural trials it is not uncommon to see a large number

of treatments with a small number of replications per treatment. Another ap-

plication arises in certain type of microarray data in which the nested factor

corresponds to a large number of genes. As a consequence, testing in designs

with a large number of factor levels has attracted considerable attention. The

seminal paper by Neyman and Scott (1948) highlights some interesting features

of high dimensional inference. See also Simons and Yao (1999), Li, Lindsay, and

Waterman (2003), and Hall, Marron, and Neeman (2005) for some representative

publications.

http://dx.doi.org/10.5705/ss.2011.133
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The motivating application for the present work comes from the Mussel

Watch Project of the National Oceanic and Atmospheric Administration (NOAA),

which monitors chemical and biological contaminant trends in sediment and bi-

valve tissue collected from hundreds of EDAs (Estuarine Drainage Areas) on the

West Coast, the East Coast (North, Middle, and South Atlantic), the Gulf of

Mexico, and the Great Lakes. Since each coastal region has its own EDAs, re-

sults of crossed designs are not appropriate for studying differences among the

different EDAs. In this data set, the number of EDAs within each coastal region

is relatively large, ranging from 30-60, while the cell sizes within each sub-class is

small. While normality and homoscedasticity are difficult to ascertain with small

sample sizes, Figure 1 suggests that these assumptions are violated. Thus, there

is need for a test procedure for the subclass effects in a two-fold nested design

which accommodates a large number of subclasses, small and unequal sample

sizes, and non-normal and heteroscedastic errors.

We consider the model

Yijk = µij + σij · eijk = µ+ αi + δij + σij · eijk, (1.1)

i = 1, . . . , r, j = 1, . . . , ci, k = 1, . . . , nij , where the class effects αi and subclass

effects δij satisfy

r∑
i=1

ni·αi = 0 , where ni· =

ci∑
j=1

nij , and

ci∑
j=1

nijδij = 0, ∀i,

and the eijk are independent with

E(eijk) = 0, V ar(eijk) = 1. (1.2)

In this context, we develop a procedure for testing H0 : δij = 0 for all i, j.

This hypothesis is also relevant in the seemingly different context of nonpara-

metric ANCOVA. To explain the connection, consider observations (Viℓ, Xiℓ),

i = 1, . . . , r, ℓ = 1, . . . , ni, such that, given Xiℓ = x,

Viℓ = mi(x) + σixeix = m+ ai + di(x) + σi(x)eix, (1.3)

where m = r−1
∑r

i=1E [mi(Xiℓ)], ai = E [mi(Xiℓ)] − m, and di(x) = mi(x) −
m− ai. Thus, the covariate effect in the ANCOVA model (1.3) is nonlinear and

can depend on the class i. Next, for each i, order the covariate values within

the ith class, and define ci subclasses with the jth subclass corresponding to nij

consecutive covariate values. Let Yijk, k = 1, . . . , nij , denote the Viℓ’s in the jth

subclass. Then the Yijk behave as if they came from a two-fold nested design

(1.1) and the test procedure for the hypothesis H0 : δij = 0 can be used for

testing the hypothesis of no covariate effects in (1.3).
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The purpose of the present article is to provide valid test procedures that can

perform well in unbalanced and/or heteroscedastic designs when the number of

sub-classes is large. The proposed test statistics are of the general form MST −
MSE, but the MSE is chosen so that E(MSE) = E(MST ) under the null

hypothesis. Note that this last relation does not hold under heteroscedasticity for

the classical definition MSE. The basic asymptotic technique we apply is based

on finding the joint limiting distribution of (MST,MSE) through a suitable

representation by a simpler, asymptotically equivalent, random vector.

The use of test statistics of the formMST−MSE is justified by the fact that,

when the number of levels goes to infinity, both the numerator and denominator

degrees of freedom of the F statistic tend to infinity. Hence it makes sense to

study the asymptotic distribution of F − 1 or, equivalently, of MST − MSE.

Three distinct general approaches for obtaining the asymptotic distribution of

such test statistics are developed in Akritas and Arnold (2000), Bathke (2002),

and Akritas and Papadatos (2004). Wang and Akritas (2006) applied the Akritas

and Papadatos (2004) approach to two-way designs, Gupta, Harrar, and Fujikoshi

(2006) considered designs with multivariate data, while Wang and Akritas (2004)

and Bathke and Harrar (2008) considered methods based on ranks. Wang and

Akritas (2009, 2010) further extended their results to heteroscedastic functional

data and high dimensional ANOVA in their most recent works. In all cases, the

asymptotic distribution of MST −MSE (with some scaling that depends on the

number of factor levels) is normal with zero mean, and the test procedure rejects

the null hypothesis for large values of the test statistic. For the proposed test

statistics, this practice is justified by the fact that the asymptotic distribution of

the test statistic under alternatives has positive mean.

It is known that the classical, normality-based F -test is sensitive to de-

partures from the homoscedasticity assumption, especially when the design is

unbalanced. This is confirmed by the simulation results shown in Table 2 where

10 of the 20 type I error rates the F achieved are 80% or higher at nominal level

α = 0.05. Moreover, for the nested design we consider, even under homoscedas-

ticity, the classical F -test may not be asymptotically valid in the unbalanced

design if the cell sizes are small, unless the model is normal. The theoretical

explanation for this phenomenon, given in Section 3, is confirmed by the sim-

ulations reported in Table 1, where 10 of the 16 type I error rates the F test

achieved with non-normal errors are 10% or higher at α = 0.05.

