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1. Introduction and Notation

The concept of a Markov basis comes from hypothesis tests for contingency tables

in statistics (Diaconis and Sturmfels (1998)). A Markov basis can be applied to

Fisher’s exact test for some contingency tables in which the Chi-square test is

deficient, such as contingency tables containing cells with frequencies less than 5

(Haberman (1988)), or, the one in Wermuth and Cox (1998). The fundamental

theorem of Markov bases (Diaconis and Sturmfels (1998)) states that compu-

tation of a Markov basis for a log-linear model is equivalent to computing a

Groebner basis (Cox, Little, and O’Shea (2007)) for a toric ideal describing the

log-linear model. The techniques used to compute Markov bases involve com-

putational algebraic geometry tools. Drton and Sullivant (2007) formulated the

relations between affine varieties and exponential family, and gave some examples

to illustrate applications to some problems in statistical inference for algebraic

models. Fienberg (2007) summarized the development of algebraic statistics.

Drton, Sturmfels, and Sullivant (2009) formulated some basic ideas in algebraic

statistics and gave directions for future research. Riccomagno (2009) presented

a brief history of algebraic statistics.

De Loera and Onn (2006) showed that computation of a Markov basis

for a log-linear model is an NP-hard problem. However, Markov bases for some

special models can be computed, especially for some undirected graphical models

(Lauritzen (1996)). In this paper, we consider undirected graphs.

First we review some concepts for graphs. The vertex set of a graph G

is denoted by V(G). If V1, V2 ∈ V(G) and are connected in G, we denote the

http://dx.doi.org/10.5705/ss.2011.129
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edge that connects them by the unordered pair (V1, V2) and the edge set of G

by E(G). Given V ∈ V(G), we define ne(V ) = {W ∈ V(G) | (V,W ) ∈ E(G)}
(Lauritzen (1996)). A vertex V ∈ V(G) is called a universal vertex of G if

V(G) = {V } ∪ ne(V ).

If a graph H can be decomposed as H1 and H2 (Tarjan (1985); Leimer

(1993); Lauritzen (2002)), we write H = H1 ⊕H2 and call H reducible. If the

graph is not reducible, we call it a prime graph. Given two graphs G,H, if

V(H) ⊆ V(G), E(H) ⊆ E(G), we call H a subgraph of G.

Next, we define the operation on two graphs denoted by ⊗.

Definition 1. If graphs H1,H2 have V(H1) ∩ V(H2) = ∅, the graph H = H1 ⊗
H2 satisfies V(H) = V(H1) ∪ V(H2), E(H) = E(H1) ∪ E(H2) ∪ {(V1, V2) |V1 ∈
V(H1), V2 ∈ V(H2)}. If V(H1) = {V },H1⊗H2 is called a suspension of H2 over

V (Sturmfels and Sullivant (2008)) and V is a universal vertex of H1 ⊗H2.

Graphs that contain a universal vertex have many applications, such as la-

tent class models (Fienberg et al. (2010)) and toric geometry of cuts and splits

(Sturmfels and Sullivant (2008)).

Example 1. We can see that E is a universal vertex of G1 (Figure 1), A is a

universal vertex of G2 (Figure 2), and the vertex E is universal for the graph G3

(Figure 1.3).

Dobra (2003) constructed a Markov basis for a graphical model correspond-

ing to a graph G that is decomposable (Lauritzen (1996)). For reducible G,

Dobra and Sullivant (2004) proved that a Markov basis for the model can be

constructed from Markov bases for smaller models whose underlying graphs are

prime subgraphs G1, . . . ,Gn of graph G. Hence, we need only compute Markov

bases for graphical models whose underlying graphs are prime. Develin and

Sullivant (2003) described a Markov basis for a binary graphical model whose

underlying graph is an N -cycle or a complete bipartite graph. Král’, Norine, and

Pangrác (2010) studied the width of the Markov basis for some graphical mod-

els. The website http://markov-bases.de/ has a database of Markov bases for

some log-linear models.

