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Abstract: Conventional dimension reduction methods deal mainly with simple data

structure and are inappropriate for data with matrix-valued predictors. Li, Kim,

and Altman (2010) proposed dimension folding methods that effectively improve

major moment-based dimension reduction techniques for the more complex data

structure. Their methods, however, are moment-based and rely on slicing the re-

sponses to gain information about the conditional distribution of X|Y . This can be

inadequate when the number of slices is not chosen properly. We propose model-

based dimension folding methods that can be treated as extensions of conventional

principal components analysis (PCA) and principal fitted components (PFC). We

refer to them as dimension folding PCA and dimension folding PFC. The pro-

posed methods can simultaneously reduce a predictor’s multiple dimensions and

inherit asymptotic properties from maximum likelihood estimation. Dimension

folding PFC gains further efficiency by effective use of the response information.

Both methods can provide robust estimation and are computationally efficient. We

demonstrated their advantages by both simulation and data analysis.

Key words and phrases: Central dimension folding subspace, central subspace, in-

verse regression, matrix normal distribution, sufficient dimension reduction.

1. Introduction

Dimension reduction methods are among the main techniques for studying

high dimensional data. Typical dimension reduction analyses explore the de-

pendence between a response Y ∈ R1 and a predictor vector X ∈ Rp. Cook

(1994, 1998) introduced sufficient dimension reduction (SDR), whose basic idea

is to reduce the dimension of the predictor vector X by replacing it with its

projection PSX onto a subspace S of the predictor space without loss of infor-

mation on the conditional distribution of Y |X. This requirement can be stated

as Y⊥⊥X | PSX, where ‘⊥⊥’ indicates independence. Under mild conditions, the

intersection of all such dimension reduction subspaces S ⊆ Rp is also a dimension

reduction subspace and is called the central subspace, SY |X .

Numerous dimension reduction methods have been developed that can

be incorporated into this rationale under certain conditions. Sliced inverse

regression (SIR; Li (1991)) and sliced average variance estimation (SAVE;

http://dx.doi.org/10.5705/ss.2012.138
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Cook and Weisberg (1991)) are two early techniques for dimension reduction.

Since then, bootstrap dimension reduction (Ye and Weiss (2003)), inverse regres-

sion estimation (IRE; Cook and Ni (2005)), directional regression (DR; Li and

Wang (2007)) and many other methods were developed to improve the estima-

tion of SY |X . Most of the proposed methods use the first two moments of X|Y to

perform estimation, so called moment-based methods. In contrast, Cook (2007)

and Cook and Forzani (2008) presented model-based SDR techniques, including

principal fitted components (PFC), that give the maximum likelihood estimators

(MLE) of the central subspace based on normal inverse models of X on Y .

Although dimension reduction topics have been widely studied, the meth-

ods mainly focus on a simple data structure: Y ∈ R1 and X ∈ Rp. In some

applications, however, one encounters matrix-valued predictors, such as longi-

tudinal data with p predictors observed over q times, EEG (electroencephalog-

raphy) data, FMRI (functional Magnetic Resonance Imaging) data and general

image data. For example, the EEG data studied by Li, Kim, and Altman (2010)

contains 122 subjects that are divided into alcoholic and control groups. For

each subject, the predictor contains measurements from 64 channels of electrodes

placed on the subject’s scalp and sampled at 256 times. Thus the predictor is

formed as a matrix of dimension 256 × 64, and the response is a binary vari-

able indicating groups. The data structure can be represented as Y ∈ R1 and

X ∈ RpL×pR . Traditional dimension reduction methods are inadequate to an-

alyze such complex data structures since they can only reduce the predictor’s

dimension by vectorizing it, thus losing important information on its matrix

structure.

In face recognition and image analysis, certain unsupervised dimension re-

duction techniques were developed to deal with such data, based only on the

marginal distribution of X. These methods include 2DPCA (Yang et al. (2004)),

(2D)2PCA (Zhang and Zhou (2005)), GLRAM (Ye (2005)), Unified PCA (Shan

et al. (2008)), probabilistic higher-order PCA (Yu, Bi, and Ye (2011)), etc.

Li, Kim, and Altman (2010) proposed supervised and moment-based dimen-

sion folding approaches that extend SIR, SAVE, and DR to data with matrix-

valued predictors, in order to reduce the predictor’s row and column dimen-

sions simultaneously without loss of information on Y |X. The idea of dimension

folding can be expressed as the condition: Y⊥⊥X | ΓT
2 XΓ1 or, equivalently,

Y⊥⊥vec(X) | (Γ1 ⊗ Γ2)
Tvec(X), where Γ1 ∈ RpR×dR and Γ2 ∈ RpL×dL have the

smallest column dimensions dR and dL (dR ≤ pR, dL ≤ pL), and ‘⊗’ stands for

the Kronecker product. The subspace Span(Γ1 ⊗ Γ2) or, equivalently, Span(Γ1)

⊗ Span(Γ2) is called the central dimension folding (CDF) subspace for Y |X, and

denoted as SY |◦X◦.
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Like conventional moment-based methods, moment-based dimension fold-

ing approaches are generally more efficient for discrete than for continuous re-

sponses, since their performance depends on how to slice the response variable

in order to estimate the conditional mean or variance of X|Y . The estimation

can be inadequate if the number of slices is not selected properly. Moreover,

the moment-based dimension folding methods may not possess good asymptotic

properties since they require inverting the high dimensional covariance matrix

Σ̂ = ĉov[vec(X)]. When the predictor X contains a large number of rows and

columns, computational complexity and singularity issues intrude. As a result,

pre-screening is often necessary. To resolve these issues and improve efficiency, we

propose model-based dimension folding methods, to be called dimension folding

PCA and dimension folding PFC, that retain the key idea of dimension folding

and obtain the MLE of the central dimension folding subspace. Dimension fold-

ing PFC gains further efficiency by effective use of the response information. The

proposed methods circumvent directly inverting Σ̂ and thus are more applicable

to high dimensional data. In addition, dimension folding PCA and PFC provide

robust estimators. They can be treated as generalized versions of conventional

PCA and PFC since they include them as special cases.

The remainder of this paper is organized as follows. In Section 2 we in-

troduce dimension folding PCA and its estimation. Section 3 is devoted to the

development of dimension folding PFC. Section 4 provides robustness results.

Prediction methods are discussed in Section 5. Section 6 and 7 contain illus-

trations of the performance of our methods with simulation studies and data

analysis. Discussion is given in Section 8.

2. Dimension Folding PCA

Dimension folding PCA is a preliminary step to developing dimension folding

PFC. It performs dimension reduction for data with matrix-valued predictors

by reducing the predictor’s row and column dimensions simultaneously, so the

predictor’s matrix information can be preserved. It is built on a normal inverse

model of the predictor X ∈ RpL×pR on a latent matrix ν ∈ RdL×dR and provides

the MLE of the central dimension folding subspace.

Here is a brief review of conventional PCA methods. PCA was originally

considered as a well-established data-analytic method not associated with any

probabilistic model. Model-based PCA can be traced back to Tipping and Bishop

(1999), where the PCA model was formulated as

X = µ+ Γν + σε. (2.1)

In their case, X ∈ Rp is the predictor vector, µ ∈ Rp is the overall mean of X,

Γ ∈ Rp×d(d ≤ p) is a coefficient matrix with rank d, ν ∈ Rd is a latent random
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vector, and ε ∈ Rp is the random error. Additionally, ν and ε are assumed to

be independent and both have standard multivariate normal distributions with

zero means and identity covariance matrices. A random error with this structure

is called an isotropic error. The identity covariance assumption for ν is not a

restriction, since one can always combine a non-identity covariance matrix with

Γ. Thus, the parameter Γ itself is not identified but Span(Γ) is identified.

Under (2.1), it can be shown that the maximum likelihood estimator of

Span(Γ) corresponds to the subspace spanned by the first d eigenvectors of the

sample covariance matrix Σ̂ of X, which is the principal subspace obtained from

data-analytic PCA. Cook (2007) proposed that when the latent variable ν is

replaced by some fixed, centered but unobserved values ν1, . . . , νn, (2.1) can be

considered as the regression of X on ν. Then R(X) = ΓTX is a sufficient

reduction satisfying X|ΓTX, ν ∼ X|ΓTX, where ‘∼’ stands for equivalence. The

MLE of Span(Γ) is the same as the estimator obtained from (2.1) with the normal

assumption for ν.

