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Abstract: Classification of character sequences, where the characters come from

a finite set, arises in disciplines such as molecular biology and computer science.

For discriminant analysis of such character sequences, the Bayes classifier based on

Markov models turns out to have class boundaries defined by linear functions of

occurrences of words in the sequences. It is shown that for such classifiers based on

Markov models with unknown orders, if the orders are estimated from the data us-

ing cross-validation, the resulting classifier has Bayes risk consistency under suitable

conditions. Even when Markov models are not valid for the data, we develop meth-

ods for constructing classifiers based on linear functions of occurrences of words,

where the word length is chosen by cross-validation. Such linear classifiers are

constructed using ideas of support vector machines, regression depth, and distance

weighted discrimination. We show that classifiers with linear class boundaries have

certain optimal properties in terms of their asymptotic misclassification probabili-

ties. The performance of these classifiers is demonstrated in various simulated and

benchmark data sets.
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1. Introduction

Discriminant analysis problems involving character sequences, where the

characters come from a finite set, arise in many scientific disciplines, and we

begin with some examples. Consider an example related to different segments

of the DNA sequence of the organism Escherichia coli (see, e.g., Harley and

Reynolds (1987)). In such a sequence, segments that code for proteins are called

genes. The promoter region located near a gene facilitates the transcription of

that gene. An intron is a segment within a gene that is non-coding and not

translated into a protein. Exons are parts of the gene that code for amino

acids, which are building blocks for a protein. In the process of protein syn-

thesis, genes are spliced at different sites, the splice sites, into introns and exons.

Exons are retained after gene splicing and used to form the messenger-RNA se-

quence, which is a sequence of codons each corresponding to a specific amino acid.
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The messenger-RNA carries the information about the basic building blocks re-

quired for the synthesis of a protein. Associated with this example, we have

two data sets both of which are available at the UCI Machine Learning Repos-

itory (http://archive.ics.uci.edu/ml). For the first, the task is to predict

whether a DNA sequence is a member (or not) of a class of sequences with biolog-

ical promoter activity (see Harley and Reynolds (1987)). There are 53 sequences

in each of the two classes (promoters and non-promoters), and each sequence

consists of 57 nucleotides from the set {A=Adenine, T=Thyamine, C=Cytosine,

G=Guanine}. For the second data set, one is interested in identifying the bound-

aries between the exons and the introns (see Noordewier, Towell, and Shavlik

(1991)). Here, given a DNA sequence, we want to predict whether it is an exon

to intron site (EI), an intron to exon site (IE), or neither. In the UCI database,

there are 767 sequences classified as EI sites, 768 sequences as IE sites, and 1655

as neither. Each sequence consists of 60 nucleotides.

As a second example, we consider a classification problem involving the single

proton emission computed tomography (SPECT) images obtained and studied by

Kurgan et al. (2001). The data are also available at the UCI database. SPECT

imaging is used as a diagnostic tool for myocardial perfusion, where a patient

is first injected with a radioactive tracer, and then investigations are carried

out, one under stress and another under rest. Each investigation yields a three-

dimensional image that represents left ventricle muscle perfusion. Each of those

two 3-D images is then displayed as three sets of 2-D images or slices. Out of

those 6 slices, a total of 5 slices are selected. In each slice, there are 4 or 5 regions

of interest (ROIs), and a total of 22 slices are selected for each mode of study.

Then an image analysis algorithm (see Kurgan et al. (2001) for details) is used

to extract 44 continuous features (a number that measures radioactive counts)

representing perfusion in 22 ROIs under stress and rest conditions. Based on

these features, 22 partial diagnoses, each recorded as 0 or 1, are generated using

the CLIP3 algorithm (see, e.g., Cios, Wedding, and Liu (1997)). Based on these

partial diagnoses, each patient is classified as normal or abnormal. The SPECT

database contains 267 binary sequences, each having length 22, with specified

training and test sets. While the training sample consists of 40 observations

from each of the two classes, in the test set, there are 15 and 172 observations

from the normal and the abnormal classes, respectively.

In each example, we have a supervised classification problem with a training

data set of labeled sequences, and we need to develop a decision rule for assigning

a future observation to one of several competing classes. Let Sd be the collection

of all sequences of length d over a common finite state space S. In the training

sample, the sequences in the jth (1 ≤ j ≤ J) class are denoted as xj1, . . . ,xjnj ,

where xji = (xji1, . . . , xjid) is a sequence of length d, and xjik ∈ S for all 1 ≤ i ≤

http://archive.ics.uci.edu/ml
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nj , 1 ≤ j ≤ J and 1 ≤ k ≤ d. In the first example, S ={A, T, C, G}. For the

first problem there, we have d = 57 and J = 2, while for the second, d = 60 and

J = 3. In the second example, we have S = {0, 1}, d = 22, and J = 2.

In these examples, we can consider the sequences in the jth class as inde-

pendent realizations of some stochastic sequence X = (X1, . . . , Xd) generated

from the finite state space S according to a probability distribution Gj . It is well

known that the Bayes rule δB(x) with minimum misclassification probability is

given by

δB(x) = δB(x1, . . . , xd) = arg max
1≤j≤J

πjPGj (X1 = x1, . . . , Xd = xd),

where πj denotes the prior probability of the jth class (1 ≤ j ≤ J). In practice,

one would require estimates of sd − 1 probabilities for each of the J classes to

implement this rule, where s is the cardinality of S. However, in the examples

discussed above, the size of the training sample corresponding to any class is

much smaller than sd − 1, and this is often the case in practice. Consequently,

one needs to look for some parsimonious models involving fewer parameters for

those sd − 1 probabilities.

For any integer k > 0, we refer to the elements of Sk as k-words. For a fixed

k, and a fixed k-word (m1, . . . ,mk) ∈ Sk, if I(·) is the indicator variable, then

fxji(m1, . . . ,mk) =

(d−k+1)∑
l=1

I(xjil = m1, xji(l+1) = m2, . . . , xji(l+k−1) = mk)

is the frequency (count) for the k-word (m1, . . . ,mk) in xji. In molecular biology

literature, several authors (see, e.g., Waterman (1995); Reinert, Schbath, and

Waterman (2000); Basu, Burma, and Chaudhuri (2003) for a detailed review)

have used such word frequencies, popularly known as oligonucleotide frequencies,

to analyze DNA sequences. The frequencies for different k-words can be viewed

as features of the character sequence xji, and they can be used as variables

to carry out discriminant analysis of the character sequences. We shall see in

subsequent sections that classifiers based on occurrences of words have certain

optimal properties in terms of their misclassification probabilities.

In the next section, we develop and study likelihood based classifiers when

Markov models hold for the observed sequences. In Section 3, we investigate

classifiers based on linear functions of occurrences of words when Markov models

may not hold for the observed sequences. In Section 4, we carry out simulation

studies to compare the performance of these classifiers. In Section 5, we analyze

the data sets mentioned at the beginning of this section and investigate the

performance of different classifiers when applied to those data sets. Section 6
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contains some concluding remarks. All proofs and mathematical details are in

the Appendix.