In this paper, we present a method for simplifying the computation of Markov

bases for a class of graphical models. If G is a prime graph that contains a

universal vertex V and G = H⊗{V }, we can reduce the problem of computing a

Markov basis for the graphical model of G to computation of a Markov basis for

the graphical model of H. Since the number of vertices is smaller for H than for

G, the computational complexity is reduced. Based on this method, we obtain an

extension of the framework of Dobra and Sullivant (2004) for computing Markov

http://markov-bases.de/
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Figure 1. Graph G1, ne(E)={A,B,C,D}. Figure 2. Graph G2, ne(A)={B,C,D,E}.

Figure 3. Graph G3, ne(E) = {A,B,C,D}. Figure 4. Graph G4, ne(E) = {A,C,D}.

Table 1. Contingency table.

A.B.
C.D.E

111 112 121 122 211 212 221 222
11 928 699 1132 422 53 26 85 26
12 232 130 295 77 8 3 7 0
21 180 388 592 432 12 12 38 16
22 26 60 81 74 0 1 4 0

bases for some models; this extension widens the application areas for Markov

bases.

We embed our method in the method of Krampe and Kuhnt (2010) to anal-

yse a contingency table. We select a graphical model with the best fit to the

contingency data among graphical models for graphs G1,G2,G3 and G4 (Fig-

ures 1, 2, 3 and 4). We use our method to compute a Markov basis for the

graphical model for G1. The 4 × 5 × 5 × 2 × 2 contingency table provided by

Wermuth and Cox (1998) is converted to a 2 × 2 × 2 × 2 × 2 contingency table

(Table 1) by level aggregation, using the method of Dellaportas and Tarantola

(2005). We discuss this problem in Example 5.
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The remainder of the paper is organized as follows. In the next section, we

provide a method to simplify the computation of a Markov basis for a graphical

model whose underlying graph contains a universal vertex. In Section 3, the

relationship between reducibility and a universal vertex for a graph is analysed

and three examples are presented. Section 4 concludes. The appendix lists

computational algebraic geometry tools that are used to prove our main result.

Let N be the set of positive integers, Z+ = N ∪ {0}. If m,n ∈ N, then let

[n] = {1, . . . , n} and let Km denote the complete graph with m vertices. Given

an index set U , we take XU = (xα)α∈U , in this paper, the index set is the cells

of a contingency table (Geiger, Meek, and Sturmfels (2006)).

2. Markov Basis for Graphical Models Corresponding to G⊗Km

This section describes the simplification method used to reduce the computa-

tional basis for a toric ideal corresponding to a graphical model whose underling

graph contains a universal vertex. The properties of a graphical model whose

underlying graph G has a universal vertex help in constructing a basis for the

toric ideal IG according to the graphical model. According to the fundamen-

tal theorem for Markov bases (Diaconis and Sturmfels (1998)), we need only

compute the basis for the corresponding toric basis. Since the saturation of a

homogeneous binomial ideal is still a homogeneous binomial ideal (Eisenbud and

Sturmfels (1996), every toric ideal IG has a basis that consists of homogeneous

binomials.

Given a contingency table, Hoşten and Sullivant (2002) introduced the tableau

notion for monomials to formulate the relations between the cells of the con-

tingency table more clearly. They associate each monomial xα1 · · ·xαt , where

αj = (aj1, . . . , ajn) is the index of a cell in the contingency table for j = 1, . . . , t,

t is the total degree of the monomial, n is the number of random variables, with

a t× n tableau a11 . . . a1n
...

. . .
...

at1 . . . atn

 .

If a variable occurs to its m−th power in a monomial, its corresponding index

set occurs m times in the tableau.

Example 2. For a binary graphical model whose underlying graph is a four-cycle

graph G, where V(G) = {A,B,C,D}, the relations of conditional independence

among A,B,C,D can be formulated by binomials, and one of the binomials

x1212x1111 − x1112x1211



A SIMPLIFICATION OF COMPUTING MARKOV BASES 451

can be rewritten in tableau notion as(
1 2 1 2

1 1 1 1

)
−

(
1 1 1 2

1 2 1 1

)
.