2.1. Formulation of dimension folding PCA

Dimension folding PCA incorporates the idea of dimension folding into the

conventional PCA model (2.1). To achieve this, we assume that the matrix-

valued predictor X is matrix normally distributed and has some intrinsic struc-

ture among its rows and columns to convey its matrix structure. The model is

built on the inverse regression of the predictor as

X = µ+ Γ2νΓ
T
1 + σε, (2.2)

where X ∈ RpL×pR , Γ1 ∈ RpR×dR (dR ≤ pR) and Γ2 ∈ RpL×dL (dL ≤ pL)

are semi-orthogonal matrices that reduce the column and row dimensions of X,

µ ∈ RpL×pR is the overall mean of X, and ν ∈ RdL×dR is a latent matrix with

mean zero. The random error ε is assumed to be independent of ν and have a

matrix normal distribution. The matrix normal distribution is briefly reviewed

in the appendix. As dimension folding PCA is a starting model, we simplify

the error to be isotropic, so ε is NpL×pR(0pL×pR , IpR , IpL). More general error

structures will be discussed in the dimension folding PFC section. In (2.2),

neither Γ1 nor Γ2 is identified: if Γ1, Γ2 and ν are replaced by Γ2A2, Γ1A1

and A−1
2 ν(AT

1 )
−1, equation (2.2) remains the same, where A1 and A2 are any

nonsingular matrices. Thus, the dimension folding PCA model depends on Γ1

and Γ2 only through their column spaces. Under (2.2), ν contains the coordinates

of the centered conditional mean E(X|ν) − µ relative to Γ1 and Γ2, and the

relationship E(X|ν)− µ = PΓ2 [E(X|ν)− µ]PΓ1 holds. Therefore, the predictor’s

important row and column signals are preserved by Span(Γ1) and Span(Γ2).
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Model (2.2) reflects the homogeneous characteristic among the rows and

columns of the centered conditional mean E(X|ν) − µ, because its column in-

formation is retained by the same Γ1 over all rows and its row information is

preserved by Γ2 over all of its columns. This feature can be found in many data

sets with matrix-valued predictors. For example, in the EEG data, the rows

and columns of the predictors indicate the time and location measurements for

each subject. It is reasonable to believe that the signals provided by the scalp

locations are consistent over time, and vice versa. This is one major distinc-

tion between dimension folding PCA and conventional PCA, which omits the

predictor’s intrinsic matrix information and simply converts it to a vector. In

addition to preserving the predictors’ matrix structure, another benefit of (2.2)

is to greatly reduce number of parameters in estimation and improve accuracy.

Meanwhile, when the column dimension of X is one, (2.2) is equivalent to the

conventional PCA model (2.1) under the setting of Cook (2007). Thus, it is a

generalization of the conventional model.

Model (2.2) can also be written in a vectorization version as

vec(X) = vec(µ) + (Γ1 ⊗ Γ2)vec(ν) + σvec(ε). (2.3)

Here vec(ε) has a multivariate normal distribution N(0pLpR , IpLpR). In this way,

dimension folding PCA implies that under the isotropic error assumption, the

centered conditional means E[vec(X|ν)]−vec(µ) fall in the subspace spanned by

the columns of Γ1 ⊗ Γ2.

A proposition connects the inverse regression models (2.2) and (2.3) to the

dimension folding conditions.

Proposition 1. (a) Under (2.2), the distribution of ν|X is the same as the

distribution of ν|ΓT
2 XΓ1 over all values of X; (b) under (2.3), the distribution

of ν|vec(X) is the same as the distribution of ν|(Γ1 ⊗ Γ2)
T vec(X) for all values

of X.

Based on Proposition 1, R(X) = ΓT
2 XΓ1 is a sufficient reduction (folding)

satisfying X⊥⊥ν | ΓT
2 XΓ1. Since both Γ1 and Γ2 have the minimum column

dimensions, Span(Γ1 ⊗ Γ2) forms the central dimension folding subspace Sν|◦X◦.

2.2. Estimation of dimension folding PCA

The parameters in (2.2) are estimated based on maximum likelihood. We

assume that for each observation Xi of X, i = 1, . . . , n, there is a corresponding

coordinate matrix νi, such that Xi = µ + Γ2νiΓ
T
1 + σε, where νi is fixed and∑n

i=1 νi = 0 without loss of generality. In general, we are not able to find a

closed-form solution for the MLE of the central dimension folding subspace. Yet
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we can apply a fast and stable algorithm that uses three eigen-based iterations
and provides connections to the conventional PCA model.

For an independent sample {Xi}, according to (S1.1) in the supplement file,
the full log likelihood of (2.2) can be written as

l(µ,SΓ1 ,SΓ2 , σ
2, ν1, · · ·, νn)

= −npLpR
2

log(2π)− npLpR
2

logσ2

− 1

2σ2

n∑
i=1

tr[(Xi − µ− Γ2νiΓ
T
1 )

T (Xi − µ− Γ2νiΓ
T
1 )], (2.4)

where SΓ1 and SΓ2 denote the column spaces Span(Γ1) and Span(Γ2). It is easy
to see that the MLE µ̂ = X̄ since

∑n
i=1 νi = 0. Then for any arbitrary σ2,

maximizing (2.4) is equivalent to minimizing
∑n

i=1 tr[(Xi − X̄ − Γ2νiΓ
T
1 )

T (Xi −
X̄ − Γ2νiΓ

T
1 )], which can be solved based on the following.

Proposition 2. Suppose that Xi ∈ RpL×pR , i = 1, . . . , n, are observed matrices.
Let (Γ̂1, Γ̂2, ν̂1, . . . , ν̂n) be minimizers of

n∑
i=1

tr[(Xi −G2ωiG
T
1 )

T (Xi −G2ωiG
T
1 )] (2.5)

over all G1 ∈ RpR×dR , G2 ∈ RpL×dL, and ωi ∈ RdL×dR , i = 1, . . . , n. Then

(i) For fixed G1, the columns of the minimizer Γ̂2 are given by the dL eigenvectors
of the matrix Σ̂L =

∑n
i=1XiP1X

T
i /n corresponding to its dL largest nonzero

eigenvalues, where P1 = G1G
T
1 .

(ii) For fixed G2, the columns of the minimizer Γ̂1 consist of the dR eigenvectors
of the matrix Σ̂R =

∑n
i=1X

T
i P2Xi/n corresponding to its dR largest nonzero

eigenvalues, where P2 = G2G
T
2 .

(iii)For fixed G1 and G2, the minimizer ν̂i = GT
2 XiG1, i = 1, . . . , n.

Based on Proposition 2, for fixed G1 and G2, if ωi is replaced by ν̂i =
GT

2 XiG1, the objective function (2.5) is

L1 = tr(
n∑

i=1

XT
i Xi)− tr[

n∑
i=1

(XT
i P2Xi)P1].

Then for fixed P2, L1 is minimized by choosing the columns of G1 to be the
first dR eigenvectors of

∑n
i=1X

T
i P2Xi. So we need to choose P2 to minimize

L12 =
∑dR

k=1 λk(
∑n

i=1X
T
i P2Xi), where λk(A) indicates the kth eigenvalue of A.

This can be treated as an optimization problem over a Grassmann manifold but
it is hard to solve because eigenvalues are involved in the objective function.
Instead, we apply an iterative algorithm that can solve the problem efficiently.
We assume that the predictors are centered.
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1. Generate an initial value of Γ10 ∈ RpL×dL and let Γ̂1 = Γ10.

2. For given Γ̂1, compute the matrix Σ̂L =
∑n

i=1XiΓ̂1Γ̂
T
1 X

T
i /n and find its first

dL eigenvectors, denoted as v̂1, v̂2, ..., v̂dL . Estimate Γ2 as Γ̂2 = [v̂1, v̂2, ..., v̂dL ].

3. For given Γ̂2, compute Σ̂R =
∑n

i=1X
T
i Γ̂2Γ̂

T
2 Xi/n; find the first dR eigen-

vectors of Σ̂R, denoted as l̂1, l̂2, ..., l̂dR , which form the columns of Γ̂1 as

Γ̂1 = [l̂1, l̂2, ..., l̂dR ].

4. For given Γ̂1 and Γ̂2, compute ν̂i = Γ̂T
2 XiΓ̂1, i = 1, . . . ., n.

5. Repeat Step 2 to 4 and iterate each time using the updated Γ̂1 and Γ̂2 until∑n
i=1 tr[(Xi − Γ2νiΓ

T
1 )

T (Xi − Γ2νiΓ
T
1 )] converges.

The MLE of the central dimension folding subspace Sν|◦X◦ is then equal to

Span(Γ̂1) ⊗ Span(Γ̂2). Consequently, σ̂2 is equal to [1/(npLpR)]
∑n

i=1 tr[(Xi −
Γ̂2ν̂iΓ̂

T
1 )

T (Xi − Γ̂2ν̂iΓ̂
T
1 )]. The estimators obtained from the dimension folding

model inherit the asymptotic properties of likelihood estimation under normality.

As with most optimization procedures, the proposed algorithm can conver-

gence to a local minimum. It has a linear convergence rate. Our experience

shows that the convergence behavior depends on the gaps between the eigenval-

ues of Σ̂L and the gaps between the eigenvalues of Σ̂R. The larger the gaps,

the more likely the algorithm obtains a global solution. Meanwhile, according

to our empirical study, the algorithm is quite stable with use of random initial

values of Γ10. When a better initial value is required, one can choose the first

dR eigenvectors of
∑n

i=1X
T
i Xi/n as an initial Γ10, where

∑n
i=1X

T
i Xi/n is the

sample row covariance matrix of X.