The rest of this manuscript is organized as follows. The next section de-

scribes the statistical model for the unbalanced heteroscedastic two-fold nested

design, and reviews the classical F -test procedure for the hypothesis of no sub-

class effect. In Section 3 we present the asymptotic theory for F − 1, where F

is the classical F -statistic in the homoscedastic case, and conclude that without
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normality the classical F statistic may not be asymptotically valid in the un-
balanced case even under homoscedasticity. In Section 4 we propose a new test
statistic for the between-classes heteroscedastic model, and present its asymptotic
distribution. In Section 5 we propose a test statistic for the model with general
heteroscedasticity, and present its asymptotic theory. All statistics developed
can be adapted for testing the hypothesis H0 : di(x) = 0, for all i and x, of no
covariate effect in the nonparametric ANCOVA model (1.3). The adaptation of
the test under general heteroscedasticity is given in Section 5. All simulation re-
sults are shown in Section 6. Two data sets are analyzed in Section 7, the second
of which illustrates the application to an ANCOVA setting. Finally, Section 8
states conclusions. Proofs of the results presented in Sections 3−5 are given in
the online appendix.

2. The Statistical Model and Test Statistic

Consider the two-fold nested model (1.1), (1.2) with the µij and σij bounded,
and note that it does not assume that the errors eijk are normally, or even iden-
tically, distributed. Thus, ordinal discrete data are included in this formulation.
Let

C =
r∑

i=1

ci, ni· =

ci∑
j=1

nij , NC =
r∑

i=1

ci∑
j=1

nij =
r∑

i=1

ni·.

We are mainly interested in testing H0: δij = 0 (no sub-class effect). Let

MSδ =

∑r
i=1

∑ci
j=1 nij(Ȳij· − Ȳi··)

2

C − r
, (2.1)

MSE =

∑r
i=1

∑ci
j=1

∑nij

k=1(Yijk − Ȳij·)
2

NC − C
, (2.2)

where Ȳij· and Ȳi·· are the corresponding unweighted means of Yijk within each
sub-class and within each class. Then, the usual F -test statistic for testing H0:
δij = 0 is

F δ
C =

MSδ

MSE
. (2.3)

Under the normal homoscedastic model where the eijk are assumed to be iid
N(0, 1) and all σij = σ, we have that

F δ
C ∼ FC−r,NC−C , under H0 : δij = 0. (2.4)

In what follows we examine the robustness of this procedure to departures from
the assumptions of normality and homoscedasticity as the number of sub-classes
gets large. We use the notations

n̄ici =
1

ci

ci∑
j=1

nij =
ni·
ci

, nici =
1

ci

ci∑
j=1

1

nij
, n̄C =

1

C

r∑
i=1

ni· =
NC

C
. (2.5)
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All results, except those of Section 5, are derived under conditions on the sample
sizes: here exist numbers λi ∈ (0, 1), n̄i > 1, and ni ∈ (0,∞) such that, as
min (ci) → ∞,

√
C
( ci
C

− λi

)
→ 0,

√
ci (n̄ici − n̄i) → 0, nici −→ ni. (2.6)

Finally, we set n̄ =
∑r

i=1 λin̄i.

3. Homoscedastic Designs

In this section we consider the unbalanced two-fold nested design with ho-
moscedastic errors and derive the asymptotic distribution of F δ

C , defined in (2.3).
As a corollary of Theorem 1, we find that the usual, normal-based, F -test pro-
cedure is not robust to departures from the normality assumption even under
homoscedasticity.

Theorem 1. Under (1.1) with σij = σ, (1.2), (2.6), and the decomposition of
the means given in (1.1), assume that

E(e3ijk) = 0, E(e4ijk) = κi, and E|eijk|4+2ϵ < ∞ for some ϵ > 0.

Then, under alternatives δij that satisfy

√
ci

(
1

ci

ci∑
j=1

nij

δ2ij
σ2

− θi

)
→ 0, as min (ci) → ∞ while r, nij stay fixed,

where θi ≥ 0, i = 1, . . . , r, with some being strictly positive,
√
C
(
F δ
C − (1 + θ)

)
d→ N (0, Σs) , (3.1)

where, with λi, n̄i, n, and n̄ given in (2.6), θ =
∑r

i=1 λiθi, and

Σs = 2 + 4θ +
2(1 + θ)2

n̄− 1

+

r∑
i=1

[
(κi − 3)λi

(2θ + n̄)(n̄ni − 1) + (2θ + 1)(n̄i − n̄) + θ2(n̄i + ni − 2)

(n̄− 1)2

]
.

Under the null hypothesis H0 : δij = 0, which results in θ = 0, we then have

√
C
(
F δ
C − 1

)
d→ N

(
0, 2 +

2

n̄− 1
+

r∑
i=1

[(κi − 3)λi(n̄
2ni − 2n̄+ n̄i)

(n̄− 1)2

])
. (3.2)

Corollary 1. Under the model and assumptions of Theorem 1, the classical,
normality-based, F -test procedure for the hypothesis H0 : δij = 0, shown in (2.4),
is not asymptotically valid when the model is not normal, unless nij = n, ∀i, j,
or κi = 3, ∀i.
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It can be shown that if normality holds, the test procedure implied by

Theorem 1 is asymptotically equivalent to the classical F -test procedure under

H0 : δij = 0.

4. Between-classes Heteroscedastic Designs

In this section we consider the heteroscedastic unbalanced two-fold nested

design, but assume we have between-classes heteroscedasticity, σij = σi, in (1.1).