Theorem 1. For a graphical model whose underlying graph Ĝ has vertex set

{V1, V2, . . . , Vn+1}, let di ∈ [γi] be the level value of the random variable Vi, where

γi ∈ N, i ∈ [n + 1]. Suppose Vn+1 is a universal vertex in Ĝ, Ĝ = G ⊗ {Vn+1}
and {f1, f2, . . . , fl} ⊆ R[X] is a basis for the toric ideal IG, where

fi =

ai,1,1 . . . ai,1,n
...

. . .
...

ai,k,1 . . . ai,k,n

−

 bi,1,1 . . . bi,1,n
...

. . .
...

bi,k,1 . . . bi,k,n

 ,

i ∈ [l], X = (xα), α ∈ S = [γ1]× · · · × [γn].

Then
∪γn+1

e=1 {f (e)
1 , f

(e)
2 , . . . , f

(e)
l } ⊆ R[X̃] is a basis for the toric ideal IĜ,

where

f
(e)
i =

ai,1,1 . . . ai,1,n e
...

. . .
...

...

ai,k,1 . . . ai,k,n e

−

 bi,1,1 . . . bi,1,n e
...

. . .
...

...

bi,k,1 . . . bi,k,n e

 ,

i ∈ [l], e ∈ [γn+1], X̃ = (x̃β), β ∈ T = [γ1]× · · · × [γn+1].

The proof is in the Appendix.

From Theorem 1, computation of a Markov basis for a graphical model with

underlying graph Ĝ = G ⊗ {V } can be reduced to a simpler model whose un-

derlying graph is G. If the number of universal vertices of Ĝ is greater than 1,

then we can generalize Theorem 1.

Lemma 1. Let G be a graph with V(Km+1) ∩ V(G) = ∅, V ∈ V(Km+1). If

Km+1 = Km ⊗ {V }, then G⊗Km+1 = (G⊗Km)⊗ {V }.

Proof. The result is obvious from the definition of ⊗.

Based on Theorem 1 and Lemma 1, we have the following.

Corollary 1. Suppose we have a graphical model whose underlying graph Ĝ has

vertex set {V1, V2, . . . , Vn+m}. Let Km be the complete subgraph that satisfies

Ĝ = G⊗Km,V(Km) = {Vn+1, . . . , Vn+m}, where di ∈ [γi] are the level values of

Vi, i ∈ [n+m]. Suppose {f1, f2, . . . , fl} ⊆ R[X] is a basis for the toric ideal IG,

where

fi =

ai,1,1 . . . ai,1,n
...

. . .
...

ai,k,1 . . . ai,k,n

−

 bi,1,1 . . . bi,1,n
...

. . .
...

bi,k,1 . . . bi,k,n

 ,
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i ∈ [l], , X = (xα), α ∈ S = [γ1]× · · · × [γn].

Then ∪
ϵ∈[γn+1]×···×[γn+m]

{f (ϵ)
1 , f

(ϵ)
2 , . . . , f

(ϵ)
l } ⊆ R[X̃]

is a basis for the toric ideal IĜ, where

f
(ϵ)
i =

ai,1,1 . . . ai,1,n ϵ
...

. . .
...

...

ai,k,1 . . . ai,k,n ϵ

−

 bi,1,1 . . . bi,1,n ϵ
...

. . .
...

...

bi,k,1 . . . bi,k,n ϵ

 ,

i ∈ [l], ϵ ∈ [γn+1]× · · · × [γn+m], X̃ = (x̃β), β ∈ T = [γ1]× · · · × [γn+m].

3. Simplification of a Graphical Model Class

We present some graph theory results, use the results of Dobra and Sullivant

(2004) to discuss the problem of computing Markov bases for some special graph-

ical models. Three examples are given.

Proposition 1. Let H be a graph. If V is a universal vertex of H and H =

H1 ⊕H2, then V is a universal vertex of both H1 and H2.

Proof. Since V is a universal vertex of H, then V is connected to all other

vertices of H and thus V ∈ V(H1)∩V(H2). Then V is a universal vertex of both

H1 and H2.

Proposition 2. Let H be a graph. If Ĥ = H⊗ {V }, then Ĥ is reducible if and

only if H is reducible.

Proof. We can verify the equivalence between H = H1⊕H2 and Ĥ = Ĥ1⊕ Ĥ2

by reducibility.