The proposed estimation procedure has connections with conventional PCA

and is easily interpreted. It can be seen that when the column reduction matrix

Γ1 is known, the estimator of the row reduction Γ2 is the same as that of Γ in the

conventional PCA model (2.1) with the original predictor Xi replaced by XiΓ1.

Although here XiΓ1 is a matrix instead of a vector, the estimation logic remains

the same. Similarly, if Γ2 is known, the column reduction Γ1 can be obtained

from the conventional PC model with Xi replaced by ΓT
2 Xi.

Compared to conventional PCA, dimension folding PCA is computationally

efficient for dealing with matrix-valued predictors. The algorithm has three major

steps at each iteration. An efficient way to compute Σ̂L is to perform multipli-

cation for Xi and Γ̂1 first and then multiply it by its transpose. Thus, the total

computation cost of Σ̂L is O(npLdR(pL + pR)). The eigen-decomposition of Σ̂L

requires O(p2LdL) operations. Similarly, it takes O(npRdL(pL+pR)) and O(p2RdR)

operations to compute Σ̂R and its eigenspace. The computation of ν̂i is of order

O(pLdR(pR + dL)). Therefore, dimension folding PCA totally requires at most

O(max(pL, pR)
2max(dL, dR)nm) operations, where m is the number of iterations.
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Conventional PCA targeting vectorized X costs O(p2Lp
2
Rn) operations, which is

more expensive under the mild condition that max(dL, dR)m < min(pL, pR)
2.

2.3. Relationship with tensor PCA

Higher-order tensor decompositions have been widely studied in applied

mathematics and engineering. Among them, the Tucker decomposition is con-

sidered as a higher order form of PCA, or tensor PCA (Kolda and Bader (2009)).

Here we discuss the connections of dimension folding PCA with tensor PCA. The

key idea of tensor PCA is to decompose a tensor into a core tensor multiplied by

a component matrix along each mode. Thus, in a two-mode tensor case where

X ∈ RpL×pR , we have X ≈ GCHT , where C ∈ RdL×dR is the core matricized

two-way tensor, and G ∈ RpL×dL and H ∈ RpR×dR are the component matrices.

If dL and dR are less than pL and pR, the core tensor C is considered as a com-

pressed version of X. Thus, dimension reduction of the original tensor can be

achieved. There are several ways to compute the Tucker decomposition. Major

algorithms are developed to minimize the mean-squared loss function

f(G,H,C) = ||X − X̂||2F = ||X −GCHT ||2F , (2.6)

where || · ||F indicates the Frobenius norm. This loss function has the equivalent

form of the last term in our objective function (2.4). Kroonenberg and Leeuw

(1980) proposed an iterative least squares algorithm (ALS), called TUCKALS3

for computing a Tucker decomposition of three-way arrays. This method was

further refined by Lathauwer, Moor, and Vandewalle (2000), where they enhanced

the approximation by directly calculating the dominant subspaces rather than

their individual singular vectors. From this aspect, the algorithm we presented

for dimension folding PCA is equivalent to a sample version of the method in

Lathauwer, Moor, and Vandewalle (2000) for two-mode tensors.

Tensor PCA is a well-established data-analytic method but is not associ-

ated with any probabilistic model. Dimension folding PCA can be treated as a

model-based tensor PCA. It gains properties from maximum likelihood estima-

tion when the predictors are approximately normally distributed. The normality

assumption, however, is not essential in our model and can be relaxed to a gen-

eral distribution. In this case, dimension folding PCA is equivalent to tensor

PCA. The robustness of the dimension folding model regarding its normality

assumption will be further discussed in Section 4.2.

3. Dimension Folding PFC

Although dimension folding PCA can reduce the predictor’s row and col-

umn dimensions simultaneously, it performs dimension folding marginally and
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the relationship between the predictor and the response is omitted. Instead of

regressing X on a latent matrix ν, dimension folding PFC models the inverse

regression of X|Y and provides more informative estimation of the central di-

mension folding subspace SY |◦X◦.

3.1. Formulation of dimension folding PFC

The dimension folding PFC model can be formed in several ways depending

on the relations between the predictors and response. One way is to fit the inverse

regression by taking the true model to be

X = µ+ Γ2β2f(Y )βT
1 Γ

T
1 + ε (3.1)

or, equivalently,

vec(X) = vec(µ) + (Γ1 ⊗ Γ2)(β1 ⊗ β2)vec(f(Y )) + vec(ε), (3.2)

where f(Y ) ∈ RrL×rR contains elements formalized as functions of Y , β1 ∈
RdR×rR(dR ≤ rR) and β2 ∈ RdL×rL(dL ≤ rL) are the coefficient matrices of rank

dR and dL, and ε is the random error independent of Y . It can be isotropic fol-

lowing the matrix normal distribution σNpL×pR(0pL×pR , IpR , IpL) or more general

with NpL×pR(0pL×pR ,Ω,M) error. In Section 4.2, we show that the normality

assumption is not necessary in order to obtain consistent estimation. The other

terms in (3.1) are defined as in Section 2.1. Based on (3.1), each coordinate Xij

of X is a linear function of the elements in f(Y ) plus a random error. In addition,

(ΓT
2 XΓ1)ij = (ΓT

2 µΓ1)ij +

rL∑
k=1

rR∑
l=1

β
(2)
ik β

(1)
lj f(Y )kl + (ΓT

2 εΓ1)ij ,

where β
(2)
ik denotes the ikth element of β2, β

(1)
lj denotes the ljth element of βT

1 ,

and f(Y )kl is the klth element of f(Y ), i = 1, . . . , dL, j = 1, . . . , dR. This shows

a multiplicative coefficient structure.

The function f(Y ) is determinable in some cases, for instance when inverse

response plots (Cook (1998, Chap.10)) of Xij versus Y are informative about

f(Y ), or when the response Y is categorical. In other cases, one can approximate

f(Y ) by a series of basis functions or piecewise basis functions. Usually f(Y ) can

be chosen as a diagonal matrix with dimension rL = rR = r. We use this matrix

form in the rest of this paper. When using polynomial approximations, f(Y ) is

then a diagonal matrix with diagonal elements of Y, Y 2, . . . , Y r. Correspondingly,

the conditional expectation [ΓT
2 E(X|Y )Γ1]ij is (ΓT

2 µΓ1)ij +
∑r

k=1 β
(2)
ik β

(1)
kj Y

k,

which often captures the main regression shape of X on Y when r is relative

large. In fact, in Section 4.1 we show that in order to receive a consistent estima-

tor for the central dimension folding subspace, the selected fitting function does
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not need to be very close to the true function, it is only required to be correlated

to it. This indicates that an approximation with a finite dimension for f(Y ) is

generally adequate.

When the response Y is categorical, the fitting function f(Y ) can be natu-

rally determined. For instance, suppose that Y has h categories, then f(Y ) can

be simply chosen as a diagonal matrix of dimension r = h−1 and its kth diagonal

element can be specified as diag(f(Y ))k = I(Y ∈ Jk) − nk/n, k = 1, . . . , h − 1,

where Jk indicates the kth category, nk is the number of observation in Jk, and

I(·) is the indicator function. The sample solution of dimension folding PFC

with a categorical response is not equivalent to that obtained by dimension fold-

ing SIR (Li, Kim, and Altman (2010)). Dimension folding PFC is more efficient

in estimation, does not involve computations relative to vec(X).

Compared with slicing-based methods, dimension folding PFC provides the

flexibility to formulate the relationship between X and Y . It can more effec-

tively use the response information by choosing an appropriate fitting function

to perform dimension folding. Slicing function can be considered as one special

choice for fitting f(Y ) but it is generally less accurate when Y is continuous. A

proposition identifies the central dimension folding subspace for the dimension

folding model (3.1).

Proposition 3. Under (3.1), when the random error ε is isotropic the central

dimension folding subspace SY |◦X◦ = Span(Γ1)⊗ Span(Γ2); when ε has a general

matrix normal distribution NpL×pR(0pL×pR ,Ω,M), the central dimension folding

subspace SY |◦X◦ = Span(Ω−1Γ1)⊗ Span(M−1Γ2).

Other ways to formulate the dimension folding PFC model are discussed in

Section 8. We focus on estimating model (3.1) with both isotropic error and

general error in the next section. Without loss of generality, the predictor X and

the fitting function f(Y ) are assumed to be centered.

