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Abstract: In this paper, we consider the problem of constructing confidence inter-

vals (CIs) for G independent normal population means subject to linear ordering

constraints. For this problem, CIs based on asymptotic distributions, likelihood

ratio tests, and bootstraps do not have good properties, particularly when some of

the population means are close to each other. We propose a new method based on

defining intermediate random variables that are related to the original observations

and using the CIs of the means of these intermediate random variables to restrict

the original CIs from the separate groups. The coverage rates of the intervals are

shown to exceed, but be close to, the nominal level for two groups, when the ratio

of the variances is assumed known. Simulation studies show that the proposed CIs

have coverage rates close to nominal levels with reduced average widths. Data on

half-lives of an antibiotic are analyzed to illustrate the method.

Key words and phrases: Convex combination, elliptical unimodal distribution, lin-

ear ordering, normal distribution, restricted confidence interval.

1. Introduction

Consider a G-sample problem where the observations Xgi, g = 1, . . . , G, i =

1, . . . , ng are independent random variables with distribution function Fg(x;µg).

When estimating µ = (µ1, . . . , µG), there often exists information about inequal-

ity orderings of these parameters. For example, if µg is the average height of

children of age g or µg is the toxicity rate of a drug for dose level g in a clinical

trial, the parameters should satisfy the restriction:

µ1 ≤ µ2 ≤ · · · ≤ µG. (1.1)

This is called simple ordering or linear ordering. The natural estimator for order

restricted parameters is the restricted maximum likelihood estimator (MLE). For

the case where Fg(x;µg), g = 1, . . . , G, is normal with mean µg and variance σ2,

the MLE of µg under restriction (1.1) is the isotonic regression estimator (Barlow

et al. (1972); Robertson, Wright, and Dykstra (1988)). The restricted MLE µ̂g

has been shown to dominate the unrestricted MLE X̄g in the sense that

P (|µ̂g − µg| ≤ c) ≥ P (|X̄g − µg| ≤ c), g = 1, . . . , G, (1.2)
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for all c > 0 (Kelly (1989); Lee (1981)). In this paper, we focus on construct-

ing confidence intervals (CIs) for the parameters µg under the linear ordering

constraints.

Estimation problems in a restricted parameter space have been studied since

the 1950s. Marchand and Strawderman (2004) and van Eeden (2006) reviewed

estimation methods that have been developed in the past and discussed such

“good” properties of restricted estimators as dominance, minimaxity and admis-

sibility. Cohen and Sackrowitz (2004) discussed some inference issues and pointed

out that traditional inference methods, such as the likelihood based method,

can lead to some undesirable properties in restricted parameter problems. An-

drews (2000), Hwang (1995), and Peddada (1997) pointed out that the bootstrap

method, which has been very useful for constructing CIs of complicated param-

eters, fails when a parameter is on the boundary or close to the boundary of

the parameter space. Thus, it is of interest to develop an inference procedure

without depending on traditional inference methods.

Specialized methods for constructing CIs under order restrictions have been

suggested. Schoenfeld (1986) proposed a method for one-sided intervals based

on inverting the likelihood ratio test for the ordered means from a normal dis-

tribution. Hwang and Peddada (1994) proposed a constant length CI, in which

the CI, derived without the order restriction assumption, is shifted and centered

at an improved estimator, e.g. centered at the restricted MLE in the linear

ordering case. According to dominance as at (1.2), coverage rates of these re-

stricted methods exceed the nominal levels obtained from unrestricted intervals.

Bayesian, bootstrap, and other resampling methods are also discussed by Dunson

and Neelon (2003), Peddada (1997) and Li, Taylor, and Nan (2010).

We propose a novel method to construct CIs under a linear ordering con-

straint. In Section 2, we consider a two-sample case of ordered normal means

with known variances and obtain some theoretical results about the coverage rate

and width of the CI. In Section 3, we show how to adapt the methods to the

case when the population variances are unknown. We extend the methods to the

case with three or more samples in Section 4. In Section 5, we describe some

other CIs that have been proposed in the literature. In Section 6, we illustrate

the method using data on half-lives of an antibiotic in an animal study, and in

Section 7, we conduct simulation studies to compare those CIs with ours.