In fact, Propositions 1 and 2 are valid for finite universal vertices.

Now, combining the results of Dobra and Sullivant (2004), we extend the

framework to reduce the complexity of computing a basis for the toric ideal IG.

If a graph G is reducible, it is first decomposed into its prime subgraphs. If any

of the prime subgraphs has a universal vertex, we simplify this subgraph and

the process continues until a prime graph without a universal vertex is obtained.

Then the problem of computing a basis for the toric ideal IG is converted to

small toric ideals corresponding to prime subgraphs of G.

Example 3. Consider a graphical model with binary-valued nodes for graph G5

(Figure 5). By the discussion, graphG5 can be decomposed to graphsG1 (Figure

1) and G6 (Figure 6); since G1 has a universal vertex E, G1 can be simplified
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Figure 5. Graph G5, ne(E)={A,B,C,D, F}. Figure6. Graph G6, ne(E)={C,D,F}.

to a four-cycle prime graph G, where V(G) = {A,B,C,D}. By Theorem 1 the

problem of computing a Markov basis for graphical model according to G1 can

be simplified to G. Then a Markov basis for the graphical model of G5 can be

constructed using the method of Dobra and Sullivant (2004), in addition to that

G6 is a complete graph.

Example 4. Let G be a four-cycle graph, V(G) = {A,B,C,D},G1 = G⊗{E}
(Figure 1). By considering binary graphical models (Geiger, Meek, and Sturmfels

(2006)), a basis can be obtained for the toric ideal IG:

x2122x2221 − x2121x2222, x1222x2212 − x1212x2222, x2112x2211 − x2111x2212,

x1221x2211 − x1211x2221, x1122x2112 − x1112x2122, x1122x1221 − x1121x1222,

x1112x1211 − x1111x1212, x1121x2111 − x1111x2121,

x1211x1222x2112x2121 − x1212x1221x2111x2122,

x1121x1212x2122x2211 − x1122x1211x2121x2212,

x1112x1221x2121x2212 − x1121x1212x2112x2221,

x1112x1222x2121x2211 − x1122x1212x2111x2221,

x1111x1122x2212x2221 − x1112x1121x2211x2222,

x1111x1222x2112x2221 − x1112x1221x2111x2222,

x1111x1222x2122x2211 − x1122x1211x2111x2222,

x1111x1221x2122x2212 − x1121x1211x2112x2222.

Using Theorem 1, we can obtain a basis for the toric ideal IG1 that consists

of 16 quadratic binomials and 16 quartic binomials, provided in http://markov-

bases.de/ (SPg bin). The basis is

x21221x22211 − x21211x22221, x12221x22121 − x12121x22221,

x21121x22111 − x21111x22121, x12211x22111 − x12111x22211,

x11221x21121 − x11121x21221, x11221x12211 − x11211x12221,
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Table 2. Levels for the variables A–E.

A B C D E
i=1, very poorly j=1, basic incomplete k=1, 19− 29 l=1, 1991 r=1, West
i=2, poorly j=2, basic k=2, 30− 44 l=2, 1992 r=2, East
i=3, well j=3, medium k=3, 45− 59 Germany
i=4, very well j=4, upper medium k=4, 60− 74