3.2. Estimation of dimension folding PFC

3.2.1. Isotropic error

When ε is isotropic with distribution σNpL×pR(0pL×pR , IpR , IpL), the central

dimension folding subspace SY |◦X◦ is equal to Span(Γ1)⊗Span(Γ2). For a random

sample of size n from (Y,X), the MLE of SY |◦X◦ is obtained based on the log

likelihood function of (3.1):

l(µ,SΓ1 ,SΓ2 , σ
2, β1, β2)

= −npLpR
2

log(2π)− npLpR
2

logσ2

− 1

2σ2

n∑
i=1

tr((Xi − µ− Γ2β2f(Yi)β
T
1 Γ

T
1 )

T (Xi − µ− Γ2β2f(Yi)β
T
1 Γ

T
1 ). (3.3)
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It is easy to see that the MLE µ̂ = X̄. Thus for any arbitrary σ2, maximizing

(3.3) is equivalent to minimizing the empirical expectation

En{tr[(X − Γ2β2f(Y )βT
1 Γ

T
1 )

T (X − Γ2β2f(Y )βT
1 Γ

T
1 )]} (3.4)

over X and Y .

Proposition 4. Suppose that X ∈ RpL×pR is a random matrix and Y ∈ R1 is a

random variable. Let (Γ̂1, Γ̂2, β̂1, β̂2) be minimizers of

En{tr[(X −G2b2f(Y )bT1 G
T
1 )

T (X −G2b2f(Y )bT1 G
T
1 )]}. (3.5)

over all G1 ∈ RpR×dR , G2 ∈ RpL×dL, b1 ∈ RdR×rR , and b2 ∈ RdL×rL. Then

(i) For fixed G1 and b1, the columns of the minimizer Γ̂2 over G2 are given by

the dL eigenvectors of the matrix

ΣfitL = En(XG1f
∗T )[En(f

∗f∗T )]−1En(f
∗GT

1 X
T )

corresponding to its dL largest nonzero eigenvalues, where f∗ = f(Y )bT1 . The

minimizer β̂2 = Γ̂T
2 En(XG1f

∗T )[En(f
∗f∗T )]−1.

(ii) For fixed G2 and b2, the columns of the minimizer Γ̂1 over G1 consist of the

dR eigenvectors of the matrix

ΣfitR = En(X
TG2f

∗)[En(f
∗T f∗)]−1En(f

∗TGT
2 X)

corresponding to its dR largest nonzero eigenvalues, where f∗ = b2f(Y ). The

minimizer β̂1 = Γ̂T
1 En(X

TG2f
∗)[En(f

∗T f∗)]−1.

Similar to Proposition 2, after replacing G2 and b2 with their optimum so-

lutions Γ̂2 and β̂2 obtained from Proposition 4(i), the problem becomes an opti-

mization over a Grassmann manifold, but it is complicated to solve. Instead, we

choose a simple iterative algorithm to estimate the likelihood function (3.3) as

follows.

1. Generate initial values of Γ10 and β10 and let Γ̂1 = Γ10 and β̂1 = β10.

2. For given Γ̂1 and β̂1, compute the matrix Σ̂fitL = XT
LPFL

XL/n, where XL =

(X1Γ̂1, . . . , XnΓ̂1)
T , FL = (f∗

1 , . . . , f
∗
n)

T with f∗
i = f(Yi)β̂

T
1 . Then the term

PFL
XL represents the fitted values from the multivariate regression of XΓ̂1

on f(Y )β̂T
1 . Therefore, Σ̂fitL is the sample column covariance matrix of the

fitted values of XΓ̂1. Then the columns of Γ̂2 are estimated by the first dL
eigenvectors of Σ̂fitL and β̂2 = Γ̂T

2 XT
LFL(FT

LFL)
−1.
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3. For given Γ̂2 and β̂2, compute the matrix Σ̂fitR = XT
RPFR

XR/n, where XR =

(XT
1 Γ̂2, . . . , X

T
n Γ̂2)

T , FR = (f∗T
1 , . . . , f∗T

n )T with f∗
i = β̂2f(Yi). The term

XT
RPFR

represents the fitted values from the multivariate regression of Γ̂T
2 X

on β̂2f(Y ). Then Σ̂fitR represents the sample row covariance matrix of the

fitted values of Γ̂T
2 X. The columns of Γ̂1 are given by the first dR eigenvectors

of Σ̂fitR and β̂1 = Γ̂T
1 XT

RFR(FT
RFR)

−1.

4. Repeat Steps 2−3 and iterate each time with the updated estimators until the

objective function (3.4) converges.

The MLE of the central dimension folding subspace is then given by Span(Γ̂1)⊗
Span(Γ̂2). Correspondingly, σ

2 is estimated by

1

npLpR

n∑
i=1

tr((Xi − Γ̂2β̂2f(Yi)β̂
T
1 Γ̂

T
1 )

T (Xi − Γ̂2β̂2f(Yi)β̂
T
1 Γ̂

T
1 )).

It can be seen that the estimators Γ̂1 and Γ̂2 obtained from dimension folding PFC

have similar expressions as those achieved by dimension folding PCA. The only

difference is that we perform eigen-decomposition for the sample row (column)

covariance matrix of the fitted values of the linear regressions Γ̂T
2 X (XΓ̂1) on

β̂2f(Y ) (f(Y )β̂T
1 ). In this way, the redundant information of X that is not

related to Y is eliminated. Thus, dimension folding PFC is more precise in

estimation and prediction. The estimators obtained from this algorithm can be

treated as a generalized version of the results attained in conventional PFC.

From a computational perspective, the proposed algorithm is more economi-

cal than conventional PFC and dimension folding SIR. Its major costs come from

the computation of Σ̂fitL and Σ̂fitR . For Σ̂fitL , computing XL and FL requires

npLpRdR and nrLrRdR operations, and computing XT
LFL and FT

LFL requires

ndRpLrL and ndRr
2
L operations. The inverse of FT

LFL costs O(r3L). Therefore, the

total cost of Σ̂fitL is at most O(max(ndR, rL)max(pL, pR, rL, rR)
2) . Similarly, the

cost of Σ̂fitR is of order O(max(ndL, rR)max(pL, pR, rL, rR)
2). Thus, dimension

folding PFC with an isotropic error requires at most O(max(ndL, ndR, rL, rR)max

(pL, pR, rL, rR)
2m) operations with m iterations. Analogously, it can be shown

that the computations of conventional PFC and dimension folding SIR targeting

on vec(X) take at least O(max(n, pLpR)max(pLpR, r)r) and O(p2Lp
2
Rmax(pLpR,

n)k) operations, which are in general more than dimension folding PFC when

pL and pR are relative large. Here r is the dimension of the fitting function in

conventional PFC and k is the iteration number in dimension folding SIR.

3.2.2. General error

In this section, we consider a general error structure for ε with the matrix

normal distribution NpL×pR(0pL×pR ,Ω,M). Based on this covariance structure,
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the dimension folding models reveal another homogeneous characteristic among

the predictor’s rows and columns. Let ei = (0, . . . , 0, 1, 0, . . . 0)T denote the pL-

dimensional vector with ith component equal to one, i = 1, . . . , pL. Then eTi X =

(vec(eTi X))T and var(eTi X|Y ) = var[(I ⊗ eTi )vec(X)|Y ] = (I ⊗ eTi )(Ω ⊗M)(I ⊗
ei) = miiΩ, where mii is the ith diagonal component of M . This implies that the

conditional covariance matrices of the predictor’s row vectors are all proportional

to Ω. Similarly, the predictor’s column conditional covariance matrices are all

proportional to M . Thus, the second-order moments also reflect the predictor’s

intrinsic row and column structure, which the conventional PC and PFC models

are not able to catch.

Another notable advantage is that the high-dimensional covariance matrix

Σ = var[vec(X)] ∈ RpLpR×pLpR can be decomposed into two smaller matrices

Ω ∈ RpR×pR and M ∈ RpL×pL . Therefore, one can circumvent inverting the

sample covariance matrix Σ̂ in estimation. This is beneficial when the sample

size is relative small.

For estimation, note that if Ω and M are known, the problem reduces

to the isotropic dimension folding PFC since one can standardize Xi to Zi =

M−1/2XiΩ
−1/2. When Ω and M are unknown, the log likelihood function be-

comes:

l(µ,SΓ1 ,SΓ2 , β1, β2,Ω,M)

= −npLpR
2

log(2π)− npL
2

log|Ω| − npR
2

log|M |

−1

2

n∑
i=1

tr{Ω−1(Xi−µ−Γ2β2f(Yi)β
T
1 Γ

T
1 )

TM−1(Xi−µ−Γ2β2f(Yi)β
T
1 Γ

T
1 )}.(3.6)

It is easy to see that the MLE of µ is X̄. The other parameters can be esti-

mated by alternating iterations with one group of parameters fixed. Let XL =

(X1Ω
−1/2, . . . , XnΩ

−1/2)T , FL = (f(Y1)β
T
1 Γ

T
1 Ω

−1/2, . . . , f(Yn)β
T
1 Γ

T
1 Ω

−1/2)T , and

XR = (XT
1 M

−1/2, . . . , XT
nM

−1/2)T , FR = (f(Y1)
TβT

2 Γ
T
2 M

−1/2, . . . , f(Yn)
TβT

2 Γ
T
2

M−1/2)T . Define Σ̂fitL = XT
LPFL

XL/npR, M̂res = M̃− Σ̂fitL = XT
LXL/npR− Σ̂fitL ,

and Σ̂fitR = XT
RPFR

XR/npL, Ω̂res = Ω̃− Σ̂fitR = XT
RXR/npL − Σ̂fitR , where Ω̃ and

M̃ are sample row and column covariance matrices. Then the MLEs can be

obtained based on the following.