It can be shown that if the design is unbalanced then, under heteroscedasticity, it

is no longer true that E(MSE) = E(MSδ) under the null hypothesisH0 : δij = 0.

Thus it is clear that the usual F -test procedure is not valid even under normality.

The idea of our proposed test statistic is to replace MSE by a different linear

combination of the cell sample variances in order to match the expected value

of MSδ under the null hypothesis. This achieved by replacing MSE by MSE∗,

defined as

MSE∗ =
1

C − r

r∑
i=1

ci − 1

ni· − ci

ci∑
j=1

nij∑
k=1

(
Yijk − Ȳij·

)2
.

It is easily seen that MSE∗ satisfies E(MSE∗) = E(MSδ) under the null hy-

pothesis. Then we define the corresponding test statistic as

F ∗
C − 1 =

MSδ

MSE∗ − 1. (4.1)

It is easy to verify that, in the balanced case, F ∗
C = F δ

C , where F
δ
C is the classical

F -statistic given in (2.3).

The asymptotic distribution of this test statistic, F ∗
C − 1, is given in The-

orem 2. In Corollary 1 we obtain that, under heteroscedasticity, the classical

F -test procedure is not valid in the balanced case (where F ∗
C = F δ

C) even under

normality.

Theorem 2. Under (1.1), but with σij = σi, consider alternatives δij that satisfy

√
ci

(
1

ci

ci∑
j=1

nij

δ2ij
σ2
i

− θi

)
→ 0, as min (ci) → ∞ while r, nij stay fixed,

where θi ≥ 0, i = 1, . . . , r, with some being strictly positive. Then

√
C (F ∗

C − (1 + θ∗))
d→ N (0, Σ∗

s) , (4.2)

where, with λi, n̄i, ni and n̄ given in (2.6),

θ∗ =
θσ

β
, where θσ =

r∑
i=1

σ2
i λiθi and β =

r∑
i=1

σ2
i λi, and
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Σ∗
s =

r∑
i=1

λiσ
4
i

β2

{
2 + 4θi +

2(1 + θ∗)2

n̄i − 1

+
κi − 3

(n̄i − 1)2
[
(n̄i + 2θ∗)(n̄ini − 1) + θ∗2(n̄i + ni − 2)

]}
.

Under the null hypothesis H0 : δij = 0, which results in θ∗ = 0, we have

√
C (F ∗

C − 1)
d→ N

(
0,

r∑
i=1

λiσ
4
i

β2

[
2 +

2

n̄i − 1
+

(κi − 3)n̄i(n̄ini − 1)

(n̄i − 1)2

])
. (4.3)

Corollary 2. Under the assumptions of Theorem 2, if the design is balanced,

ci = c and nij = n, then the test statistic F ∗
C is equal to the classical F -test

statistic F δ
C and, as c → ∞,

√
C (F ∗

C − 1)
d→ N

(
0,

r∑
i=1

λiσ
4
i

β2

[
2 +

2

n− 1

])
(4.4)

under the null hypothesis H0 : δij = 0.

5. General Heteroscedastic Designs

In this section we consider the general unbalanced heteroscedastic two-fold

nested model at (1.1). Here E(MSE) = E(MSδ) is no longer true if the design

is unbalanced. We thus replace MSE by

MSE∗∗ =
1

C − r

r∑
i=1

ci∑
j=1

(
1− nij

ni·

)
S2
ij , (5.1)

where S2
ij =

∑nij

k=1(Yijk − Ȳij·)
2/(nij − 1). The statistic for the general het-

eroscedastic case is then defined as

F ∗∗
C − 1 =

MSδ

MSE∗∗ − 1. (5.2)

It is easy to verify that, in the balanced case, F ∗∗
C = F ∗

C = F δ
C , where F δ

C is the

classical F -statistic given in (2.3), and F ∗
C is the test statistic under between-

classes heteroscedastic designs given in (4.1). The asymptotic distribution of the

test statistic F ∗∗
C − 1 is given next.

Theorem 3. Under (1.1), (1.2), and the decomposition of the means given in

(1.1), assume that there exist κij, λi, a1i, a2i, b1i, b2i, and b3i such that, as

min (ci) → ∞, E(e3ijk) = 0, E(e4ijk) = κij, and E|eijk|4+2ϵ < ∞ for some ϵ > 0;

√
C
( ci
C

− λi

)
→ 0,

√
ci

(
1

ci

ci∑
j=1

σ2
ij − a1i

)
→ 0,

1

ni·

ci∑
j=1

nijσ
2
ij −→ a2i, (5.3)
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1

ci

ci∑
j=1

σ4
ij −→ b1i,

1

ci

ci∑
j=1

σ4
ij

nij − 1
−→ b2i,

1

ci

ci∑
j=1

σ4
ij(κij − 3)

nij
−→ b3i.

Then, under alternatives δij that satisfy, as min (ci) → ∞ while r, nij stay fixed,

√
ci

(
1

ci

ci∑
j=1

nijδ
2
ij − θ1i

)
→ 0,

1

ci

ci∑
j=1

nijδ
2
ijσ

2
ij −→ θ2i,

where θ1i ≥ 0, θ2i ≥ 0, i = 1, . . . , r, with some being strictly positive, we have

√
C (F ∗∗

C − (1 + θ∗∗))
d→ N

(
0,

1

a21

[
2(b1 + b2) + 4(θ2 + b2θ

∗∗) + (2b2 + b3)θ
∗∗2]) ,

where

θ∗∗ =
θ1
a1

, θ1 =

r∑
i=1

λiθ1i, a1 =

r∑
i=1

λia1i, (5.4)

b1 =

r∑
i=1

λib1i, b2 =

r∑
i=1

λib2i, b3 =

r∑
i=1

λib3i, θ2 =

r∑
i=1

λiθ2i.