2. Linear Classifiers Based on Markov Models

Suppose that for 1 ≤ j ≤ J , the probability distribution Gj corresponding to

the jth class is Markov with order kj . Assume that Gj has stationary transition

probabilities (t.p.) {pj(mkj+1|m1, . . . ,mkj ); (m1, . . . ,mkj+1) ∈ Skj+1}, and ini-

tial probabilities (i.p.) {qj(m1, . . . ,mkj ); (m1, . . . ,mkj ) ∈ Skj}. Note that there

are skj+1 − 1 free real parameters in the model, and we assume that each of

them belongs to the open interval (0, 1). Depending on the situation, skj+1 − 1

may be substantially smaller than sd − 1. Let θj(kj) denote the vector of model

parameters that include elements of the vector of i.p. and the matrix of t.p. Take

k = (k1, . . . , kJ) and ϕ(k) = (θ1(k1), . . . ,θJ(kJ)). Then, the logarithm of the

likelihood corresponding to the jth class for a sequence x under such a Markov

model is given by

logPGj (x) =
∑

(m1,...,mkj
) ∈ Skj

I(x1 = m1, . . . , xkj = mkj ) log qj(m1, . . . ,mkj )

+
∑

(m1,...,mkj+1) ∈ Skj+1

fx(m1, . . . ,mkj+1) log pj(mkj+1|m1, . . . ,mkj ),

and the Bayes rule based on such Markov likelihoods is δ(x,ϕ(k),k) = arg

max1≤j≤J Dj(x), where Dj(x) = log πj + logPGj (x).

Note that Markov models with different orders form a nested family in

the sense that, for any k ≥ 0, a Markov model of order k is also a Markov

model of order k′ with k′ > k. It is easy to see that for k ≥ 1, the frequency

of a k-word in the sequence x is related to the initial occurrence of that k-

word and the frequencies of (k + 1)-words by the equation fx(m1, . . . ,mk) =∑
m0∈S fx(m0,m1, . . . ,mk) + I(x1 = m1, . . . , xk = mk). Hence, Dj(x) is a lin-

ear function of such variables for any k ≥ kj . So, all these Markov likelihoods

corresponding to J different classes can be viewed as Markov likelihoods with a

common order K = max1≤j≤J kj , and we have the following result.

Fact 1 : Let Gj be Markov with order kj having stationary t.p. for 1 ≤ j ≤ J .

For the variables I(x1 = m1, . . . , xK = mK)’s and fx(m1, . . . ,mK+1)’s associ-

ated with the character sequence x, the Bayes rule δB(x) has class boundaries

defined by linear functions of these variables.

Note that when the vector of i.p. {qj(m1, . . . ,mK) : (m1, . . . ,mK) ∈ SK}
is same for all 1 ≤ j ≤ J , Dj(x) can be taken to be a linear function of only

the count variables {fx(m1, . . . , mK+1) : (m1, . . . ,mK+1) ∈ SK+1}. Due to the
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discrete nature of the probability distributions involved here, for an observation

x, the maximum value of Dj(x) can occur for more than one value of j. In such

a case, x can be classified into any of the classes for which Dj(x) attains its

highest value, and that does not affect the misclassification probability of the

classifier. We adapt the convention of classifying x into the class corresponding

to the minimum value of the index j in such a situation. Here, for a classifier

δ(x), its misclassification probability is
∑J

j=1 πjPGj{δ(X) ̸= j}.
To build the classifier, one needs to estimate the orders of the Markov models

and the associated model parameters that include the vectors of i.p. and the

matrices of t.p. If Gj is specified to be Markov with order kj and stationary t.p.,

it is easy to verify that the m.l.e. θ̂j(kj) of the model parameters based on i.i.d.

observations xj1, . . . ,xjnj ∼ Gj can be obtained as

q̂j(m1, . . . ,mkj ) =

∑nj

i=1 I(xji1 = m1, . . . , xjikj = mkj )

nj

and

p̂j(mkj+1|m1, . . . ,mkj ) =

∑nj

i=1 fxji(m1, . . . ,mkj ,mkj+1)∑nj

i=1

∑
m∈S fxji(m1, . . . ,mkj ,m)

.

If kj = 0, we interpret a 0th order stationary Markov sequence X = (X1, . . . , Xd)

as an i.i.d. sequence, and in that case, the parameters associated with Gj are

the probabilities PGj (Xk = m) = pj(m), where m ∈ S and 1 ≤ k ≤ d. So for

kj = 0, the m.l.e. θ̂j(0) based on the training sample xj1, . . . ,xjnj ∼ Gj is

p̂j(m) =

∑nj

i=1 fxji(m)

njd
.

Fact 2 : Assume that under Gj, each word of size kj has positive probability.

Since θ̂j(kj) is based on simple averages of bounded i.i.d. random variables, it

has an almost sure limit θ⋆
j (kj) (say) as nj → ∞. This is true irrespective of

whether the specified Markov model, under which the m.l.e. θ̂j(kj) is computed,

is correct or not. If the Markov model is valid for Gj, and k⋆j is its correct order,

then θ⋆
j (k

⋆
j ) is the same as the true vector of model parameters.

In practice, one has to estimate the order of the Markov model for each class.

In a classification problem, one can estimate the orders of the Markov models

by minimizing the estimated misclassification probability. Here we estimate k =

(k1, . . . , kJ), the vector of orders of the Markov models, by minimizing the V -

fold cross-validation (CV) estimate (see, e.g., Hastie, Tibshirani, and Friedman

(2009)) of the misclassification probability with an appropriate choice of V . For

any fixed (n1, . . . , nJ), consider a partition of the training sample into V folds.
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Let nj(v) denote the number of observations from the jth class in the vth fold.

We choose nj(v) = ⌈nj/V ⌉ or ⌊nj/V ⌋ in an appropriate way to ensure that∑
v nj(v) = nj for all 1 ≤ j ≤ J . For any fixed k, let θ̂

(−v)

j (kj) be the m.l.e.

obtained from the training sample of the jth class when the vth (1 ≤ v ≤ V )

fold is left out. Then the V -fold cross-validation estimate of the misclassification

probability is given by

∆̂CV (k) =
1

V

V∑
v=1

{ J∑
j=1

πj
nj(v)

∑
i : xji∈ vth fold

I{δ(xji, ϕ̂
(−v)

(k),k) ̸= j}
}
,

and k̂CV = (k̂CV
1 , . . . , k̂CV

J ) can be obtained by minimizing ∆̂CV (k) with respect

to k ∈ {0, 1, . . . , k̄}J , where k̄ is some suitable upper bound for the orders of the

Markov models. In practice, one considers several random splits of the training

data, and the V -fold CV estimate of the misclassification probability is an average

of the estimates obtained in different splits.