j=5, intensive k=5, ≥ 75

x11121x12111 − x11111x12121, x11211x21111 − x11111x21211,

x21222x22212 − x21212x22222, x12222x22122 − x12122x22222,

x21122x22112 − x21112x22122, x12212x22112 − x12112x22212,

x11222x21122 − x11122x21222, x11222x12212 − x11212x12222,

x11122x12112 − x11112x12122, x11212x21112 − x11112x21212,

x12111x12221x21121x21211 − x12121x12211x21111x21221,

x11211x12121x21221x22111 − x11221x12111x21211x22121,

x11121x12211x21211x22121 − x11211x12121x21121x22211,

x11121x12221x21211x22111 − x11221x12121x21111x22211,

x11111x11221x22121x22211 − x11121x11211x22111x22221,

x11111x12221x21121x22211 − x11121x12211x21111x22221,

x11111x12221x21221x22111 − x11221x12111x21111x22221,

x11111x12211x21221x22121 − x11211x12111x21121x22221,

x12112x12222x21122x21212 − x12122x12212x21112x21222,

x11212x12122x21222x22112 − x11222x12112x21212x22122,

x11122x12212x21212x22122 − x11212x12122x21122x22212,

x11122x12222x21212x22112 − x11222x12122x21112x22212,

x11112x11222x22122x22212 − x11122x11212x22112x22222,

x11112x12222x21122x22212 − x11122x12212x21112x22222,

x11112x12222x21222x22112 − x11222x12112x21112x22222,

x11112x12212x21222x22122 − x11212x12112x21122x22222.

Using the result in Example 4, we analyse the contingency Table 1.

Example 5. The 4× 5× 5× 2× 2 table is from Wermuth and Cox (1998), who

investigated the factors that influence political attitudes. Response variable A

is political attitude, B is the type of formal schooling, C is the age group, D is

time, and E is region. The levels of the five variable are given in Table 2. We

obtain the contingency table (Table 1) by level aggregation using the method of
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Table 3. MLE for the graphical model of G1.

A.B.
C.D.E

111 112 121 122 211 212 221 222
11 923.76 701.58 1138.60 425.67 55.13 25.86 80.47 19.90
12 235.74 129.21 290.58 78.39 6.37 1.36 9.30 1.04
21 181.16 383.37 588.44 430.39 10.81 14.13 41.59 20.12
22 25.35 62.85 82.33 70.55 0.69 0.66 2.64 0.94

Table 4. MLE for the graphical model of G2.

A.B.
C.D.E

111 112 121 122 211 212 221 222
11 936.68 669.41 1165.29 409.61 62.28 31.17 77.48 19.07
12 216.14 154.46 268.89 94.51 5.90 2.95 7.34 1.81
21 178.38 388.58 585.05 439.99 11.86 12.78 38.89 14.47
22 27.00 58.82 88.57 66.61 0.76 0.82 2.49 0.93

Table 5. MLE for the graphical model of G3.

A.B.
C.D.E

111 112 121 122 211 212 221 222
11 918.50 698.91 1142.67 427.66 60.97 28.81 75.86 17.63
12 234.50 128.78 291.73 78.79 7.03 1.51 8.74 0.92
21 180.11 381.95 590.72 432.49 11.96 15.74 39.21 17.83
22 25.18 62.58 82.59 70.86 0.75 0.73 2.48 0.83

Dellaportas and Tarantola (2005, Sec. 5.4). The principle is to determine which

graph (G1, Figure 1; G2, Figure 2; G3, Figure 3; G4, Figure 4) provides the best

fit to the data.

We use the model selection approach of Krampe and Kuhnt (2010). Given

a model for selection, a p-value is computed using the Metropolis–Hastings al-

gorithm. For graphical models of G1,G2,G3 and G4, we first compute the

maximum likelihood estimate using the IPS algorithm (Tables 3−6).

A Markov basis for the graphical model of graph G1 is shown in Example 4.

Since graphs G2 and G3 are decomposable and G4 is reducible, Markov bases for

graphical models of G2, G3 and G4 are easy to compute. Then we obtain p-values

using the Metropolis–Hastings algorithm (Table 7).

Remark 1. We compare our result in Example 5 to the conclusion drawn by

(Dellaportas and Tarantola, 2005, Sec. 5.4).

We compute the p-values for the four models as

0.050(G2) < 0.071(G4) < 0.616(G3) < 0.696(G1).

Graph G2 strictly contains G4 and the p-value for G2 is strictly less than that

for G4. This confirms that the model selection approach of Krampe and Kuhnt
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Table 6. MLE for the graphical model of G4.

A.B.
C.D.E

111 112 121 122 211 212 221 222
11 936.91 672.93 1165.58 411.76 62.24 27.39 77.43 16.76
12 215.87 155.04 268.55 94.87 5.98 2.63 7.44 1.61
21 178.34 385.76 584.92 436.80 11.85 15.70 38.85 17.78
22 27.07 58.54 88.77 66.29 0.75 0.99 2.46 1.13

Table 7. p-values for graphical models of G1,G2,G3 and G4.