2. Confidence Intervals for µ1 and µ2 with Known Variances

2.1. Family of confidence intervals

Let Xg ∼ N(µg, σ
2
g), g = 1, 2, where σ2

g is known. Our goal is to construct

1− α CIs for µ1 and µ2 when it is known that µ1 ≤ µ2. Let X(γ) = γX1 + (1−
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γ)X2, where γ ∈ [0, 1]. The mean and variance of X(γ) are µ(γ) = EX(γ) =
γµ1 + (1− γ)µ2 and σ2(γ) = var{X(γ)} = γ2σ2

1 + (1− γ)2σ2
2. Let z1−α/2 be the

upper α/2 percentile of a standard normal distribution and let t1−α/2,ν be the
upper α/2 percentile of a standard t distribution with degree of freedom ν, which
we denote for convenience by z and tν . The unrestricted CIs for µ1, µ2, and µ(γ)
are µg ∈ [Xg − zσg, Xg + zσg], g = 1, 2, and µ(γ) ∈ [X(γ)− zσ(γ), X(γ)+ zσ(γ)].
Since µ1 ≤ µ(γ) ≤ µ2, it is sensible to consider modifying the limits of the CIs
for µ1 and µ2, based on the limits of the CI for µ(γ). We propose a family of CI
[L1(γ), U1(γ)] for µ1 and [L2(γ), U2(γ)] for µ2 as

L1(γ) = min{X1 − zσ1, X(γ)− zσ(γ)},
U1(γ) = min{X1 + zσ1, X(γ) + zσ(γ)},
L2(γ) = max{X2 − zσ2, X(γ)− zσ(γ)},
U2(γ) = max{X2 + zσ2, X(γ) + zσ(γ)}.

(2.1)

In Sections 2 and 3, we consider upper and lower limits for µ1; those for µ2

are of the same form except for changing min to max and changing the subscript
from 1 to 2. In this section, we develop the method and theory for the case of
one observation per group; the results apply to multiple observations per group
by replacing Xg by the group mean and replacing σ2

g by σ2
g/ng.

Definition 1. X = (X1, . . . , Xk) has an elliptical unimodal distribution with
location µ and positive-definite matrix Σ if its probability density function is

f(x) = C h{(x− µ)TΣ−1(x− µ)},

where h(t) is a nonincreasing function in t.

Theorem 1. Suppose Y = (Y1, Y2)
T has a bivariate elliptical unimodal distribu-

tion with location µ = (0,∆) and Σ =

(
1 ρ

ρ 1

)
, where ∆ ≥ 0. If cα satisfies

P (|Y1| ≤ cα) = 1− α, then

Q = P{min(Y1 − cα, Y2 − cα) ≤ 0 ≤ min(Y1 + cα, Y2 + cα)} ≥ 1− α. (2.2)

Proof. The joint probability density function of Y is

f(y1, y2) = C h
{
y21 + (y2 −∆)2 − 2ρy1(y2 −∆)

}
.

From (2.2),

Q = P (Y1 ≥ −cα, Y2 ≥ −cα)− P (Y1 ≥ cα, Y2 ≥ cα)

=

∫
D ∪E ∪H

f(y1, y2)dy1dy2

=

∫
D ∪E ∪F

f(y1, y2)dy1dy2 +

∫
H
f(y1, y2)dy1dy2 −

∫
F
f(y1, y2)dy1dy2, (2.3)
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Figure 1. Sample space of (y1, y2).

where D ,E ,F and H are defined in Figure 1. It is clear that∫
D ∪E ∪F

f(y1, y2)dy1dy2 = P{|Y1| ≤ cα} = 1− α. (2.4)

If yH = (y1, y2) is a point in H with yF = (−y2,−y1) a corresponding point

in F , it can be seen that

(yH − µ)TΣ−1(yH − µ)− (yF − µ)TΣ−1(yF − µ) = −2∆(1− ρ)(y1 + y2) ≤ 0

for all ∆ ≥ 0 and (y1, y2) ∈ H. Since h(t) is nonincreasing, we have f(y1, y2) ≥
f(−y2,−y1) if ∆ ≥ 0 and (y1, y2) ∈ H. Thus the density at each point in H
is greater than or equal to the density at the corresponding point in F. Since

(−y2,−y1) varies over all of F as (y1, y2) varies over H,∫
H
f(y1, y2)dy1dy2 −

∫
F
f(y1, y2)dy1dy2 ≥ 0. (2.5)

Thus (2.2) follows from (2.3), (2.4), and (2.5).

Corollary 1. If X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are independent with

µ1 ≤ µ2, then P{L1(γ) ≤ µ1 ≤ U1(γ)} ≥ 1− α for all γ ∈ [0, 1].