Denote the misclassification probability of the classifier δ(x,ϕ(k),k) by

∆(ϕ(k),k) =

J∑
j=1

πj PGj{δ(X,ϕ(k),k) ̸= j}.

If G1, . . . , GJ happen to be Markov with k⋆ = (k⋆1, . . . , k
⋆
J) as the vector of

true orders of the Markov models, and ϕ⋆(k⋆) = (θ⋆
1(k

⋆
1), . . . ,θ

⋆
J(k

⋆
J)) as the

corresponding vector of true model parameters, then ∆(ϕ⋆(k⋆),k⋆) = ∆B (say)

is the Bayes risk corresponding to the classification problem. Here, ∆B is the

misclassification probability of the Bayes classifier δB(x). Since a Markov model

of order k⋆ can always be viewed as a higher order Markov model with appropriate

model parameters, we have ∆(ϕ⋆(k),k) = ∆(ϕ⋆(k⋆),k⋆) = ∆B for all k⋆ ≤ k ≤
k̄, where k̄ = (k̄, . . . , k̄). Here, we write (k1, . . . , kJ) ≥ (k′1, . . . , k

′
J) if kj ≥ k′j for

all 1 ≤ j ≤ J . Next, take ∆(k) = infϕ(k)∆(ϕ(k),k), so that for all k⋆ ≤ k ≤ k̄,

∆(k) = ∆B. The following theorem establishes Bayes risk consistency of the

classifier based on Markov likelihoods under appropriate conditions when the

orders of the Markov models are chosen using CV.

Theorem 1. Suppose that G1, . . . , GJ are Markov with stationary t.p. Assume

that for 1 ≤ j ≤ J , Gj has order k
⋆
j , and all the elements of the vector of i.p. and

the matrix of t.p. for Gj are positive. Then, if ∆(k) > ∆B for any k � k⋆, the

classifier constructed using Markov likelihoods and k̂CV has a misclassification

probability that converges to ∆B as min{n1, . . . , nJ} → ∞.

The problem of estimating the unknown order of a Markov model can be

viewed as a problem in model selection. In the past, several authors have formu-

lated this as a multiple hypothesis testing problem and investigated likelihood
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ratio tests (see, e.g., Billingsley (1961a,b) for detailed reviews). As pointed out

by Tong (1975), one of the subjective elements of this approach is the choice of

the levels of significance associated with these tests. He proposed to use AIC

(see Akaike (1974)) for selecting the optimal order of the Markov chain from

a class of competing Markov models. However, Katz (1981) proved AIC to be

asymptotically inconsistent. It is known that procedures based on likelihood ra-

tio tests are also inconsistent if a fixed positive level of significance is used. Katz

(1981) advocated in favour of using the Bayesian information criteria (BIC) (see

Schwarz (1978)) to select the unknown order of a Markov chain based on an

observed sequence. However, all these authors have studied the problem of es-

timation of the order of a Markov chain based on a single observed sequence,

and none of them considered classification problems involving several observed

sequences. One limitation of procedures based on AIC, BIC, or multiple testing

based on likelihood ratio tests is the requirement of specified parametric mod-

els, like Markov models. This is one of our main reasons for considering CV as

a method for selecting the appropriate word length when we are dealing with

classification problems involving character sequences. As is evident in the next

two sections, parametric models like Markov models may not be suitable for

characters sequences in practice.

3. Other Linear Classifiers

Classifiers based on Markov models work well for synthetic data generated

from Markov models, but can perform poorly in practice; classifiers based on

linear functions of occurrences of words may still be useful. Apart from being

computationally and conceptually simple, such a classifier provides useful geo-

metric views of class separability and helps to detect important discriminating

features. We consider classifiers based on linear functions of word occurrences

when we do not assume Markov models for the underlying distributions. This

can be viewed as a generalization since it is not difficult to construct examples in

which the Bayes classifiers defined by the likelihood ratio have class boundaries

described by linear functions of word occurrences.

Classifiers are constructed using certain optimization criteria that aim to

choose an optimum linear function of occurrences of words to discriminate be-

tween observations from two classes. In the case of a two class problem and

for a fixed k ∈ {1, . . . , k̄}, a linear classifier based on the initial occurrences of

(k − 1)-words and the frequencies of k-words is of the form

δL(x,γ(k), k) =

{
1 if γ(k)Tx(k) ≥ 0,

2 otherwise,
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where, for k > 1, Tx(k) denotes the (sk−1 + sk)-dimensional column vector for

which the first sk−1 components are the initial occurrences of all (k − 1)-words,

and the next sk components are the frequencies of k-words. Here γ(k) is the

(sk−1+sk)-dimensional row vector of real parameters. For k = 1, Tx(k) involves

the frequencies of 1-words only and, in that case, both Tx(k) and γ(k) are s-

dimensional. Note that the sum of the components of Tx(k) is always a constant

(d for k = 1 and (d−k+2) for k > 1), and hence we do not include any constant

term in the expression of δL.

For a fixed k, we estimate γ(k) from the training data using a criterion

based on the idea of regression depth (RD) (see, e.g., Rousseeuw and Hubert

(1999)), that has been used later for constructing classifiers by Christmann and

Rousseeuw (2001), Christmann, Fischer, and Joachims (2002) and Ghosh and

Chaudhuri (2005). It can be shown that weighted RD with suitable choice of

weights is the average training sample misclassification rate given by

∆̂(γ(k), k) =
π1
n1

n1∑
i=1

I[γ(k)Tx1i(k) < 0] +
π2
n2

n2∑
i=1

I[γ(k)Tx2i(k) ≥ 0],

and we can get an estimate γ̂R(k) of γ(k) by minimizing this. Note that without

loss of generality, we can assume ∥γ(k)∥ ≤ 1.

We can choose the value of k by minimizing the V -fold cross-validation esti-

mate of the misclassification probability as described in Section 2. For any fixed

k, let γ̂
(−v)
R (k) be an estimate of γ(k) obtained from the training sample when

the vth (1 ≤ v ≤ V ) fold is left out. Then the V -fold cross-validation estimate

of the misclassification probability is

∆̂R(k) =
1

V

V∑
v=1

{ 2∑
j=1

πj
nj(v)

∑
i : xji∈ vth fold

I[δL(xji, γ̂
(−v)
R (k), k) ̸= j]

}
, (3.1)

and the estimate of k is k̂R = argmin1≤k≤k̄ ∆̂R(k).

Take ∆(γ(k), k) = E[∆̂(γ(k), k)], and let ∆L(k) = infγ(k)∆(γ(k), k) be the

misclassification probability of the best linear classifier based on Tx(k). Define

k◦ to be the least value of k at which ∆L(k) (1 ≤ k ≤ k̄) attains its minimum.