Model G1 G2 G3 G4

p-value 0.696 0.050 0.616 0.071

(2010) is valid. The p-values for graphical models of G1 and G3 are almost the

same, but G3 has fewer edges than G1 has. The graphical model for G3 is then

selected. By utilizing the Akaike information criterion and the reversible jump

algorithm on the aggregated table, G3 (Figure 3) is selected (Dellaportas and

Tarantola (2005)), it is the same graph as our example.

In Example 5, we show that our method can be applied to model selection

by using the method of Krampe and Kuhnt (2010). We use the aggregated

binary data set from Wermuth and Cox (1998) that is used in Dellaportas and

Tarantola (2005) for two reasons: our method is valid by using the data set;

the computational complexity is low and the conclusion is easy to show. Of

course, the method of Krampe and Kuhnt (2010) can be applied to the non-

binary original data set in Wermuth and Cox (1998), but the result is too long

to fit here, so we use the aggregated table instead.

4. Conclusion

It is hard to compute a Markov basis for a general undirected graphical model.

This paper presents a simplification method for computing a Markov basis for

a class of graphical models whose underlying graphs contain universal vertices.

If the underlying graph can be reduced to a series of prime graphs (Dobra and

Sullivant (2004)) and certain prime graphs contain universal vertices, then our

method can be applied to reduce the graphical models of the prime graphs to

simpler models.
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Appendix: Proof of Theorem 1

To prove Theorem 1, we first describe a condition for computing a reduced

Gröbner basis for an ideal sum. Second, we prove that the computing order

for two operations for an ideal sum and an ideal saturation (Cox, Little, and

O’Shea (2007, p.197)) can be changed under given conditions. Finally, we prove

Theorem 1.

Given a positive integer n and polynomial ring R[X], X = (xi), i ∈ [n], we

take S, T ⊆ [n], S ̸= ∅, T ̸= ∅, S ∩ T = ∅.
Geiger, Meek, and Sturmfels (2006) presented a method for computing a

basis for the toric ideal IG from Ipairwise(G) by ideal saturation given a graph G,

that is IG = Ipairwise(G) : X∞. If we know the reduced Gröbner bases of two

ideals I, J ⊂ R[X] under a given condition, we can directly construct the reduced

Gröbner basis for the ideal sum from the reduced Gröbner bases for I, J.

Proposition A.1. Let I and J be ideals in R[X]. Given a monomial order ≺,

if I has the reduced Gröbner basis F = {fi ∈ R[XS ] | i = 1, 2, . . . , l1}, J has

the reduced Gröbner basis G = {gj ∈ R[XT ] | j = 1, 2, . . . , l2}, then the reduced

Gröbner basis for I + J is Ĝ = F ∪ G.

Proof. Since F and G are reduced Gröbner bases, according to the definition of

a reduced Gröbner basis we need only prove that Ĝ is a Gröbner basis for I + J .

We test this according to Buchberger’s criterion. If f is a polynomial, we denote

the leading term of f by LT(f).

(i) If fi, fj ∈ F , because F is the reduced Gröbner basis for I and S ∩ T = ∅,

by the division algorithm for polynomials, we have S(fi, fj)
Ĝ
= 0.

(ii) The case gi, gj ∈ G is the same as (i).

(iii) If fi ∈ F , gj ∈ G, we compute S(fi, gj)
Ĝ
according to the division algorithm

in Cox, Little, and O’Shea (2007, Chap. 2). Without loss of generality, take

i = j = 1. Let Xγ be the least common multiple of LT(f1) and LT(g1),

S(f1, g1) =
Xγ

LT(f1)
· f1 −

Xγ

LT(g1)
· g1.

Since F is a reduced basis, there are no LT(fi), i = 2, 3, . . . , l1, that divide

any term in S(f1, g1). The same is true for LT(gi), i = 2, 3, . . . , l2. Then

S(f1, g1)
Ĝ
= 0 and thus the proposition is proved.
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Corollary A.1. If I is a homogeneous ideal in R[X], then I : x1 is homogeneous
too.