Proposition 5. Suppose that Xi ∈ RpL×pR , i = 1, . . . , n are observed and cen-

tered matrices, and let (Γ̂1, Γ̂2, β̂1, β̂2, Ω̂, M̂) be the minimizers of (3.6).

(i) For fixed Ω, Γ1, and β1, if ÛLΛ̂LÛ
T
L be the eigen-decomposition of M̂

−1/2
res Σ̂fitL

M̂
−1/2
res and D̂L is the diagonal matrix with the first dL eigenvalues of Λ̂L

replaced by zeros, then M̂ = M̂res+M̂
1/2
res ÛLD̂LÛ

T
L M̂

1/2
res , Γ̂2 = M̂1/2 times the

first dL eigenvectors of M̂−1/2Σ̂fitLM̂
−1/2, and β̂2 = Γ̂T

2 M̂
−1XT

LFL(FT
LFL)

−1.
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Table 1. Comparison of computation complexity.

Method Computation complexity

PCA
DF-PCA O(max(pL, pR)

2max(dL, dR)nm)
PCA O(p2Lp

2
Rn)

isotropic PFC
DF-PFC O(max(ndL, ndR, rL, rR)max(pL, pR, rL, rR)

2m)
PFC O(max(n, pLpR)max(pLpR, r)r)

general PFC
DF-PFC O(max(npL, npR, rL, rR)max(pL, pR, rL, rR)

2m)
PFC O(max(n, pLpR)max(pLpR, r)

2)

SIR DF-SIR O(p2Lp
2
Rmax(pLpR, n)k)

(ii) For fixed M , Γ2, and β2, if ÛRΛ̂RÛ
T
R is the eigen-decomposition of Ω̂

−1/2
res Σ̂fitR

Ω̂
−1/2
res and D̂R is the diagonal matrix with the first dR eigenvalues of Λ̂R

replaced by zeros, then Ω̂ = Ω̂res + Ω̂
1/2
res ÛRD̂RÛ

T
R Ω̂

1/2
res , Γ̂1 = Ω̂1/2 times the

first dR eigenvectors of Ω̂−1/2Σ̂fitRΩ̂
−1/2, and β̂1 = Γ̂T

1 Ω̂
−1XT

RFR(FT
RFR)

−1.

To estimate the parameters in (3.6), one can begin with initial estimates of

Ω, Γ1, and β1, then iterate the two steps in Proposition 5 until the log likelihood

function (3.6) converges. The computational cost of dimension folding PFC under

a general error is in general less expensive than that of conventional PFC and

dimension folding SIR. We summarize the results for all models in Table 1.

Remark 1. According to Proposition 5, M̂ is invertible when M̂res is invertible.

The existence of M̂−1
res only requires that pL ≤ npR − 1 and Rank(I −PFL

) = pL.

The latter condition is generally satisfied since the nonzero eigenvalues of PFL

are unlikely to be exactly equal to one and they are unlikely to be all identical.

Hence it is usually guaranteed that M̂−1 and Ω̂−1 exist if pL ≤ npR − 1 and

pR ≤ npL − 1 or, equivalently, n > max(pL/pR, pR/pL)− 1.

Remark 2. The maximum matrix dimension required in Proposition 5 is npL×
npL or npR × npR, from PFL

or PFR
. This dimension could be very large

(> 30000 × 30000) in some cases (e.g. the EEG data) and exceed the storage

limit in R software. In this case, one can apply an equivalent iteration algorithm

that i) chooses moment estimators of Ω and M as initial values of Ω̂ and M̂ ;

ii) standardizes the predictors as Zi = M̂−1/2XiΩ̂
−1/2; iii) applies isotropic di-

mension folding PFC to the standardized data; iv) updates Ω̂ and M̂ according

to (S1.4) and (S1.5), the MLEs of matrix normal distribution (Dutilleul (1999))

described in the supplement file; v) repeats ii)-iv) using the updated parameter

values until the likelihood function converges.

Remark 3. Although the proposed algorithms are quite efficient for estimating

the central dimension folding subspace based on random initial values, using the
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conventional PFC model to obtain initial values can guarantee consistency of the

estimators when the fitted function f(Y ) is misspecified. This is discussed in

Section 4 and the supplement file.

Let Sd(A) denote the span of the d eigenvectors of A corresponding to its

d largest eigenvalues, and let Sd(A,B) = A−1/2Sd(A
−1/2BA−1/2). Corollary

1 provides five equivalent forms of the MLE of the central dimension folding

subspace. We applied the original form SdR(Ω̂, Σ̂fitR) ⊗ SdL(M̂, Σ̂fitL) in our

simulation and data analysis.

Corollary 1. The MLE of SY |◦X◦ under (3.1) with an general error is

SdR(Ω̂, Σ̂fitR)⊗SdL(M̂, Σ̂fitL). It is equivalent to SdR(Ω̂res, Σ̂fitR)⊗SdL(M̂res, Σ̂fitL)

= SdR(Ω̃, Σ̂fitR) ⊗ SdL(M̃, Σ̂fitL) = SdR(Ω̂, Ω̃) ⊗ SdL(M̂, M̃) = SdR(Ω̂res, Ω̃) ⊗
SdL(M̂res, M̃).

4. Robustness

In this section, we study the robustness of the estimator SdR(Ω̂, Σ̂fitR) ⊗
SdL(M̂, Σ̂fitL) when f(Y ) in model (3.1) is misspecified and the normality as-

sumption is violated.

4.1. Misspecification of f(Y )

Under (3.1), we now assume that the true fitting function f(Y ) is misspecified

by using the user-selected function h(Y ) in place of f(Y ). It can be shown

that the estimator of the central dimension folding subspace is still consistent

under certain conditions. To simplify the notation, let g = β2f(Y )βT
1 and l =

κ2h(Y )κT1 be the misspecified fitting components. Note that g and l are both

centered. We take ρL = var
−1/2
c (g)covc(g, l)var

−1/2
c (l) to be the dL × dL column

correlation matrix between the elements of g and l, where varc(g) = E(ggT )

is the column variance of g, varc(l) = E(llT ) is the column variance of l, and

covc(g, l) = E(glT ) is the column covariance matrix between g and l; let ρR =

var
−1/2
r (g)covr(g, l)var

−1/2
r (l) be the dR×dR row correlation matrix between the

elements of g and l, where varr(g) = E(gT g) and varr(l) = E(lT l) are row variance

matrices of g and l, and covr(g, l) = E(gT l) is the row covariance matrix between

g and l.

Proposition 6. SdR(Ω̂, Σ̂fitR) ⊗ SdL(M̂, Σ̂fitL) is a
√
n consistent estimator of

Span(Ω−1Γ1)⊗Span(M−1Γ2) if and only if ρL has rank dL and ρR has rank dR.

Thus SdR(Ω̂, Σ̂fitR)⊗ SdL(M̂, Σ̂fitL) can still be a reasonable estimator when

f(Y ) is misspecified and the normality assumption is violated, as long as the

row and columns correlations between the true fitting function and the selected
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fitting function have full ranks. This result is a generalization of Theorem 3.5 in

Cook and Forzani (2008), and it is a mild condition. Nevertheless, in applications

care should be taken when selecting f(Y ) in order to obtain better estimates.

Polynomial approximations can be simple and good choices.

4.2 Normality assumption

In applications, when the matrix-valued predictors do not satisfy the nor-

mality assumption, transformations such as log power are commonly used in

literature (Gasser, Bächer, and Möcks (1982)) to achieve relative normality.

In addition, we show that the normality assumption is not essential for our

model-based dimension folding methods. Suppose the random error ε in model

(2.2) follows a general distribution with mean zero and covariance matrices IPR

and IPL
. The unknown parameters in this model can be estimated by minimizing∑n

i=1 ||(Xi − µ − Γ2νiΓ
T
1 )||2F =

∑n
i=1 tr[(Xi − µ − Γ2νiΓ

T
1 )

T (Xi − µ − Γ2νiΓ
T
1 )].