Under the null hypothesis H0 : δij = 0, which results in θ∗∗ = 0, we have

√
C (F ∗∗

C − 1)
d→ N

(
0,

2b1 + 2b2
a21

)
. (5.5)

To extend the above theory to the context of nonparametric ANCOVA, let

(Viℓ, Xiℓ), i = 1, . . . , r, ℓ = 1, . . . , ni, be observations according to the ANCOVA

model (1.3), arranged within each i according to increasing covariate values. As-

sume that the variance function σ2
i (x) is continuous in x. Let n be a fixed number

and, for each i, define ci = [ni/n] subclasses corresponding to n consecutive Xij .

(The tail ni − nci observations can form their own group or be ignored.) Let

Yijk, k = 1, . . . , n, denote the Viℓs in the jth subclass, and let Xijk, eijk denote

the corresponding covariates and error terms. Set

σ2
ijk = σ2

i (Xijk), σ2
ij =

1

n

n∑
k=1

σ2
ijk

and define F ∗∗
C as in (5.2) using the present Yijks.

Corollary 3. Under (1.3), the assumptions of Theorem 3, and the null hypoth-

esis H0 : di(x) = 0, for all i and x,

√
C(F ∗∗

C − 1)
d→ N

(
0,

2b1 + 2b2
a21

)
,

where b1, b2, and a1 are as defined in Theorem 3.
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6. Simulations

Simulations were used to compare the performances of various test proce-

dures. Let CF denote the classical F -test procedure, shown in (2.4), and HOM,

UW, HET denote the test procedures implied by the asymptotic results of (3.2),

(4.3), and (5.5), respectively. The procedure CF is compared with HOM for

homoscedastic nested designs (Section 6.1), and with UW for between-classes

heteroscedastic nested designs (Section 6.2). In Section 6.3 the HET procedure

is compared to UW and HOM for both homoscedastic and heteroscedastic nested

designs. These four procedures under nested designs are then further compared

to the classical F -test based ANCOVA (denoted as FtACV ) and the rank-based

Drop test of McKean and Sheather (1991) (denoted as DROP) in the context of

analysis of covariance in Section 6.4.

For all simulations under nested designs (Sections 6.1−6.3, the number of

classes used was five (r = 5). The different combinations of numbers of sub-

classes, with the average c in each case, were: (I) c = 15 ⇔ (c1, c2, c3, c4, c5) =

(7, 11, 15, 19, 23); (II) c = 30 ⇔ (c1, c2, c3, c4, c5) = (15, 23, 30, 37, 45);

(III) c = 100 ⇔ (c1, c2, c3, c4, c5) = (50, 75, 100, 125, 150); (IV) c = 500 ⇔
(c1, c2, c3, c4, c5) = (250, 375, 500, 625, 750). The number of observations in

each sub-class (nij) was generated by nij = Zij+υi×I(Zij = 0), where I(·) is an
indicator function and Zij ∼ Poisson(υi), i = 1, . . . , 5; j = 1, . . . , ci. The values

of υi used in our simulations were (υ1, υ2, υ3, υ4, υ5)
′ = (2, 2, 2, 12, 2) for ho-

moscedastic cases, and (υ1, υ2, υ3, υ4, υ5)
′ = (5, 5, 5, 12, 5) for heteroscedastic

cases. The values of the other parameters in the decomposition (1.1) were as

follows: µ = 0, (α1, α2, α3, α4)
′ = (−3,−2,−1, 2)′ and α5 was chosen so that∑

i ni·αi = 0. After generating the nij and fixing all parameters, we randomly

generated errors eijk from one of five distributions: (i) Normal: the standard

normal; (ii) Exponen: the exponential distribution with λ = 1; (iii) LogNorm:

the log-normal distribution whose logarithm has mean 0 and standard deviation

1; (iv) Mixture: the mixture distribution defined as U1 ·X1+(1−U1) ·Y1, where
U1 ∼ Bernoulli(p = 0.9), X1 ∼ N(−1, 1) and Y1 ∼ N(9, 1); and (v) Multi-d:

when r = 1, 2, 3, 4, generate eijk from Normal, Exponen, LogNorm, and Mixture

as described above, respectively. When r = 5, the eijk were generated from the

mixture distribution U2 · X2 + (1 − U2) · Y2, where U2 ∼ Bernoulli(p = 0.5),

X2 ∼ N(−3, .5) and Y2 ∼ N(3, .5). All eijk were standardized to have mean 0

and standard deviation 1. As for the variances, we used σij = σ = 1, ∀i, j, for

homoscedastic designs, (σij) = (σi) = (σ1, σ2, σ3, σ4, σ5) = (1, 1, 5, 1, 1), ∀j,
for between-classes heteroscedastic designs, and σij = 4 · I(i = 3) + 5 · I(j <

0.3 ci) + (j/ci), ∀i, j, for general heteroscedastic designs. All simulations were

done over 10, 000 runs at nominal α = 0.05.
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In Section 6.4, we consider the ANCOVA model (1.3) with r = 2 and assume

m1(x) = 0 and m2(x) = 2 under the null hypothesis of no covariate effects. We

generated the covariate values Xil using X1l ∼ U(2, 3) and X2l ∼ U(1.5, 2.5).