Proof. Fix the grevlex monomial order induced by xn > · · · > x1. According to
Cox, Little, and O’Shea (2007, p.380, Thm. 2), I has a reduced Gröbner basis
consisting of homogeneous polynomials; according to Sturmfels (1996, Lemma
12.1), I : x1 is a homogeneous ideal.

We discuss the problem of how to change the computing order for an ideal
sum and an ideal saturation in detail.

Proposition A.2. Let I and J be homogeneous ideals in R[X]. Suppose that
I has a basis F = {fi ∈ R[XS ] | i = 1, 2, . . . , l1} and J has a basis G = {gj ∈
R[XT ] | j = 1, 2, . . . , l2}. If 1 ∈ S, then (I + J) : x∞1 = (I : x∞1 + J).

Proof. Fix the grevlex monomial order induced by xn > · · · > x1. By Corollary
A.1, I : x1 is a homogeneous ideal. From the algorithm for computing a reduced
Gröbner basis, I has a reduced Gröbner basis F̂ = {f̂i ∈ R[XS ] | i = 1, 2, . . . ,m1}
and J has a reduced Gröbner basis Ĝ = {ĝj ∈ R[XT ] | j = 1, 2, . . . ,m2}. By
Proposition A.1 the reduced Gröbner basis for I+J is F̂ ∪ Ĝ. Using Lemma 12.1
of Sturmfels (1996), the Gröbner basis for (I + J) : x∞1 is obtained by dividing
each element f ∈ F̂ ∪ Ĝ by the highest power of x1 that divides f . Since 1 /∈ T ,
no leading term of g ∈ Ĝ can be divided by x1. Then (I+J) : x∞1 = (I : x∞1 +J).

Proposition A.2 can be generalized from x1 to x1 · · ·xn.
Proposition A.3. Let I, J ⊆ R[X] be two ideals. Suppose I has a basis F =
{fi ∈ R[XS ] | i = 1, 2, . . . , l1} and J has a basis G = {gj ∈ R[XT ] | j = 1, 2, . . . , l2}.
Then (I + J) : (x1 · · ·xn)∞ = I : (

∏
s∈S xs)

∞ + J : (
∏

t∈T xt)
∞.

Proof. Based on the discussion following Lemma 12.1 of Sturmfels (1996),

(I + J) : (x1x2 . . . xn)
∞ = ((· · · (((I + J) : x∞1 ) : x∞2 ) · · · ) : x∞n ).

We compute (I + J) : x∞1 .

(i) If 1 ∈ S, then 1 /∈ T and (I + J) : x∞1 = (I : x∞1 ) + J .

(ii) If 1 ∈ T , similar to the case above, (I + J) : x∞1 = I + (J : x∞1 ).

(iii) If 1 /∈ S ∪ T , then (I + J) : x∞1 = I + J holds according to Sturmfels (1996,
Lemma 12.1).

If we consider x2, . . . , xn one by one as above, the conclusion is confirmed.

Corollary A.2. Let Ii =< f
(i)
t ∈ R[XSi ] | t ∈ [li] >⊂ R[X], i ∈ [k] be ideals,

where Si ⊂ [n], Si ̸= ∅, Si1 ∩ Si2 = ∅, i1 ̸= i2. Then

(
k∑

i=1

Ii) : (x1 · · ·xn)∞ =
k∑

i=1

(Ii : (
∏
s∈Si

xs)
∞).
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Lemma A.1 presents an algorithm for computing a basis for an ideal that
satisfies special conditions. Before computation of an ideal saturation, we define
a monomial order.

Definition A.1. Let R[x1, . . . , xn] be a polynomial ring and let R[x1, . . . , xm](m
< n) be a subring of R[x1, . . . , xn]. Fix a monomial order ≺n for R[x1, . . . , xn].
A monomial order ≺m for R[x1, . . . , xm] is Xα ≺m Xβ if Xα ≺n Xβ. We call
≺m a monomial order derived from ≺n .

Lemma A.1. Consider a polynomial ring R[x1, . . . , xn] and its subring
R[x1, . . . , xm](m < n). If I =< f1, . . . , fs > is an homogeneous ideal in R[x1, . . .,
xm], I ′ =< f1, . . . , fs > is an homogeneous ideal in R[x1, . . . , xn]. Given a
monomial order ≺n for R[x1, . . . , xn], ≺m is a monomial order derived from ≺n

for R[x1, . . . , xm].