In view of the nested structure of classifiers with class boundaries that are linear

functions of Tx(k), we have ∆L(k) = ∆L(k◦) for all k◦ ≤ k ≤ k̄. Also, we have

∆L(k) > ∆L(k◦) for any 1 ≤ k < k◦ in view of the definition of k◦.

Theorem 2. In a two class problem, the misclassification probability of the clas-

sifier based on RD and k̂R converges to ∆L(k◦) as min{n1, n2} → ∞. When the

class boundary of the Bayes classifier δB(x) is a linear function of Tx(k
◦), the

classifier constructed using RD and k̂R achieves the Bayes risk ∆B asymptoti-

cally.
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While the construction of the linear classifier based on RD does not require

any parametric model for the observed sequences, the optimization problem that

one needs to solve to construct such a linear classifier is computationally complex.

Further, with the increase in the value of k, the number of k-words grows at an

exponential rate, and this increases the computational complexity of the classifier

based on RD. For the classifiers based on Markov models considered in Section

2, the computation of the maximum likelihood estimates of parameters is fairly

straight-forward; classifiers based on RD are computationally far less attractive

than those based on Markov models. Methods based on support vector machines

(SVM) (see Vapnik (1998); Hastie, Tibshirani, and Friedman (2009)) and dis-

tance weighted discrimination (DWD) (see Marron, Todd, and Ahn (2007); Qiao

et al. (2010)) are two well-known classification techniques available in the liter-

ature that are well equipped to deal with high-dimensional data sets, and it is

appropriate to consider linear classifiers based on Tx(k) using SVM and DWD

as alternatives to RD.

In DWD, for a fixed k, the estimate γ̂D(k) of γ(k) is obtained by minimizing

(see Qiao et al. (2010))

D̂(γ(k), k) =
1

n

n1∑
i=1

W [γ(k)Tx1i(k)] +
1

n

n2∑
i=1

W [−γ(k)Tx2i(k)]

subject to ∥γ(k)∥ ≤ 1. Here n = n1 + n2, and

W (z) =

{
2
√
C0 − C0z z ≤ 1/

√
C0 ,

1/z otherwise.

In SVM, one obtains the estimate γ̂S(k) of γ(k) by minimizing (see Lin (2002))

Ŝ(γ(k), k) =
1

n

n1∑
i=1

[1− γ(k)Tx1i(k)]+ +
1

n

n2∑
i=1

[1 + γ(k)Tx2i(k)]+ + λ∥γ(k)∥2,

where λ is the regularization parameter, and [x]+ = max{0, x}. Here also, we can

impose the constraint ∥γ(k)∥ ≤ 1. For estimation of the word length k, we use

CV. Denote the estimates of k by k̂D and k̂S for DWD and SVM, respectively,

obtained by minimizing appropriate V -fold cross-validation estimates of the mis-

classification probabilities. For DWD and SVM, the cross-validation estimates

of misclassification probabilities, denoted as ∆̂D(k) and ∆̂S(k) can be defined in

the same way as ∆̂R(k) in (3.1) with γ̂
(−v)
R (k) replaced by γ̂

(−v)
D (k) and γ̂

(−v)
S (k),

respectively.

Theorem 3. For a classification problem with two classes, suppose that for j = 1

and 2, nj/n → πj as n → ∞, where 0 < π1, π2 < 1 and π1 + π2 = 1. If the class



502 SUBHAJIT DUTTA, PROBAL CHAUDHURI AND ANIL K. GHOSH

boundary of the Bayes classifier δB(x) is a linear function of Tx(k
◦), then for

the classifier constructed using DWD and k̂D, the misclassification probability

converges to the Bayes risk ∆B as n → ∞. If λ → 0, the same convergence

result holds for the misclassification probability of the classifier based on SVM

and k̂S.

If there are J (> 2) competing classes, we can perform
(
J
2

)
binary classifi-

cations taking one pair of classes at a time, then combine the results of these

pairwise classifications using majority voting (see, e.g., Hastie, Tibshirani, and

Friedman (2009)). In our numerical work we have used this procedure for prob-

lems involving more than two classes.

4. Data Analysis Based on Simulated Examples

We carried out some simulation studies based on Markov and hidden Markov

models to compare the performance of different classifiers developed in Sections

2 and 3. Consider a three class example (MM1) involving stationary Markov

models each with state space {0, 1}, where we take pj(0|0) = pj(1|1) = αj and

pj(1|0) = pj(0|1) = 1 − αj for j = 1, 2 and 3. Then the t.p. matrices are

symmetric and doubly stochastic, and we chose α1 = 0.45, α2 = 0.55 and α3 =

0.25. For the i.p., we took qj(0) = qj(1) = 1/2 for j = 1, 2 and 3, which is

the stationary initial distribution for the t.p. matrix chosen for any class. The

motivation for such choices is that if the values of α for the two classes are close

(or far apart, respectively), then the Bayes risk for the problem is expected to

be high (or low, respectively).

In a second example (MM2), there are two classes involving Markov models

of different orders. The model corresponding to the first class is a first order

Markov model with p1(0|0) = p1(1|1) = 0.55, p1(1|0) = p1(0|1) = 0.45 and

q1(0) = q1(1) = 1/2. Note that this is same as the model corresponding to the

second class in MM1. The model corresponding to the second class in MM2 is

chosen to be a Markov model of order 6 with an entry of the t.p. matrix defined as

p2(m|m1, . . . ,m6) = (1/6)
∑6

i=1 p(m|mi), where p(0|0) = p(1|1) = 0.45, p(1|0) =
p(0|1) = 0.55, and q2(m1, . . . ,m6) = (1/2)6 for any (m1, . . . ,m6) ∈ {0, 1}6.

We considered a three class example (HMM3) involving data generated from

hidden Markov models (HMM) (see, e.g., Rabiner (1989); Juang and Rabiner

(1991)) with two hidden states (0 and 1) and two observed states (0 and 1).

For the HMM corresponding to the three classes, we chose the underlying two-

state stationary Markov chains in a similar way as in example MM1. For the

t.p. and the i.p. of the hidden chain corresponding to the first class, we took

p1(0|0) = p1(1|1) = 0.55, p1(1|0) = p1(0|1) = 0.45, and q1(0) = q1(1) = 1/2, and

for the hidden chains corresponding to the other two classes, we took pj(0|0) =
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pj(1|1) = 0.25, pj(1|0) = pj(0|1) = 0.75, and qj(0) = qj(1) = 1/2 for j = 2 and 3.

Denote the emission probabilities (e.p.) of a HMM by e(x|h). Note that e(x|h) is
the conditional probability of observing the state x given that the hidden state is

h. The e.p. for the first two classes were taken to be ej(0|0) = 0.2, ej(1|0) = 0.8,

ej(0|1) = 0.8, and ej(1|1) = 0.2, where j = 1 and 2, while the e.p. for the third

class was e3(0|0) = 0.8, e3(1|0) = 0.2, e3(0|1) = 0.2, and e3(1|1) = 0.8. The

first two classes differ only in their t.p. matrices, while the second and the third

classes differ only in their e.p.