Let Vil = mi(x) + σixeix, with heteroscedasticity function σi(x) and the error

terms eix specified as (1) Case 1: σ1(X1l) = 5, σ2(X2l) = 1, and eix generated

from the standard normal distribution; (2) Case 2: σ1(X1l) = 5 + 10 × I(X1l <

2.2), σ2(X2l) = 1+6×I(X2l < 1.7), and eix generated from the standard normal

distribution; (3) Case 3: σ1(X1l) and σ2(X2l) are the same as those in Case 2,

but eix generated from the log-normal distribution whose logarithm has mean

0 and standard deviation 1. Three sample sizes were considered: (n1, n2) =

(150, 250), (400, 600), and (800, 1, 200).

6.1. Simulations under homoscedastic nested designs

We first compare the achieved sizes of two procedures, CF and HOM, under

homoscedastic designs. The first procedure, CF, based on the classical normality-

based F -test theorem, rejects at level α if

F δ
C > Fα

C−r,NC−C , (6.1)

where F δ
C is defined in (2.3) and Fα

C−r,NC−C is the (1−α)100th percentile of the

FC−r,NC−C distribution. The second procedure, HOM, using the asymptotic null

distribution shown in (3.2), rejects at level α if

√
C(F δ

C − 1) >

√√√√2 +
2

n̄C − 1
+

r∑
i=1

[
(κ̂i − 3)λ̂i(n̄2

Cnici − 2n̄C + n̄ici)

(n̄C − 1)2

]
Zα, (6.2)

where F δ
C is as before and Zα is the (1 − α)100th percentile of the standard

normal distribution. In addition, λ̂i and κ̂i are the empirical versions of λi and

κi, namely

λ̂i =
ci
C
, κ̂i =

ν̂i
(MSE)2

, where ν̂i =
1

ni·

∑
j

∑
k

(Yijk − Ȳi··)
4, (6.3)

while n̄ici , nici , and n̄C are as defined in (2.5). It can be easily verified that,

under the null hypothesis, κ̂i
P→ κi, as min (ci) → ∞. The simulated sizes are

shown in Table 1.

The results in Table 1 confirm the conclusions stated in Corollary 1. Thus,

the classical CF is liberal in this unbalanced design for all non-normal distribu-

tions, with the achieved α-level increasing with the number of sub-classes. On the

other hand, the proposed procedure HOM performed well for all distributions.
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Table 1. Achieved α-levels under homoscedastic designs.

c = 15 c = 30 c = 100 c = 500
CF HOM CF HOM CF HOM CF HOM

Normal 0.0523 0.0680 0.0516 0.0604 0.0525 0.0581 0.0502 0.0518
Exponen 0.1004 0.0617 0.1044 0.0554 0.1110 0.0488 0.1151 0.0465
LogNorm 0.1725 0.0604 0.1917 0.0534 0.2314 0.0507 0.2679 0.0470
Mixture 0.1011 0.0711 0.0919 0.0576 0.0980 0.0561 0.1021 0.0535
Multi-d 0.0806 0.0595 0.0806 0.0573 0.0742 0.0526 0.0839 0.0521

Table 2. Achieved α-levels under between-classes heteroscedastic designs.

c = 15 c = 30 c = 100 c = 500
CF UW CF UW CF UW CF UW

Normal 0.3392 0.0843 0.5450 0.0723 0.9132 0.0630 1.0000 0.0554
Exponen 0.3135 0.0754 0.5217 0.0720 0.9066 0.0684 0.9998 0.0563
LogNorm 0.2937 0.0702 0.4594 0.0604 0.8464 0.0698 0.9930 0.0571
Mixture 0.2971 0.0784 0.5214 0.0734 0.9030 0.0653 0.9997 0.0590
Multi-d 0.3172 0.0783 0.5156 0.0723 0.9031 0.0685 0.9996 0.0588

6.2. Simulations under between-classes heteroscedastic nested designs

Here we compare the achieved sizes of CF and UW. The procedure, CF,

is as shown in (6.1), while the other procedure, UW, using the asymptotic null

distribution shown in (4.3), rejects at level α if

√
C(F ∗

C − 1) >

√√√√ r∑
i=1

λ̂iσ̂4
i

β̂2

[
2 +

2

n̄ici − 1
+

(κ̃i − 3)n̄ici(n̄icinici − 1)

(n̄ici − 1)2

]
Zα, (6.4)

where F ∗
C is defined in (4.1). The empirical quantities λ̂i, n̄ici , nici , and n̄C are

as defined in (6.3). Moreover, β̂, σ̂4
i , and κ̃i above, are as follows:

β̂ =

r∑
i=1

λ̂iσ̂
2
i , where σ̂2

i = S2
i ; σ̂4

i = (σ̂2
i )

2; and κ̃i =
ν̂i
σ̂4
i

, (6.5)

where ν̂i is also defined in (6.3). Again, it can be easily verified that, as min (ci) →
∞, κ̃i converges in probability to κi under the null hypothesis. The corresponding

simulated sizes under heteroscedastic designs, based on 10, 000 runs, are shown

in Table 2.