(i) If {g1, . . . , gt} is a (reduced Gröbner) basis for I (w.r.t. ≺m), then {g1, . . . , gt}
is a (reduced Gröbner) basis for I ′ (w.r.t. ≺n).

(ii) Let f =
∏

k∈[m] xk ∈ R[x1, . . . , xm]. If I : f∞ ⊆ R[x1, . . . , xm] has a basis
{h1, . . . , hl}, then I ′ : f∞ =< h1, . . . , hl >⊆ R[x1, . . . , xn].

Proof. (i) Since {g1, . . . , gt} is a basis for I, then fi =
∑t

j=1 h
(i)
j gj , hj ∈

R[x1, . . . , xm],
i = 1, . . . , s. We note that I ′ =< f1, . . . , fs > and then I ′ =< g1, . . . , gt >.
Furthermore, if {g1, . . . , gt} is a reduced Gröbner basis for I, from Buchberger’s
algorithm and the definition of a reduced Gröbner basis, we have that {g1, . . . , gt}
is a reduced Gröbner basis for I ′.

(ii) Fix the grevlex monomial order ≺n induced by xn > · · · > x1. ≺m is a
monomial order derived from ≺n . Since I and I ′ have the same reduced Gröbner
basis, by Sturmfels (1996, Lemma 12.1). I : x∞1 and I ′ : x∞1 have the same
reduced Gröbner basis. If we change the monomial order to a grevlex monomial
order induced by xn > · · · > x3 > x1 > x2, (I : x∞1 ) : x∞2 and (I ′ : x∞1 ) : x∞2
have the same reduced Gröbner basis as well. Considering x1, x2, . . . , xm one by
one, I : f∞ has the same basis as I ′ : f∞, and the conclusion follows.

Now we give the proof of Theorem 1.

Proof. Let g1, . . . , gt be polynomials arising from the pairwise Markov properties
of G. According to Geiger, Meek, and Sturmfels (2006),

< f1, f2, . . . , fl >=< g1, . . . , gt >: (
∏
α∈S

xα)
∞.

Let e ∈ [γn+1]. Let Ue = {(d1, . . . , dn, e) | di ∈ [γi], i ∈ [n]} and g
(e)
1 , . . . , g

(e)
t ∈

R[X̃Ue ] be polynomials arising from the pairwise Markov properties of Ĝ. Sup-
pose

Ie =< g
(e)
1 , . . . , g

(e)
t >⊆ R[X̃Ue ], Ĩe =< g

(e)
1 , . . . , g

(e)
t >⊆ R[X̃].
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It is easy to verify that

Ψe : R[X]→ R[X̃Ue ],∑
α

aαX
α 7→

∑
α

aαX̃
α
Ue
, α ∈ Zγ1×···×γn

+ .

is an isomorphism.

By Sturmfels (1996, Lemma 12.1) and Corollary A.2,

IĜ = (

γn+1∑
e=1

Ĩe) : (
∏

β inT
x̃β)

∞ =

γn+1∑
e=1

(Ĩe : (
∏
β∈Ue

x̃β)
∞).

Since g
(e)
i ∈ R[X̃Ue ], i ∈ [t], by Lemma A.1, a basis for IUe = Ie : (

∏
β∈Ue

x̃β)
∞ ⊆

R[X̃Ue ] is a basis for Ĩe : (
∏

β∈Ue
x̃β)

∞ ⊆ R[X̃]. Then the basis for
∑γn+1

e=1 IUe is

a basis for
∑γn+1

e=1 (Ĩe : (
∏

β∈Ue
x̃β)

∞).

Now we compute a basis for IUe . Since Ψe is an isomorphism,

IUe = Ie : (
∏
β∈Ue

x̃β)
∞ = Ψe(I : X∞) =< f

(e)
1 , f

(e)
2 , . . . , f

(e)
l > .

Then
∪γn+1

e=1 < f
(e)
1 , f

(e)
2 , . . . , f

(e)
l > is the generator set desired.
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