Here the estimates Span(Γ̂1) and Span(Γ̂2) have the same expression as what

we obtained under normality. Moreover, this objective function is equivalent to

the loss function (2.6) of the two-mode tensor PCA. The asymptotic normality

and asymptotic efficiency of the projection matrix PΓ̂1⊗Γ̂2
onto the estimated

principal subspace Span(Γ̂1 ⊗ Γ̂2) were developed by Hung et al. (2012). Hence

without normality, one can still obtain
√
n consistent estimators for the principal

subspaces.

In terms of sufficient dimension reduction, the normality assumption can be

relaxed to the elliptically symmetric condition required by dimension folding SIR.

Suppose vec(ε) ∼ ECpLpR(0,Ω⊗M,Q), where ECpLpR(0,Ω⊗M,Q) is an elliptical

contoured distribution with mean zero, row and column covariance matrices Ω

and M , and a density generator Q(.). Let Ỹ = sI(Y ∈ Js), s = 1, . . . , h, be

the slice indicator function, where J1, . . . , Jh are h non-overlapping slices. Let

ζ̃ = (Ω ⊗ M)−1E[vec(X)|Ỹ ], and let E⊗(ζ̃) be the Kronecker envelope of ζ̃.

According Li, Kim, and Altman (2010), E⊗(ζ̃) is the dimension folding SIR

subspace. It is defined as S◦ζ̃ ⊗ Sζ̃◦, the Kronecker product of the two smallest

subspaces S◦ζ̃ and Sζ̃◦, such that Span(ζ̃) ⊆ S◦ζ̃⊗Sζ̃◦. The relationships between

the dimension folding SIR subspace (SfSIR), dimension folding PFC subspace

(SfPFC), and central dimension folding subspace (SY |◦X◦) are shown below.

Proposition 7. Under (3.1), when the random error is elliptically contoured

distributed as ECpLpR(0,Ω ⊗M,Q), SfSIR ⊆ SfPFC ⊆ SY |◦X◦, where SfPFC =

Span(Ω−1Γ1)⊗ Span(M−1Γ2).

Thus, under the elliptically symmetric condition, the subspace Span(Ω−1Γ1)⊗
Span(M−1Γ2) given by dimension folding PFC is not guaranteed to be the true
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central dimension folding subspace but a subspace of it. It contains the dimension

folding SIR subspace at the population level and its sample estimate can be more

accurate since the fitting function f(Y ) is generally more efficient than a slicing

function. Therefore, under this minimum condition, dimension folding PFC is

still useful. Both algorithms in Section 3.2 provide
√
n consistent estimators for

SfPFC without normality, because the algorithm in Section 3.2.1 is equivalent

to a least square estimation and the consistent estimation of the algorithm in

Section 3.2.2 is given by Proposition 6, which does not rely on normality.

Similarly, Proposition 7 holds for dimension folding PCA in terms of Sν|◦X◦
and ζ = E[vec(X)|ν]. Hence dimension folding PCA and PFC are beneficial

under the minimum elliptically symmetric condition.

5. Prediction

The ultimate purpose of dimension folding is to serve regression and classifi-

cation. Dimension folding SIR, SAVE, and DR proposed by Li, Kim, and Altman

(2010) provide good prediction results in the classification case. Dimension fold-

ing PFC can further improve prediction accuracy for classification problems. In

the regression case, where the response variable is continuous, the function of

moment-based dimension folding methods is limited. Slicing could miss useful

information on the response variable and the choice of slice number is a big is-

sue. Dimension folding PFC can overcome this shortcoming and provide better

prediction results.

We propose two prediction approaches. Based on our knowledge, there is

no well-established method for predicting a univariate responses from a matrix-

valued predictor directly. Thus, we consider the prediction of Y from vec(X)

instead. The first approach is to regress Y on vec(X) in two steps. By applying

dimension folding PCA or PFC, one can obtain the MLE of the central dimen-

sion folding subspace ŜY |◦X◦ = Span(Γ̂1) ⊗ Span(Γ̂2) under an isotropic error,

or ŜY |◦X◦ = Span(Ω̂−1Γ̂1) ⊗ Span(M̂−1Γ̂2) = SdR(Ω̂, Σ̂fitR) ⊗ SdL(M̂, Σ̂fitL) un-

der a general error. After dimension folding, one has a new predictor Γ̂T
2 XΓ̂1,

or Γ̂T
2 M̂

−1XΩ̂−1Γ̂1, with smaller row and column dimensions compared to the

original predictor X. The second step is to fit a model, such as a general

additive model (GAM), to estimate the mean function E[Y |vec(Γ̂T
2 XΓ̂1)] or

E[Y |vec(Γ̂T
2 M̂

−1XΩ̂−1Γ̂1)], and then perform prediction based on it.

The second method was motivated by a nonparametric prediction technique

of Adragni and Cook (2009). Let f(X) and f(X|Y ) be the density functions of X

and X|Y . Let R(X) denote a sufficient folding assumed to have a density. Then

E[Y |X = x] = E{Y f [R(x)|Y ]}/E{f [R(x)|Y ]}. This provides the key idea of this

nonparametric prediction approach because the estimated prediction function
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Ê[Y |X = x] can be written as Ê[Y |X = x] =
∑n

i=1 ωi(x)Yi, where ωi(x) =

f̂ [R̂(x)|Yi]/
∑n

i=1 f̂ [R̂(x)|Yi].
Once the density function f(X|Y ) is estimated, the predicted value Ŷ can be

easily obtained since it is the weighted average of the observed responses. This

method is applicable to our proposed dimension folding models since the condi-

tional distribution of X|Y is known through the model assumptions. According

to (S1.1) in the supplement file, when the random error ε is isotropic we have

f̂ [R̂(x)|Yi] = f̂ [R̂(vec(x))|Yi]
∝ exp{−(2σ̂2)−1||(Γ̂1 ⊗ Γ̂2)

T [vec(x)− vec(X̂i)]||2}
= exp{−(2σ̂2)−1||R̂(vec(x))− R̂(vec(X̂i))||2}, (5.1)

where vec(X̂i) = vec(X̄) + (Γ̂1 ⊗ Γ̂2)(β̂1 ⊗ β̂2)vec(f(Yi)) is the predicted value of

vec(x)|Yi and the reduction R̂(vec(x)) = (Γ̂1⊗ Γ̂2)
Tvec(x). When ε has a general

covariance structure, the estimated conditional density is

f̂ [R̂(x)|Yi] = f̂ [R̂(vec(x))|Yi] ∝ exp{−1

2
∥[(Γ̂1 ⊗ Γ̂2)

T (Ω̂⊗ M̂)−1(Γ̂1 ⊗ Γ̂2)]
−1/2

×[R̂(vec(x))− R̂(vec(X̂i))]∥2}, (5.2)

where R̂(vec(x)) = (Γ̂1 ⊗ Γ̂2)
T (Ω̂⊗ M̂)−1vec(x).

Each method outperforms the other under certain conditions. The inverse

regression prediction relies on the density function f [R(X)|Y ] but does not make

any parametric assumption on modeling Y |X, while forward regression predic-

tion usually assumes a parametric model on Y |X or it depends on the estimation

of Y |X. Thus, the inverse prediction method shows its advantages when the

distribution of the random error ε in model (3.1) is known or can be well esti-

mated. The forward prediction is beneficial when the assumption made on Y |X
is reasonable.

In addition, the choice of f(Y ) can affect the prediction accuracy. Con-

sider the mean squared error MSE = E[Y − Ŷ (X)]2 for which the minimum

prediction error is achieved when Ŷ (X) is the conditional mean E(Y |X). Ac-

cording to Proposition 6, when the row and column correlations of the selected

fitting function κ2h(Y )κ1 and the true function both have full ranks, which in-

dicates that the two are correlated, the estimator of the central dimension fold-

ing subspace is
√
n consistent. For the forward prediction method, we have

Ŷ (X) = Ê(Y |R̂(X)) = Ê(Y |Γ̂T
2 M̂

−1XΩ̂−1Γ̂1). If one chooses Ê(Y |R(X)) to be

a consistent estimator for E(Y |R(X)), such as the Nadaraya-Watson estimator,

then under mild regularity conditions, Ŷ (X) → E(Y |R(X)) = E(Y |X) when the

selected fitting function is correlated to the true function. Thus the prediction
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error can reach its minimum asymptotically if the condition in Proposition 6 is

satisfied. For the inverse prediction method, we have

Ê[Y |X = x] =
1

n

n∑
i=1

f̂ [R̂(x)|Yi]Yi

/
1

n

n∑
i=1

f̂ [R̂(x)|Yi].

Assuming that f(Y ) is known, then it can be shown that 1
n

∑n
i=1 f̂ [R̂(x)|Yi] →

E{f [R(X)|Y ]} and 1
n

∑n
i=1 f̂ [R̂(x)|Yi]Yi → E{Y f [R(X)|Y ]} at

√
n rate. Then

Ê[Y |X = x] converges to E[Y |X = x] and the prediction error is asymptotically

minimized. This result does not hold for misspecified f(Y ) because the density

function f [R(X)|Y ] is misspecified in this case. Yet we can expect that the

closer the approximation of the fitting function, the more likely we obtain good

prediction.