Table 2 makes it clear that the traditional CF procedure is quite inappro-

priate for between-classes heteroscedastic designs. More specifically, when c is

large enough, regardless of the underlying distribution, the CF procedure rejects

the null hypothesis almost all the times under the null hypothesis. On the other
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Table 3. Achieved α-levels under general heteroscedastic designs.

c = 15 c = 30 c = 100 c = 500
UW HET UW HET UW HET UW HET

Normal 0.0882 0.0854 0.0985 0.0837 0.1479 0.0701 0.1560 0.0575
Exponen 0.0865 0.0748 0.0896 0.0717 0.1333 0.0597 0.1545 0.0530
LogNorm 0.0726 0.0631 0.0738 0.0568 0.1092 0.0491 0.1225 0.0461
Mixture 0.0856 0.0655 0.0852 0.0567 0.1378 0.0554 0.1507 0.0508
Multi-d 0.0897 0.0778 0.0910 0.0718 0.1366 0.0635 0.1576 0.0550

hand, the proposed procedure UW performed well for all distributions, though

liberally in the case of small number of sub-classes.

6.3. Simulations under general heteroscedastic nested designs

The simulations in the previous subsection demonstrate that the classical

CF procedure is very liberal under between-classes heteroscedasticity. Simula-

tions under general heteroscedasticity, not shown here, revealed similar behavior.

Thus, the tables in this subsection exclude the CF procedure.

In Table 3 we compare the achieved α-levels of UW and HET, under general

heteroscedasticity. The former procedure is described in (6.4), while the latter

uses the statistic F ∗∗
C given in (5.2) and its asymptotic null distribution shown

in (5.5). Thus, the HET procedure rejects at level α if

√
C(F ∗∗

C − 1) >

√
2b̂1 + 2b̂2

â21
Zα, (6.6)

where â1, b̂1 and b̂2 are consistent estimators of a1, b1 and b2. Note that consistent

estimation of b1 and b2 needs unbiased estimation of each σ4
ij . For such unbiased

estimation we used the U-statistics with the kernel (Yij1 − Yij2)
2/2 × (Yij3 −

Yij4)
2/2. As a consequence, the application of procedure HET requires nij ≥ 4,

although Theorem 3 requires only nij ≥ 2. From Table 3 we see that both

procedures are liberal when the average number of sub-classes is 5, but HET

becomes less so as c increases. On the other hand, UW becomes more liberal

as c increases, a behavior which is expected in view of the fact that it is not

designed to allow the present type of heteroscedasticity.

Table 4 performs a more detailed comparison of the procedures UW and HET

under the setting of between-classes heteroscedasticity when both are asymptot-

ically valid. It suggests that the achieved α-levels of the two procedures are

comparably close to the nominal level, with HET slightly less liberal for non-

normal distributions. It also shows the achieved powers of these two procedures,

only for the case of c = 100, under the alternatives δij = t × (2j/ci − 1), for
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Table 4. Achieved α-levels and Powers under between-classes heteroscedastic designs.

c = 15 c = 30 c = 100 c = 500
α-levels UW HET UW HET UW HET UW HET
Normal 0.0799 0.0899 0.0701 0.0771 0.0606 0.0612 0.0513 0.0539
Exponen 0.0779 0.0817 0.0720 0.0698 0.0628 0.0560 0.0566 0.0519
LogNorm 0.0722 0.0780 0.0655 0.0529 0.0651 0.0525 0.0624 0.0440
Mixture 0.0785 0.0752 0.0750 0.0633 0.0650 0.0536 0.0584 0.0494
Multi-d 0.0768 0.0797 0.0711 0.0655 0.0626 0.0567 0.0560 0.0505

(c = 100) t=0.6 t=0.8 t=1.0 t=1.2
Powers UW HET UW HET UW HET UW HET
Normal 0.3353 0.3410 0.6249 0.6214 0.9204 0.9173 1.0000 0.9998
Exponen 0.3308 0.3361 0.6210 0.6436 0.9083 0.9259 0.9997 0.9997
LogNorm 0.9750 0.9986 0.9941 1.0000 0.9986 1.0000 0.9996 1.0000
Mixture 0.3289 0.3218 0.6115 0.6417 0.9135 0.9350 0.9998 1.0000
Multi-d 0.3325 0.3347 0.6243 0.6549 0.9101 0.9304 0.9994 0.9997

t = 0.6, 0.8, 1.0, 1.2 and i = 1, . . . , 5, j = 1, . . . , ci − 1. For each i, δici is chosen

so that
∑

j nijδij = 0. Again the procedures have comparable power with HET

being slightly more powerful for non-normal distributions.

The next table performs a more detailed comparison of the procedures HOM,

UW, and HET under homoscedasticity when all three are asymptotically valid.

The results reported in Table 5 suggest that the achieved α-levels of the three

procedures are comparably close to the nominal level (the results for c = 500

are very close to those for c = 100, so they are omitted). It also compares

the achieved powers of these three procedures, for the case of c = 100, under

alternatives δij = t × (2j/ci − 1), for t = 0.20, 0.25, 0.35 and i = 1, . . . , 5,

j = 1, . . . , ci − 1. For each i, δici is chosen so that
∑

j nijδij = 0. Note that

the cell sizes used here are larger than those used in Table 1, as required for

the applicability of HET. The results suggest that, even though procedure HET

estimates more parameters, this does not compromise its power.