In each example, we generated sequences of length 100 and formed training

and test samples with 200 and 300 observations, respectively. This procedure

was repeated 100 times, and the average test set misclassification rates of the

classifiers along with their standard errors over these 100 Monte Carlo simulations

are reported in Table 1. Average misclassification rates of the Bayes classifiers,

constructed assuming the model parameters to be known, are also reported to

facilitate comparison. The value of k̄, which is the upper bound for the sizes of the

words or the orders of the Markov models, was chosen to be 10 for implementing

CV.

We also studied the performance of some other classifiers. The classifier

based on classification and regression trees (CART) is standard and can be used

on sequence data with finite state spaces. We also considered the nearest neigh-

bor (NN) classifier with Hamming distance, where the number of neighbors was

chosen by minimizing a cross-validated estimate of the misclassification proba-

bility. We have also run SVM and DWD on our data treating each sequence as

a vector of d binary feature variables (see Hsu, Chang, and Lin (2010), who sug-

gested a similar implementation of SVM for sequence data). We call the resulting

classifiers SVM∗ and DWD∗, respectively, to distinguish them from our earlier

implementation of SVM and DWD based on word frequencies. We also con-

sidered a kernelized version of SVM based on the Hamming distance (see, e.g.,

Sonnenburg, Rätsch, and Schölkopf (2005)), and we call it SVM∗∗. All these

classifiers lead to very high misclassification rates in our simulated examples (see

Table 1). The advantage of using counts of the k-words as features instead of the

original data is clear from the superior performance of SVM and DWD compared

to SVM∗, SVM∗∗, and DWD∗.

Among our linear classifiers based on occurrences of words, the overall per-

formance of the classifier based on RD was better than DWD and SVM. In the

last example involving HMM, we also tried the Bayes classifier based on the like-

lihood of HMM, where the well-known Baum-Welch algorithm (see, e.g., Baum et

al. (1970); Hastie, Tibshirani, and Friedman (2009)) was used for parameter es-

timation using the training data. In addition to estimating the usual parameters

of the HMM, we estimated the order (equivalently, the cardinality of the state
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Table 1. Misclassification rates with standard error (within parantheses) of
different classifiers on simulated data sets.

Data set MM1 MM2 HMM3
Bayes 0.1192 0.2625 0.4245
Markov 0.1283 (0.0012) 0.2793 (0.0017) 0.4269 (0.0014)
RD 0.1262 (0.0009) 0.2912 (0.0019) 0.4308 (0.0015)

DWD 0.1267 (0.0011) 0.2983 (0.0019) 0.4367 (0.0014)
SVM 0.1286 (0.0011) 0.2941 (0.0019) 0.4324 (0.0013)
CART 0.3315 (0.0011) 0.5082 (0.0019) 0.6685 (0.0016)
NN 0.4466 (0.0016) 0.4823 (0.0020) 0.6182 (0.0018)

DWD∗ 0.6542 (0.0016) 0.5022 (0.0020) 0.6655 (0.0016)
SVM∗ 0.6617 (0.0017) 0.5012 (0.0020) 0.6646 (0.0015)
SVM∗∗ 0.5325 (0.0019) 0.4939 (0.0021) 0.6441 (0.0016)

Table 2. Empirical probability distribution of k̂CV
1 , k̂CV

2 and k̂CV
3 in MM1.

k 1 2 3 4 5

k̂CV
1 0.525 0.225 0.17 0.075 0.005

k̂CV
2 0.56 0.18 0.15 0.08 0.03

k̂CV
3 0.675 0.185 0.070 0.060 0.010

Table 3. Empirical probability distributions of k̂R, k̂D and k̂S in MM1.

k 2 3 4 5

k̂R 0.673 0.177 0.110 0.040

k̂D 0.74 0.17 0.047 0.043

k̂S 0.653 0.197 0.090 0.060

space) of the underlying Markov chain from the observed data. In this example,

all our linear classifiers based on occurrences of words yielded better misclassifi-

cation rates than the model specific classifier constructed using the Baum-Welch

algorithm.

Estimates of the priors of the competing classes have been taken to be propor-

tional to the training sample sizes for different classes, and we have tried different

values of V while implementing the V -fold CV, yielding very similar results. We

have reported the results only for 2-fold CV repeated over 10 random splits of

the training data. With three classes, for classifiers based on Markov likelihood,

CV needs simultaneous minimization of ∆̂CV (k1, k2, k3), so we adopted the pair-

wise classification approach to make the procedure computationally easier. The

results of pairwise classification were combined using majority voting (see Hastie,

Tibshirani, and Friedman (2009)) to obtain the final classification.
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Table 4. Empirical probability distribution of k̂CV
1 and k̂CV

2 in MM2.

k 1 2 3 4

k̂CV
1 0.48 0.25 0.15 0.12

k 6 7 8 9

k̂CV
2 0.52 0.23 0.20 0.05

Table 5. Empirical probability distributions of k̂R, k̂D and k̂S in MM2.

k 7 8 9 10

k̂R 0.55 0.30 0.08 0.07

k̂D 0.59 0.21 0.11 0.09

k̂S 0.66 0.19 0.10 0.05

For SVM, we used programs available in R (see Dimitriadou et al. (2011), and

we used MATLAB codes available at http://www.unc.edu/~marron/marron_

software.html for DWD. We used our own codes in R for RD, implemented us-

ing the algorithm discussed in Ghosh and Chaudhuri (2005). It is our experience

that if we use only k-word frequencies ignoring initial (k − 1)-word occurrences

to construct linear classifiers based on RD, DWD, and SVM, there is no real

change in the misclassification rates, and a substantial cost saving. We have

used programs available in R for CART (see Ripley (2011)) as well as for SVM∗∗

(see Karatzoglou et al. (2004)), and for NN we used our own codes in R. All

R codes written by us are available at http://www.isical.ac.in/~tijahbus/

Words.htm.

Our classifiers are based on cross-validation (CV), and a relevant issue is how

well CV estimates k⋆ and k◦. In order to address this issue, we computed the

empirical probability distributions of the estimates of k⋆ and k◦, and those are

reported in Tables 2−5. For the implementation of CV in the case of the classifier

based on Markov models, the range of values for the order of the Markov model

was taken to be k = 0, 1, . . . , 9. For the linear classifiers discussed in Section

3, we carried out CV over the range of values k = 1, 2, . . . , 10. The figures

reported in Tables 2−5 indicate the presence of a small amount of bias due to

over-estimation, which is not surprising in view of the nested nature of both the

models and the classifiers considered here, and the fact that in CV we minimize

an estimate of the overall misclassification probability of a classifier.