Proof. This follows by setting Y1 = (X1 − µ1)/σ1, Y2 = {X(γ)− µ1}/σ(γ) and
h(t) = exp(−t/2) in Theorem 1. The corresponding ∆ = {µ(γ) − µ1}/σ(γ) =
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(1−γ)(µ2−µ1)/σ(γ) ≥ 0, ρ = {1+(1−γ)2σ2
2/(γ

2σ2
1)}−1/2, and C = (2π)−1(1−

ρ2)−1/2.

This corollary shows that the coverage rate of the interval [L1(γ), U1(γ)]

always exceeds the nominal level when the variances of X1 and X2 are known.

2.2. Proposed confidence intervals and their properties

We seek a value of γ to make the width of the CIs for µ1 at (2.1) as small as

possible. One choice of γ is the value that minimizes W1(γ) = E{U1(γ)−L1(γ)},
but W1(γ) depends on the unknown mean difference µ2−µ1. There is a γ ∈ (0, 1)

for which σ2(γ) < σ2
1, and it can be seen that when σ2(γ) < σ2

1, U1(γ)−L1(γ) ≤
2zσ1 for any observations X1 and X2. Thus the width of the interval can be

reduced by suitable choice of γ. Another intuitive choice of γ is the value that

minimizes σ2(γ). It is easy to see that σ2(γ) is minimized at γ0 = σ2
2/(σ

2
1 + σ2

2).

Theorem 2. W1(γ) is minimized at γ = γ0 if µ1 = µ2.

Proof. Consider the case γ ≥ 1− 2σ2
1/(σ

2
1 + σ2

2), for which σ2(γ) ≤ σ2
1.

Let c(γ) = z{σ1 − σ(γ)}/(1− γ). Then we have

U1(γ)− L1(γ) =


2zσ1 if X2 −X1 > c(γ),

(1−γ)(X2−X1)+zσ1+zσ(γ) if − c(γ) < X2−X1 ≤ c(γ),

2zσ(γ) if X2 −X1 ≤ −c(γ).

So,

W1(γ) =

∫ ∞

c(γ)
2zσ1fX2−X1(x)dx+

∫ c(γ)

−c(γ)
{(1− γ)x+ zσ1 + zσ(γ)}fX2−X1(x)dx

+

∫ −c(γ)

−∞
2zσ(γ)fX2−X1(x)dx = z{σ1 + σ(γ)},

because X2−X1 ∼ N(0, σ2
1+σ2

2),
∫ c(γ)
−c(γ) xfX2−X1(x)dx = 0 and

∫∞
c fX2−X1(x)dx

=
∫ −c
−∞ fX2−X1(x)dx.

Similarly we can show that if γ < 1− 2σ2
1/(σ

2
1 + σ2

2), W1(γ) = z{σ1 + σ(γ)}.
Thus minimizing W1(γ) is the same as minimizing σ(γ), which happens at

γ0.

Using this γ0, the proposed CI for µ1 is

L̂1 = min(X1 − zσ1, X̂ − zσ0), Û1 = min(X1 + zσ1, X̂ + zσ0), (2.6)

where X̂ = (X1σ
2
2 +X2σ

2
1)/(σ

2
1 + σ2

2) and σ2
0 = σ2

1σ
2
2/(σ

2
1 + σ2

2).

Let ρ = σ2/
√

σ2
1 + σ2

2 and let ∆ = (µ2 − µ1)(1 − ρ2)/(ρσ1). Let Y1 =

(X1 − µ1)/σ1 and let Y2 = (X̂ − µ1)/σ0. Then the joint distribution of Y1 and

Y2 is
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Table 1. Theoretical maximum coverage rate of CI for µ1 in the situations
with different ratio of variances.

1− α
σ2
2/σ

2
1

10−9 10−3 0.01 0.1 0.2 0.5 1 2 10
0.95 0.969 0.969 0.968 0.965 0.962 0.959 0.956 0.953 0.950
0.90 0.933 0.932 0.930 0.924 0.920 0.913 0.909 0.905 0.901
0.80 0.852 0.850 0.846 0.835 0.829 0.819 0.812 0.806 0.801
0.70 0.761 0.759 0.753 0.740 0.732 0.721 0.713 0.707 0.701

f(y1, y2) =
1

2π
√

1− ρ2
exp

{
−y21 + (y2 −∆)2 − 2ρy1(y2 −∆)

2(1− ρ2)

}
.

The coverage probability is

P = 1− α+

∫ ∞

z

∫ z

−∞
f(y1, y2)dy2dy1 −

∫ ∞

−z

∫ −z

−∞
f(y1, y2)dy2dy1.