Table 6 shows simulation results comparing the achieved α-levels of CF,

HET, and GEE. Because the latest GEE package in R, geepack, appears to work

only when the numbers of subclasses are all the same, we generated the data

using the same setting as in Table 3, but let ci = 30, ∀i (while allowing the

nij to be different), for the heteroscedastic unbalanced case. For comparison

purposes, Table 6 also shows the corresponding results under homoscedasticity

(with σij = 1) and balancedness (with ci = 30 and nij = 100) when all procedures

are asymptotically valid. Clearly, HET is the only one which works in the context

of unbalanced two-fold nested designs under general heteroscedasticity.
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Table 5. Achieved α-levels and Powers under homoscedastic designs.

c = 15 c = 30 c = 100
α-levels HOM UW HET HOM UW HET HOM UW HET
Normal 0.072 0.070 0.075 0.058 0.057 0.058 0.053 0.053 0.053
Exponen 0.072 0.066 0.065 0.061 0.058 0.056 0.056 0.053 0.050
LogNorm 0.065 0.055 0.053 0.062 0.053 0.044 0.057 0.053 0.041
Mixture 0.069 0.063 0.057 0.064 0.064 0.058 0.058 0.059 0.052
Multi-d 0.067 0.067 0.066 0.066 0.062 0.062 0.059 0.058 0.056

(c = 100) t = 0.20 t = 0.25 t = 0.35
Powers HOM UW HET HOM UW HET HOM UW HET
Normal 0.436 0.429 0.427 0.735 0.725 0.724 0.993 0.992 0.992
Exponen 0.411 0.418 0.426 0.706 0.716 0.732 0.992 0.993 0.994
LogNorm 0.977 0.989 1.000 0.995 0.998 1.000 0.998 1.000 1.000
Mixture 0.417 0.421 0.428 0.711 0.714 0.727 0.992 0.992 0.995
Multi-d 0.419 0.420 0.422 0.716 0.720 0.725 0.992 0.992 0.993

Table 6. Achieved α-levels under general heteroscedastic and homoscedastic designs.

(ci = 30) Heteroscedastic Unbalanced Homoscedastic Balanced
CF UW HET GEE CF UW HET GEE

Normal 0.258 0.095 0.073 0.996 0.058 0.046 0.046 0.074
Exponen 0.226 0.077 0.062 1.000 0.052 0.054 0.050 0.160
LogNorm 0.230 0.076 0.053 1.000 0.048 0.048 0.042 0.320
Mixture 0.226 0.069 0.042 1.000 0.060 0.044 0.045 0.224
Multi-d 0.238 0.102 0.074 1.000 0.048 0.056 0.056 0.130

6.4. Simulations in the context of analysis of covariance

In Table 7 we compare the achieved α-levels of the aformentioned procedures

to those of FtACV and DROP in the context of analysis of covariance. One can

easily see that all proposed procedures perform similarly as they do in the two-

fold nested designs. In addition, the procedure HET significantly outperforms

the classical FtACV and the rank-based Drop test in all simulations.

7. Data Analyses: Two Empirical Studies

7.1. Mussel watch project data

One application for our methodology can be found through the National

Oceanic and Atmospheric Administration’s National Status and Trends Program.

In 1986, this division undertook a very large scale project to monitor the levels

of numerous chemical contaminants and organic chemical constituents in marine

sediment and bivalve (mollusk) tissue samples. This project, dubbed the Mussel

Watch Project, is still on-going and there are no apparent plans to discontinue it

in the near future. There are currently over 300 coastal sites at which sediment

and bivalve samples are collected and analyzed for the project. Each site is
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Table 7. Achieved α-levels in the context of ANCOVA with r = 2.

Case 1: Between-Groups Heteroscedasticity with Normal Errors
(n1, n2) FtACV DROP CF HOM UW HET
(150, 250) 0.1224 0.2312 0.1262 0.1459 0.0731 0.0792
(400, 600) 0.1158 0.2221 0.1304 0.1436 0.0666 0.0695
(800, 1200) 0.1095 0.2195 0.1320 0.1419 0.0630 0.0632

Case 2: General Heteroscedasticity with Normal Errors
(n1, n2) FtACV DROP CF HOM UW HET
(150, 250) 0.2139 0.3067 0.1826 0.2016 0.1585 0.0974
(400, 600) 0.1999 0.2893 0.1951 0.2076 0.1625 0.0857
(800, 1200) 0.1970 0.2968 0.2020 0.2108 0.1577 0.0715

Case 3: General Heteroscedasticity with Log-normal Errors
(n1, n2) FtACV DROP CF HOM UW HET
(150, 250) 0.2240 0.9133 0.1443 0.1630 0.1264 0.0813
(400, 600) 0.2107 0.9990 0.1640 0.1762 0.1310 0.0650
(800, 1200) 0.2018 1.000 0.1669 0.1748 0.1285 0.0521

categorized as being within a certain Estuarine Drainage Area (EDA). See NOAA

(1998) for more details. For our data analysis, we chose to analyze the Lead

concentrations from years 1998 to 2005. We chose to analyze concentrations

of Lead in tissue samples, specifically in the Crassostrea virginica, or American

Oysters, from two different regions: Middle and South Atlantic, and the Gulf of

Mexico. Due to the fact that nested in each region there are many EDAs, it is

natural to consider regions as classes, and EDAs as sub-classes in our analysis.

The main interest of our study is the sub-class effect. The boxplots of the lead

concentration levels at each EDA, shown in Figure 1, suggest heteroscedasticity

among different EDAs in the same region (general heteroscedasticity). Thus,

the procedure HET seems to be an appropriate one for analyzing this data set.

However, the results of application of the other procedures mentioned in this

paper (i.e. CF, HOM, and UW) are also included for comparison purposes.

Because the HET procedure requires at least four observations within each sub-

class, we remove four EDAs with less than four observations from our data,

resulting in 58 EDAs in total. (Another approach would be to impute values,

but this is pursued elsewhere.)