5. Results from the Analysis of Benchmark Data Sets

We analyzed three data sets taken from the UCI machine learning repository.

Description of the Promoter Gene data, the Splice Junction data, and the SPECT

Heart data was given in Section 1. In the Splice Junction data set, we omitted the

http://www.unc.edu/~marron/marro n_software.html
http://www.unc.edu/~marron/marro n_software.html
http://www.isical.ac.in/~tijahbus/Words.htm
http://www.isical.ac.in/~tijahbus/Words.htm
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15 sequences that had missing characters. In the SPECT Heart data set, we have

specific training and test sets. In the other two cases, we carried out our analysis

based on training and test sets formed by randomly partitioning the data. This

random partitioning was done 100 times to form 100 training and test sets. The

sizes of the training and the test sets in each example are reported in Table

6, along with the average misclassification rates and the corresponding standard

errors of different classifiers. For the SPECT Heart data set, the misclassification

rates and their standard errors have been computed based on outputs of the

classifier in the given test set.

In the Promoter Gene data set, our linear classifiers based on RD, SVM, and

DWD worked well, and outperformed the classifiers based on Markov models as

well as CART, NN, and SVM∗∗. To apply SVM∗ and DWD∗, we transformed the

original state space {A,T,C,G} to {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)} (see, e.g.,

Hsu, Chang, and Lin (2010)), and then ran SVM and DWD on the transformed

data. Misclassification rates of SVM∗ and DWD∗ turned out to be twice as high

as the misclassification rates of SVM and DWD; demonstrates the advantage of

using classifiers based on the frequencies of words instead of classifiers based on

the original data. For the Splice Junction data set, among our classifiers, SVM

based on the counts of words yielded the lowest misclassification rate. However,

with a misclassification rate of 0.0723, NN turns out to be the best among all

the classifiers considered, while SVM∗ yielded the second best performance. In

this example, it seems that the frequencies of words do not succeed in extracting

adequate information from the original data.

On the website of the UCI repository, the best reported misclassification

rate for the Promoter Gene data set is 0.0377 obtained using KBANN (Knowl-

edge Based Artificial Neural Net), and a worst rate 0.1792 obtained using ID3

(Quinlan’s decision-tree builder). We obtained a best misclassification rate of

0.0638 using the classifier based on DWD. For the Splice Junction data set, the

best reported misclassification rate of 0.0632 was obtained using KBANN, and

the worst, 0.2074, obtained using a nearest neighbor classifier. Our best misclas-

sification rate was 0.2395, obtained using the classifier based on SVM with an

adaptive choice of the word length. For both of these data sets, KBANN seems

to be an effective classification procedure, developed as a hybrid of ‘explanation

based’ and ‘empirical learning’ algorithms (see, e.g., Towell and Shavlik (1994)),

and it uses data specific scientific knowledge. For the sake of comparison, we ran

a standard version of the classifier based on artificial neural networks (ANN) with

a single hidden layer on the same transformed data on which we ran SVM∗ and

DWD∗. Here, the number of hidden nodes was chosen by minimizing a cross-

validated estimate of the misclassification probability, and we ran ANN using

codes that are available in R (see Venables and Ripley (2002)). The misclassi-

fication rates of ANN for the Promoter Gene and the Splice Junction data sets
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Table 6. Misclassification rates with standard error in brackets of different
classifiers on real data sets.

Data set Promoter Gene Splice Junction SPECT Heart
Seq. Length 57 60 22

Training set size 40+40 700+700+1400 40+40
Test set size 13+13 62+65+248 15+172

Markov 0.3538 (0.0059) 0.3558 (0.0023) 0.2139 (0.0307)
RD 0.0746 (0.0061) 0.3648 (0.0026) 0.2406 (0.0302)

DWD 0.0638 (0.0056) 0.2747 (0.0022) 0.2246 (0.0303)
SVM 0.0827 (0.0068) 0.2395 (0.0021) 0.1658 (0.0264)
CART 0.4712 (0.0055) 0.5000 (0.0000) 0.2948 (0.0366)
NN 0.2146 (0.0060) 0.0723 (0.0015) 0.2746 (0.0370)

DWD∗ 0.1315 (0.0026) 0.4137 (0.0019) 0.2163 (0.0340)
SVM∗ 0.1192 (0.0024) 0.0809 (0.0015) 0.2890 (0.0352)
SVM∗∗ 0.2200 (0.0028) 0.1776 (0.0023) 0.2380 (0.0311)

turned out to be 0.5723 and 0.5025, respectively, which are quite high compared

to those obtained using KBANN as well as other methods proposed here.

In the SPECT Heart data set, the classifier based on SVM had the best

misclassification rate of 0.1658. The second best rate was produced by a classifier

based on Markov models. However, all other competing classifiers performed

poorly for this data. Note that both versions of SVM that are run on the original

data, namely SVM∗ and SVM∗∗, gave misclassification rates quite high compared

to that of SVM based on the frequencies of k-words with an adaptive choice of k.

The website of the UCI repository reports a misclassification rate of 0.16 for the

classifier based on CLIP3 algorithm (see, e.g., Cios, Wedding, and Liu (1997))

when applied to this data. CLIP3 is a hybrid algorithm that combines tree based

and rule based procedures for classification.

For the Promoter Gene data and the Splice Junction data, we computed

the empirical probability distributions of the estimated orders of the Markov

models and the estimated lengths of the word frequencies. These are reported in

Tables 7−10. For the implementation of CV for the classifier based on Markov

models, the range of values for the order of the Markov model was taken to be

k = 0, . . . , 4, and for the linear classifiers discussed in Section 3, we carried out

CV over the range of values k = 1, . . . , 5. In the case of the SPECT Heart data,

we had fixed training and test sets.

6. Concluding Remarks

We have proposed a classifier based on Markov models where the orders of the

Markov models are chosen by a cross-validated estimate of the misclassification

probability. We relaxed the Markov assumption and constructed a classifier based
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Table 7. Empirical probability distribution of k̂CV
1 and k̂CV

2 in Promoter
Gene data set.

k 1 2 3

k̂CV
1 0.47 0.44 0.09

k̂CV
2 0.35 0.39 0.26

Table 8. Empirical probability distributions of k̂R, k̂D and k̂S in Promoter
Gene data set.

k 2 3 4 5

k̂R 0.15 0.22 0.47 0.16

k̂D 0.16 0.11 0.45 0.28

k̂S 0.20 0.16 0.42 0.22

Table 9. Empirical probability distribution of k̂CV
1 , k̂CV

2 and k̂CV
3 in Splice

Junction data set.

k 1 2 3

k̂CV
1 0.275 0.650 0.075

k̂CV
2 0 0.825 0.175

k̂CV
3 0.79 0.175 0.035

Table 10. Empirical probability distributions of k̂R, k̂D and k̂S in Splice
Junction data set.

k 2 3 4 5

k̂R 0.05 0.774 0.153 0.023

k̂D 0.033 0.75 0.183 0.034

k̂S 0.04 0.807 0.14 0.013

on RD with an adaptive choice of the word length; the misclassification rate

of the classifier based on it converges to the misclassification rate of the best

linear classifier based on occurrences of k-words. The classifier based on RD

is computationally quite expensive, so we developed linear classifiers based on

DWD and SVM. We studied the asymptotic behavior of the misclassification

probabilities of these classifiers, and proved their Bayes risk consistency under

suitable conditions.