6. Simulation Studies

6.1. Evaluation of estimation accuracy

We assess the accuracy of our proposed dimension folding methods and com-

pare it to that of conventional methods. We measure the difference between the

estimated projection matrices and true projection matrices for the central dimen-

sion folding subspace and denote it as “PCDF Error”; for conventional PCA and

PFC, we evaluate the estimation error of the projection matrices of the central

subspace and denote it as “PCS Error”. Specifically,

PCDF Error = ∥PŜY |◦X◦
− PSY |◦X◦∥

2
F , (6.1)

PCS Error = ∥PŜY |vec(X)
− PSY |◦X◦∥

2
F , (6.2)

where || · ||F is the Frobenius norm.

To evaluate the performance of the dimension folding PCA model (2.2), the

data were generated as follows: Let dL = dR = 2 and pL = pR = p, with sample

size n = 100. The components of Γ1 and Γ2 were generated from N(0, 1) and

the components νi before centering were generated from N(1, 2), i = 1, . . . , n.

The vectorized isotropic error ε was obtained from the multivariate normal with

mean zero and covariance matrix 0.8IpLpR . We chose p = 5, 10, 15, 20 and 30,

and ran each simulation 1,000 times. The results are summarized in Figure

1. We used “DF-PCA”, “DF-PFC” and “DF-SIR” to denote dimension folding

PCA, dimension folding PFC, and dimension folding SIR in figures and tables.

It can be seen that for all selected dimensions of p, dimension folding PCA was

noticeably more accurate than PCA. As the predictor’s dimension increases both

methods showed ascending estimation distance from the true projection space,
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Figure 1. The comparison results of DF-PCA and PCA.

but dimension folding PCA had the slower error increase in both the mean and

standard deviation.

For dimension folding PFC, we did simulations for both isotropic and general

error cases. When the general error structure was considered, we chose pL = pR =

3, dL = dR = 2 and rL = rR = 4 . Conventional PFC and dimension folding SIR

both required n > pL × pR with a general error and we used small matrices pL ×
pR = 9 in this case. The sample size was selected as n = 30, 50, 80, 100 and 150.

The components of Γ1 and Γ2 were generated from N(0, 1). The elements of β1
and β2 were generated from N(1, 2) and absolute normal |N(2, 2)|. The responses
Yi, i = 1, . . . , n were obtained from N(0, 1), and f(Yi) = diag(Yi, Y

2
i , Y

3
i , Y

4
i ).
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Figure 2. The comparison results of DF-PFC and PFC under general error.

The covariance matrices were

Ω =

 0.50 − 0.25 0.00

−0.25 0.50 − 0.25

0.00 −0.25 0.50

 M =

 0.886 0.266 0.062

0.266 0.248 0.048

0.062 0.048 0.015.

 .

For the isotropic error case, we chose pL = pR = 10 and σ = 0.8, with sample size

n = 120, 150, 200, 300, 500. The other parameters were kept the same as those

in the general error case. We ran the simulation 1,000 times for each sample

size. Figure 2 summarizes the results under the general error setting. It can be

seen that the central dimension folding subspaces were estimated precisely based
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(a) isotropic error (b) general error

Figure 3. The comparison results of DF-PFC, DF-SIR and PFC.

on the estimation procedures proposed in Section 3.2 except for some extreme

outliers. Although the plots appear with dense outliers, the actual percentages

of these outliers were less than 5% under 1,000 repetitions. Some outliers like

the one with estimation error close to 3 at n = 150 could be due to the algo-

rithm getting caught in a local minimum. Conventional PFC had much higher

estimation errors for all sample sizes.

We further compared the model-based methods to dimension folding SIR.

For the latter, 8 slices were selected for the response variable. Based on our

simulation results, it was the best choice among 6, 8, 10 and 15 slices. The mean

estimation errors are shown in Figure 3, based on 1,000 repetitions. It can be

seen that dimension folding PFC provided the most accurate estimations for the

central dimension folding subspace over all sample sizes. Although conventional

PFC was less accurate than dimension folding PFC, it still beat dimension folding

SIR to a large extent. Dimension folding SIR failed to obtain precise estimation

because the conditional mean E(X|Y ) was not adequately estimated by slicing

the responses. The PFC methods benefitted from careful fitting of the inverse

regression of X on Y .

6.2. Choice of dL and dR

In the previous sections, the reduced row and column dimensions dL and dR
were assumed known. In applications, one can apply an information criterion, say

AIC or BIC, to select optimal dimensions by minimizing the objective function

−2L(dL, dR) + h(n)g(dL, dR). Here L(dL, dR) is the log likelihood function of

the estimated model, h(n) is log(n) for BIC and 2 for AIC, and g(dL, dR) is the
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Table 2. Percentages of correct identifications.

DF-PCA DF-PFC
AIC BIC LRT(p-val.) AIC BIC LRT(p-val.)

dL = dR = 1 100 100 100 94.8 100 90.6
dL = 1, dR = 2 100 100 100 98.5 99.6 92.0
dL = 2, dR = 1 100 100 100 98.1 99.6 93.2
dL = dR = 2 100 100 100 99.9 99.8 95.8

number of parameters to be estimated. One can also use the likelihood ratio test

statistic Λ(dL0 , dR0) = 2(L(min(rL, pL),min(rR, pR)) − L(dL0 , dR0)) to perform

sequential tests for increasing values of dL and dR.

We illustrate these procedures using the simulated samples obtained from

the isotropic error setting. Here dL = dR = 2, pL = pR = 10, and n = 200

were chosen for both dimension folding PCA and dimension folding PFC. The

simulations were repeated 1,000 times. All three methods were able to correctly

identify the true dimensions over 95% of the time. When we took the true

dimensions to be (dL, dR) = (1, 1), (1, 2) and (2, 1), the percentages of the precise

identifications were over 90% for all methods.

6.3. Prediction

We evaluated the prediction performance of dimension folding PFC, con-

ventional PFC, and dimension folding SIR using the simulated data under the

isotropic error from Section 6.1. The two prediction methods in Section 5 were

applied. For the first method, we fitted a generalized additive model of Y on

the reduced predictor (Γ̂1 ⊗ Γ̂2)
Tvec(X) to the original data and then generated

new data for prediction. The new data are denoted by (X∗
i , Y

∗
i ), i = 1, . . . , nnew,

where nnew = n/4. The average prediction error was calculated as:

PE =

nnew∑
i=1

(Y ∗
i − Ê(Y |X = X∗

i ))
2

nnew
. (6.3)

This procedure was repeated for 1,000 data sets and the averaged prediction

error
∑1,000

i=1 PEi/1, 000 was used to assess the prediction accuracy of the three

methods.

For the nonparametric prediction approach, we used the same data and eval-

uation scenario except for using different prediction functions for Ê(Y |X = X∗
i ).

For dimension folding PFC and conventional PFC, the density function f(X|Y )

was obtained based on their model assumptions. For dimension folding SIR,

f(X|Y ) was estimated based on the matrix normal distribution.

Figure 4(a) shows the prediction results with generalized additive model

fitting. It illustrates the potential advantages of using an inverse regression model
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(a) prediction with model fitting (b) nonparametric prediction

Figure 4. Prediction results under isotropic error.

to estimate the conditional expectation E(X|Y ), or E[vec(X)|Y ], instead of using

a slicing method. Dimension folding PFC predicted best over all sample sizes.

Though conventional PFC omits the predictor’s matrix structure, it still gave

more accurate results than did dimension folding SIR. Figure 4(b) shows the

prediction performance according to the second prediction approach. It provided

smaller prediction errors for dimension folding PFC and relatively large errors

for conventional PFC and dimension folding SIR.

7. Data Analysis

We applied dimension folding PFC to two data sets, one with a discrete

response, the other with a continuous response. For the discrete response case,

the EEG data used in Li, Kim, and Altman (2010) was studied, while Dow Jones

industrial stock data was used for the second case.

7.1. EEG data

The primary goal of this study was to explore the relationship between

alcoholism and the pattern of voltage values over times and channels. Let

(X1, Y1), . . . , (X122, Y122) denote the observed data, where Xi is a 256×64 matrix

and Yi is a binary univariate variable, i = 1, . . . , 122. It is easy to see that error

structure is not isotropic. In this case, conventional PFC is not applicable since

n ≪ pL × pR. We applied dimension folding PFC with a general error to these

data. Since our proposed estimation procedures circumvent vectorization of the

predictors, we were able to handle the original EEG data without pre-screening
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(a) DF-PFC without screen (b) DF-PFC with screen

Figure 5. Density plot with new reduced predictor X11.

work, as in Li, Kim, and Altman (2010). In our case, the maximum dimension
of a matrix inversion is 256 by 256 (M̂−1), instead of the 256×64 by 256×64
(Σ̂−1) required for the moment-based dimension folding methods. According to
Remark 1 in Section 3.2.2, both inverse matrices M̂−1 and Ω̂−1 exist for the
original EEG data, because n > max(pL/pR, pR/pL)− 1.