Application of the procedures CF, HOM, UW, and HET on this data set

yields p-values of 0.1076, 0.3136, 0.2008, and 0.0246, respectively, for the hy-

pothesis of no EDA effect. Note that only procedure HET detects the effect of

EDA at α = 0.05. A closer examination of the data reveals that the largest sam-

ple variance estimate from EDA ‘G120x’ in the Gulf of Mexico region is 69.21,

while the second largest one is only 2.45. This high variance of the data in EDA

‘G120x’ in fact results from a few outliers in a site named ‘CBPP’, as shown in

Figure 1. After four data points from ‘CBPP’ are removed, the sample variance
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Figure 1. Mussel Watch Project. The boxplots of the Lead concentration
levels at EDAs nested in Middle and South Atlantic (left) and in the Gulf
of Mexico (right).

estimate of the EDA ‘G120x’ becomes 0.0921 and heteroscedasticity is not so

pronounced. Thus, the p-values of four procedures are all very close to zero (less

than 10−12). This dramatic change confirms the instability of procedures CF,

HOM and UW under general heteroscedasticity.

It is worth noting that a simple logarithmic transformation cannot be used

here to resolve the heteroscedasticity issue as some data points have zero val-

ues. Even with those zero values being removed, model fitting with the log-

transformed data is highly questionable because the corresponding diagnostic

plots reveal severe violations of normality and homoscedastic assumptions.

7.2. NADP data: ramification for nonparametric ANCOVA

Another application for our methodology can be found through the National

Atmospheric Deposition Program (2009), which monitors geographical and tem-

poral long-term trends on the chemistry of precipitation. Starting from only 22

stations in 1978, NAPD has grown as a nationwide network of over 250 sites for

which precipitation samples are collected and analyzed in the Central Analytical

Laboratory (CAL) weekly. For our data analysis, we chose to analyze the pH

level (reported as the negative log of hydrogen ion concentration) of precipitation

samples as measured in the CAL from the first week of January 2003 to the last

week of December 2007. We compared the data in two North Carolina towns,

Lewiston and Coweeta, interested in the effect of time. Among the total 233

weeks in this period, there are several weeks in which data were missing at one

or both locations. After removing those missing values, there are 180 weeks of
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data for each of these two towns, n1 = n2 = 180, although this balancedness is

simply a coincidence; the missing data in fact are at different time points for the

two locations.

This data set can be analyzed as a simple one-way ANCOVA model with lo-

cations as groups and time as the covariate. We applied the classical F-test based

ANCOVA and the rank-based Drop test of McKean and Sheather (1991) to the

data for the covariate effect of time and got p-values of .5737 and .7527, respec-

tively, both indicating that the time effect is not significant. (Log-transforming

the data did not change those p-values much in this example.) However, this

insignificance may result from their lack of power when the effect of interest is

not linear.

Here, we utilize the asymptotic results for the two-fold nested model to the

one-way analysis of covariance. More specifically, we think of two locations as

two classes and form artificial sub-classes by dividing the observations in the

same class into non-overlapping ‘windows’ of a fixed size 5: the first time sub-

class consists of observations from weeks 1–5, the second time sub-class consists

of observations from weeks 6–10, and so on. Since there are 180 observations

in each of two locations, this division results in 180/5 = 36 sub-classes each

class, c1 = c2 = 36. The boxplots of the pH levels at each of these 36 times

for the two locations are shown in Figure 2. Note that this study does not

present a typical repeated measures structure as there is only one observation

per group/class at each time point. In addition, a simple time series analysis

does not indicate meaningful correlation over time, so it appears reasonable to

implement our methodology in this study.

For the sub-class effect of time, the four aforementioned procedures, CF,

HOM, UW, and HET, give p-values of 0.0929, 0.0757, 0.0760, and 0.0508, re-

spectively. (The p-values on the log-transformed data for CF, HOM, UW, and

HET are 0.0673, 0.0495, 0.0499, and 0.0292, respectively.) Since the assumption

of homoscedasticity is clearly violated as shown in Figure 2, we learn from the-

oretical derivations and numerical simulations that procedure HET is the only

valid procedure under this type of heteroscedasticity. It is indeed the procedure

that gives the lowest p-value among the five procedures.

8. Concluding Comments

We have established via theoretical derivations and numerical evidence that,

when the number of sub-classes is large, the classical F -test procedure is very

sensitive to departures from homoscedasticity regardless of whether the model is

balanced or unbalanced. Even under homoscedasticity, it is still not asymptot-

ically valid in unbalanced designs with non-normal errors. For this reason, we

develop procedures that are asymptotically valid under heteroscedasticity. We
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Figure 2. NADP Rain Data. The boxplots of the pH levels of precipitation
at different Times from January 2003 to December 2007 in Lewiston (left)
and Coweeta (right).

distinguish between what we call general heteroscedasticity and between-classes

heteroscedasticity, and develop corresponding test procedures, HET and UW,

for each case. Simulations indicate that the HET procedure is very compet-

itive against the CF and the UW procedures in cases where the last two are

valid. Thus, we recommend the procedure HET for general applicability pro-

vided nij ≥ 4 for all i, j. The procedure UW is preferable to HET when the

between-classes heteroscedasticity assumption appears tenable. The procedure

CF is preferable to HET when the assumptions of normality and homoscedastic-

ity appear tenable.

We have also demonstrated, via data analysis and simulations, that a simple

ramification of the present methodology for the nested model can work reasonably

well for analysis of covariance. Preliminary work suggests that using overlapping

windows results in improved power but, due to the dependence caused, this

approach is the subject of a different paper.
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