The overall performance of various linear classifiers appears to be quite sat-

isfactory when applied to simulated and benchmark data sets. The use of fre-

quencies of words as features extracted from the sequences lead to a significant

improvement in the performance of several classifiers in some situations.
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Appendix : Proofs and Mathematical Details

Proof of Theorem 1. We derive the limiting behavior of k̂CV . For each fixed

k ∈ {0, . . . , k̄}J and ϕ(k) = (θ1(k1), . . . ,θJ(kJ)), we show that

sup
ϕ(k)

|∆̂(ϕ(k),k)−∆(ϕ(k),k)| a.s.→ 0 as min{n1, . . . , nJ} → ∞,

where ∆̂(ϕ(k),k) =
∑J

j=1 πj/nj
∑nj

i=1 I(δ(xji,ϕ(k),k) ̸= j). It follows from

Hoeffding’s inequality (see Hoeffding (1963)) that, for all 1 ≤ j ≤ J and every

ϵ > 0, we have

PGj

{∣∣∣ 1
nj

nj∑
i=1

I(δ(xji,ϕ(k),k) ̸= j)− PGj (δ(X,ϕ(k),k) ̸= j)
∣∣∣ > ϵ

}
< 2e−2njϵ

2
.

(A.1)

When the components of the vector ϕ(k) varies over the interval (0, 1), the

sets {x : δ(x, ϕ(k),k) ̸= j} form a VC class with finite VC index. This is a

consequence of Fact 1 and Examples 19.17 and 19.18 in van der Vaart (2000).

Using (A.1), we get

PGj

{
sup
ϕ(k)

∣∣∣ 1
nj

nj∑
i=1

I(δ(xji,ϕ(k),k) ̸= j)− PGj (δ(X,ϕ(k),k) ̸= j)
∣∣∣ > ϵ

}
< 2n

D(kj)
j e−2njϵ

2
,

where D(kj) is a constant depending on kj related to the VC index of the above-

mentioned VC class. Since
∑

nj
n
D(kj)
j e−2njϵ

2
< ∞ for any ϵ > 0, we have

supϕ(k)

∣∣∣1/nj
∑nj

i=1 I(δ(xji, ϕ(k),k) ̸= j) − PGj (δ(X,ϕ(k),k) ̸= j)
∣∣∣ a.s.→ 0 as

nj → ∞ by the Borel-Cantelli lemma. Using the triangle inequality, we now get

sup
ϕ(k)

|∆̂(ϕ(k),k)−∆(ϕ(k),k)| a.s.→ 0 as min{n1, . . . , nJ} → ∞. (A.2)

Consequently, |∆̂(ϕ̂(k),k)−∆(ϕ̂(k),k)| a.s.→ 0 and |∆̂(ϕ⋆(k),k)−∆(ϕ⋆(k),k)| a.s.→
0 as min{n1, . . . , nJ} → ∞, where ϕ̂(k) = (θ̂1(k1), . . . , θ̂J(kJ)). Using the as-

sumption in the theorem and Fact 2, we have ϕ̂(k)
a.s.→ ϕ⋆(k) as min{n1, . . . , nJ}

→ ∞. Note that for all k ≥ k⋆, δ(x,ϕ⋆(k),k) is a likelihood based Bayes classi-

fier, and this implies that ∆(ϕ̂(k),k)
a.s.→ ∆(ϕ⋆(k),k) = ∆B as min{n1, . . . , nJ}

→ ∞.
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Rewrite the expression for the V -fold CV estimate of the misclassification

rate as

∆̂CV (k) =
1

V

V∑
v=1

∆̂v(ϕ̂
(−v)

(k),k).

Note that ϕ̂
(−v)

(k) is based on data points in the training sample excluding those

in the vth fold, and ∆̂v(ϕ̂
(−v)

(k),k) =
∑J

j=1 πj/nj(v)
∑

i : xji∈ vth fold I(δ(xji,

ϕ̂
(−v)

(k),k) ̸= j). Now, for any fixed v, we get
∣∣∣∆̂v(ϕ̂

(−v)
(k),k)−∆(ϕ̂

(−v)
(k),k)

∣∣∣ a.s.→
0 as min{n1(v), . . . , nJ(v)} → ∞ as at (A.2).

Fix 1 ≤ v ≤ V , k > k⋆ and let min{n1, . . . , nJ} → ∞, which implies

min{n1(v), . . . , nJ(v)} → ∞. Then, in view of the assumption in the theo-

rem and Fact 2, we have ϕ̂
(−v)

(k)
a.s.→ ϕ⋆(k). Since ∆(ϕ⋆(k),k) = ∆B = the

Bayes risk, ∆(ϕ̂
(−v)

(k),k)
a.s.→ ∆(ϕ⋆(k),k), and consequently, ∆̂v(ϕ̂

(−v)
(k),k)

a.s.→
∆(ϕ⋆(k),k). So, for any k ≥ k⋆, lim [∆̂CV (k)−∆̂CV (k

⋆)] = lim [∆̂CV (k)−∆B] =

0 almost surely as min{n1, . . . , nJ} → ∞. On the other hand for k � k⋆, one

can verify that as min{n1, . . . , nJ} → ∞, lim inf [∆̂CV (k) − ∆̂CV (k
⋆)] > 0 al-

most surely in view of the assumption that ∆(ϕ⋆(k),k) > ∆B. As k̂CV is

obtained by minimizing ∆̂CV (k) over k, this implies that P (k̂CV � k⋆) → 0 as

min{n1, . . . , nJ} → ∞. If we consider B independent splits of the training data,

∆̂CV (k) is an average obtained over these splits. Hence, all the arguments and

the results here continue to hold.

The conditional misclassification probability, ∆(ϕ̂(k̂CV ), k̂CV ), given the

training sample, can be expressed as a finite sum

∆(ϕ̂(k̂CV ), k̂CV ) =
∑
k

∆(ϕ̂(k),k) I(k̂CV = k).

Since ∆(ϕ̂(k),k)
a.s.→ ∆B for any k ≥ k⋆, and P (k̂CV ≥ k⋆) → 1 as min{n1, . . . ,

nJ} → ∞, we must have ∆(ϕ̂(k̂CV ), k̂CV )
a.s.→ ∆B as min{n1, . . . , nJ} → ∞. As

the misclassification probability of a classifier is the expected value of the con-

ditional misclassification probability given the training sample, the proof of the

theorem is now complete by a simple application of the Dominated Convergence

Theorem.