For a categorial response Y of h categories, f(Y ) can be naturally chosen as a
diagonal matrix with its kth diagonal element diag(f(Y ))k = I(Y ∈ Hk)−nk/n,
k = 1, . . . , h− 1. Thus, for the EEG data, we have dL = dR = rL = rR = r = 1.
Then the sufficient reduction Γ̂T

2 M̂
−1XΩ̂−1Γ̂1 obtained by the dimension folding

PFC model is a univariate variable, labeled as X11. Figure 5(a) shows good
separation of the two groups byX11 without pre-screening the original predictors.
Figure 5(b) shows the corresponding result after pre-screening the predictors to
smaller dimensions (p∗L, p

∗
R) = (15, 15) with the screening method in Li, Kim, and

Altman (2010). Pre-screening the predictors loses information about the original
data as the two groups cannot be separated quite as well as in (a). To obtain
classification results, we applied quadratic discriminant analysis and leave-one-
out cross validation. Without pre-screening the original predictors, dimension
folding PFC with a general error correctly classified 107 subjects out of the total
122 subjects based on X11; after pre-screening the predictors, it classified 102 out
of the 122 subjects. In comparison, dimension folding DR and dimension folding
SIR provided 97 and 94 out of 122 correct decisions, using (p∗L, p

∗
R) = (15, 15)

and (dL, dR) = (1, 2).

7.2. Dow Jones stock data

We used Dow Jones industrial stock data from January 2001 to December
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Table 3. Prediction results (×1, 000) with 10 folded cross validations.

DF-PFC DF-SIR Lasso
(isotropic) (general) (6 slices) (8 slices)

dL = dR = 1 9.1 12.3 15.6 13.6 15.4
dL = 1, dR = 2 8.7 12.4 10.7 9.8 15.4
dL = 2, dR = 1 9.6 11.0 12.3 11.0 15.4
dL = dR = 2 10.0 10.1 12.8 11.0 15.4

2010. The response is the monthly Dow Jones industrial average index change
rate. If mi denotes the Dow Jones industrial average monthly index for the ith

month, the responses Yi = (mi −mi−1)/mi−1, i = 1, . . . , n, are the index change

rates, assumed to be independent. For each response (month), the predictor was

formed by 19 daily stock price change rates over the 30 Dow Jones companies.

We chose 19 daily stock price change rates because there are usually 19-23 trading
days each month. Hence the predictor for each observation is a 19×30 matrix

and the response is a univariate continuous variable. We deleted the observations

in September 2001 and September 2008 due to the incidents of terrorism and the

financial crisis, leaving n = 118 observation months. The final data set consisted

of (X1, Y1), . . . , (X118, Y118) observations. Primary interest was in association
between monthly stock index change rates and the daily stock price change rates

from the individual companies.

Dimension folding PFC with both isotropic and general errors, dimension

folding SIR, and the Lasso were applied to our study. We evaluated the predic-

tion performance for the first three methods using the prediction approach with
OLS fitting of Y on the reduced predictor vec(Γ̂T

2 XΓ̂1), as proposed in Section

5. Four sets of dimensions, (dL, dR) = (1, 1), (dL, dR) = (1, 2), (dL, dR) = (2, 1),

and (dL, dR) = (2, 2), were selected. The function f(Y ) was chosen as a diagonal

matrix with its diagonal elements formed by (Y, Y 2, Y 3, Y 4) for dimension fold-

ing PFC. Dimension folding SIR was studied with slicing numbers 6 and 8. We
also applied the Lasso to select important signals in vec(X) and performed pre-

diction. The 10-fold cross validation method was used to evaluate the prediction

performance using (6.3) for all methods. The results are summarized in Table 3.

It can be seen that isotropic dimension folding PFC provided smaller pre-
diction errors than all other methods. Since the dependence of the stock price

change rates is not strong from day to day and from company to company, di-

mension folding PFC under a general error structure could be overparametrized

and thus the prediction errors were likely to be increased. Dimension folding SIR

presented less accurate results than the isotropic dimension folding PFC model
over all selected dimensions and slicing numbers. Lasso showed relatively large

prediction errors.
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8 Discussion

Our dimension folding PCA and PFC methods provide likelihood-based di-

mension folding solutions for matrix-valued predictors that can be applied to a

broad range of applications with categorical or continuous responses. The fit-

ting components f(Y ) in the dimension folding models possess the flexibility to

capture the useful information on response and provide more accurate estima-

tion for the conditional mean E(X|Y ) than the moment-based dimension folding

approaches. The assumption on the covariance structure of the random error

provides another benefit for the model-based methods since one can circumvent

inverting the high dimensional covariance matrix of vec(X). In addition, the

MLEs obtained from our algorithms have good interpretations and connections

to the conventional PCA and PFC methods, and are robust to model assump-

tions.

There are different formulations for the dimension folding PFC model. Model

(3.1) provides a multiplicative coefficient structure β2f(Y )βT
1 for the fitted func-

tion. Instead, one can model dimension folding PFC with an additive coefficient

structure, an interactive coefficient structure, or a general coefficient structure,

respectively, as

X = µ+ Γ2[β2f(Y )erR,dR + edL,rLf(Y )βT
1 ]Γ

T
1 + ε, (8.1)

X = µ+ Γ2[β2f(Y )erR,dR + edL,rLf(Y )βT
1 + β2f(Y )βT

1 ]Γ
T
1 + ε, (8.2)

X = µ+ Γ2vec
−1{βg(Y )}ΓT

1 + ε, (8.3)

where erR,dR is a rR × dR matrix with all elements equal to one, and edL,rL
is similarly defined. If f(Y ) is diagonal and its diagonal elements are formed

by polynomial basis functions, then under (8.1) the folded conditional mean

[ΓT
2 E(X|Y )Γ1]ij =

∑r
k=1(β

(2)
ik + β

(1)
kj )Y

k, where the coefficients are additive.

When the multiplicative or additive coefficient model itself is not sufficient to

formulate the relationship between X and Y , (8.2) might be needed. In this

case, [ΓT
2 E(X|Y )Γ1]ij =

∑r
k=1(β

(2)
ik + β

(1)
kj + β

(2)
ik β

(1)
kj )Y

k. This is called the

dimension folding PFC model with the interactive coefficient structure. More

generally, one might not impose any constraints on the coefficients and adopt

(8.3), where “vec−1” stands for the matrixing operation. Then with polyno-

mial basis functions as the components of g(Y ), the folded conditional mean

[ΓT
2 E(X|Y )Γ1]ij =

∑rLrR
k=1 β(j−1)dL+i,kY

k, where β(j−1)dL+i,k is the element in

[(j − 1)dL + i]th row and kth column of β. The choice of a particular dimension

folding PFC model depends on the intrinsic row and column structure of X|Y .

To estimate model (8.3), one can apply the estimation procedure in Section 3.2,

though the algorithm cannot be directly used for the dimension folding PFC

model with the additive or the interactive coefficient structure. Instead, one can

use numerical algorithms with least square iterations.
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The proposed dimension folding models can also be generalized to array-

valued predictors. If X = {Xi1···im : i1 = 1, . . . , p1, . . . , im = 1, . . . , pm} is a

m-way random array of dimension p1 × · · · × pm and Y is a univariate random

response, dimension folding PCA and PFC are formulated as

vec (X) = vec(µ) + (Γ1 ⊗ Γ2 ⊗ · · · ⊗ Γm)vec (νi) + vec (ε), (8.4)

vec(X) = vec(µ) + (Γ1 ⊗ Γ2 ⊗ · · · ⊗ Γm) · (β1 ⊗ β2 ⊗ · · · ⊗ βm) · vec(f(y))
+vec(ε), (8.5)

respectively. Here Γi ∈ Rpm−i×dm−i , i = 1, . . . ,m, νi is a m-way array of di-

mension d1 × · · · × dm, βi ∈ Rdm−i×rm−i , i = 1, . . . ,m, f(y) is a m-way array

of dimension r1 × · · · × rm, and vec (ε) has a multivariate normal distribution

with mean 0p1···pm×p1···pm and covariance matrices Ω1 ⊗Ω1 ⊗ · · · ⊗Ωm. It can be

shown that the dimension folding subspace with m-way array-valued predictors

is Span{(Ω1 ⊗ Ω1 ⊗ · · · ⊗ Ωm)−1(Γ1 ⊗ Γ2 ⊗ · · · ⊗ Γm)}, which can be estimated

by adapting the numerical algorithms in Section 2.2 and Section 3.2.

Background and proofs of all propositions and corollaries are provided in a

supplement file. The R codes and the EEG data are also provided in supplement

files. These files are available in the web-appendix of the online journal.
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