Proof of Theorem 2. Note that when the components of the vector γ(k) vary

over R, the family of sets {x : γ(k)Tx(k) ≥ 0} form a VC class with finite

VC index (see Examples 19.17 and 19.18 in van der Vaart (2000)). From the

arguments in the proof of Theorem 3.1 in Ghosh and Chaudhuri (2005), we have

sup
γ(k)

∣∣∣∆̂(γ(k), k)−∆(γ(k), k)
∣∣∣ a.s.→ 0 as min{n1, n2} → ∞.
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Recall the expression for the V -fold CV estimate with a fixed V in the proof

of Theorem 1, and define

∆̂R(k) =
1

V

V∑
v=1

∆̂v(γ̂
(−v)
R (k), k).

Note that γ̂
(−v)
R (k) is based on data points in the training sample excluding those

in the vth fold, and ∆̂v is constructed using the observations in the vth fold. Using

arguments similar to those used in proving Theorem 3.1 in Ghosh and Chaudhuri

(2005), one can show that for any fixed k, ∆̂R(k)
a.s.→ ∆L(k) as min{n1, n2} → ∞.

Recall that ∆L(k) > ∆(k◦) for k < k◦, and ∆L(k) = ∆(k◦) for any k◦ ≤ k ≤ k̄.

Since k̂R = argmink ∆̂R(k), we now get P (k̂R ≥ k◦) → 1 as min{n1, n2} → ∞.

Conditional on the training sample, consider the decomposition

∆(γ̂R(k̂R), k̂R) =
∑
k

∆(γ̂R(k), k)I(k̂R = k).

For any fixed k, the convergence of ∆(γ̂R(k), k) to ∆L(k) follows from Ghosh

and Chaudhuri (2005). Since ∆L(k) = ∆L(k◦) for all k ≥ k◦ and P (k̂R ≥ k◦) →
1 as min{n1, n2} → ∞, the proof of the convergence of the misclassification

probability of the classifier, based on RD and k̂R, to ∆L(k◦) now follows from

similar arguments as those at the end of the proof of Theorem 1.

Proof of Theorem 3. For DWD, using the fact that W (·) is a Lipschitz con-

tinuous function and Example 19.7 in van der Vaart (2000), it follows that as

γ(k) varies over the set {γ(k) : ∥γ(k)∥ ≤ 1}, the functions W (γ(k)Tx(k)) form

a VC class with finite VC index. Now, as nj/n → πj for j = 1 and 2, arguments

using Hoeffding’s inequality and Borel-Cantelli lemma in a similar way as in the

proofs of (A.1) and (A.2) yield

sup
γ(k)

∣∣∣D̂(γ(k), k)−D(γ(k), k)
∣∣∣ a.s.→ 0, (A.3)

where D(γ(k), k) = π1EG1 [W (γ(k)Tx(k))] + π2EG2 [W (−γ(k)Tx(k))].

Note that for SVM, the function [1−z]+ is Lipschitz continuous in z. Hence,

the facts that ∥γ(k)∥ ≤ 1 and each component of Tx(k) is bounded above, imply

that the functions [1 − γ(k)Tx(k)]+ form a VC class with finite VC index (see

Example 19.7 in van der Vaart (2000)). Consequently, arguments similar to those

used in the case of DWD lead to

sup
γ(k)

∣∣∣Ŝ(γ(k), k)− S(γ(k), k)
∣∣∣

≤ sup
γ(k)

∣∣∣∣∣ 1n
n1∑
i=1

[1− γ(k)Tx1i(k)]+ +
1

n

n2∑
i=1

[1 + γ(k)Tx2i(k)]+ − S(γ(k), k)

∣∣∣∣∣+ |λ|
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a.s.→ 0 as λ → 0 and n → ∞, where S(γ(k), k) = π1EG1 [1 − γ(k)Tx(k)]+ +

π2EG2 [1 + γ(k)Tx(k)]+.

Under the assumption that the class boundary of the Bayes classifier δB(x) is

a linear function ofTx(k
◦), we get ∆L(k◦) = ∆B. Now, due to Fisher consistency

of DWD and SVM (see, e.g., Qiao et al. (2010); Lin (2002)), the classifiers

obtained by minimizing D(γ(k), k) and S(γ(k), k) over γ(k) will be a Bayes

classifier for any k◦ ≤ k ≤ k̄, and it has the property that any observation

on the class boundary of this classifier can be classified into any of the two

classes without altering its misclassification probability. This implies that both

∆(γ̂D(k), k) (as well as ∆(γ̂
(−v)
D (k), k) for a fixed v) and ∆(γ̂S(k), k) (as well as

∆(γ̂
(−v)
S (k), k) for a fixed v) converge almost surely to ∆B for k◦ ≤ k ≤ k̄ as

n → ∞. Note that here we need to use a sub-sequence argument because, unlike

the maximum likelihood estimates for the parameters of the Markov models, we

may not have direct convergence of γ̂D(k) (or γ̂
(−v)
D (k)) and γ̂S(k) (or γ̂

(−v)
S (k)).

Note also that the limits of γ̂D(k) (or γ̂
(−v)
D (k)) and γ̂S(k) (or γ̂

(−v)
S (k)) along

suitable sub-sequences are minimizers of the continuous functions D(γ(k), k) and

S(γ(k), k), respectively. Hence, in view of the Fisher consistency of DWD and

SVM, those limits yield Bayes classifiers with class boundaries that are linear

functions of Tx(k) for k◦ ≤ k ≤ k̄. Now, using arguments similar to those

used in the proof of Theorem 1, one can verify that lim[∆̂D(k) − ∆̂D(k
◦)] =

lim[∆̂D(k) −∆B] = lim[∆̂S(k) − ∆̂S(k
◦)] = lim[∆̂S(k) −∆B] = 0 almost surely

for k ≥ k◦ as n → ∞. On the other hand, for k < k◦, since ∆L(k) > ∆L(k◦) =

∆B, similar arguments as those used in the proof of Theorem 1, imply that

lim inf[∆̂D(k) − ∆̂D(k
◦)] > 0 and lim inf[∆̂S(k) − ∆̂S(k

◦)] > 0 almost surely as

n → ∞. Hence, P (k̂D < k◦) → 0 and P (k̂S < k◦) → 0 as n → ∞.

Finally, given the training sample, we have the following decompositions into

finite sums of the conditional misclassification probabilities

∆(γ̂D(k̂D), k̂D) =
∑
k

∆(γ̂D(k), k)I(k̂D = k),

∆(γ̂S(k̂S), k̂S) =
∑
k

∆(γ̂S(k), k)I(k̂S = k).

The proof of the theorem is now complete in view of arguments as at the proofs

of Theorems 1 and 2.
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