Setting dP/d∆ = 0, we find that maximum coverage probability of the proposed

CI for fixed ρ occurs at ∆̂ that solves the equation

Φ
{zρ− z −∆ρ√

1− ρ2

}
− Φ

{z − zρ−∆ρ√
1− ρ2

}
exp (−2z∆) = 0, (2.7)

where Φ is the cumulative distribution function of a standard normal. It can be

shown that (2.7) has one and only one positive solution for ∆, for any 0 < ρ < 1.

As can be seen in Table 1 and Figure 3a, the theoretical maximum coverage

rate increases as σ2
2/σ

2
1 (or equivalently ρ) decreases, and approaches 0.969 for

nominal level of 95% when σ2
2/σ

2
1 goes to 0.

As to how much wider this CI is compared to the narrowest possible CI when

µ1 ̸= µ2, we compute minγ W1(γ) through numerical minimization over γ for a

given µ2 − µ1, and compare it with W1(γ0). The results are shown in Figure 2.

The largest possible average width for the CI using γ0, compared to the optimal,

occurs when σ2
2/σ

2
1 = 0.063 for nominal level of 95% and when σ2

2/σ
2
1 = 0.081

for the nominal level of 99%. Compared to the minimum possible W1(γ), W1(γ0)

is only at most 0.4% wider at the nominal level of 95% and at most 0.8% wider

at the nominal level of 99%. This indicates that the CI using γ0 is almost as

efficient as the most efficient CI in this family.

The reduction of average width compared to the unrestricted CI depends on

σ2
2/σ

2
1 and µ2 − µ1, as can be seen in Figure 3b. For the CI of µ1, the smaller

the σ2
2/σ

2
1, the smaller the average width, and the closer the means, the smaller

the average width. The average width can be half the width of the unrestricted

CI when σ2
2/σ

2
1 → 0 and µ1 = µ2. If the variance of X1 and X2 are similar, the

average width is about 85% of the unrestricted one when µ1 = µ2.
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(a) 95% CI (b) 99% CI

Figure 2. Comparison of width of the CI using γ0 and minimum possible
width.

(a) Coverage probability (b) Proportion of average width

Figure 3. Coverage probability and ratio of average width of restricted CI
for µ1 compared to unrestricted CI for µ1.

3. Confidence Intervals for µ1 and µ2 with Unknown Variances

3.1. Restricted confidence interval when σ2
2/σ

2
1 is known

Suppose we observe Xgi ∼ N(µg, σ
2
g), g = 1, 2, i = 1, . . . , ng. Let X̄g =∑ng

i=1Xgi/ng, g = 1, 2. Let s21 =
{∑n1

i=1(X1i − X̄1)
2 +

∑n2
i=1(X2i − X̄2)

2/p
}
/ν,

and let X̃ = (X̄1n1p+ X̄2n2)/(n2 + n1p), where p = σ2
2/σ

2
1 and ν = n1 + n2 − 2.

Then µ̃ = EX̃ = (µ1n1p+ µ2n2)/(n2 + n1p) and σ̃2 = var(X̃) = σ2
1p/(n2 + n1p).

If s̃2 = ps21/(n2 + n1p), then (X̃ − µ̃)/s̃ and
√
n1(X̄1 − µ1)/s1 follow standard T

distributions with ν degrees of freedom. The unrestricted CIs for µ1 and µ̃ are

µ1 ∈ [X̄1 − tν
s1√
n1

, X̄1 + tν
s1√
n1

],

µ̃ ∈ [X̃ − tν s̃, X̃ + tν s̃].
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We propose the restricted CI for µ1 as

L̂1 = min(X̄1 − tν
s1√
n1

, X̃ − tν s̃),

Û1 = min(X̄1 + tν
s1√
n1

, X̃ + tν s̃).
(3.1)

When σ2
2/σ

2
1 is known, the pivotal random variables (X1 −µ1)/s1 and (X̃ −

µ̃)/s̃ follow a bivariate T distribution. Since the multivariate T belongs to the

elliptical distribution family, the result in Theorem 1 concerning coverage rates

of CIs is applicable.

Corollary 2. The CI at (3.1) satisfies P (µ1 ∈ [L̂1, Û1]) ≥ 1− α.

Proof. This follows by setting Y1 = (X̄1 − µ1)/s1, Y2 = {X̃ − µ1}/s̃ and h(t) =

{1+ t/ν}−(ν+2)/2 in Theorem 1. The corresponding ∆ = (µ̃−µ1)E(1/s̃) = (µ2−
µ1)n2E(1/s̃)/(n2 + n1p) ≥ 0, ρ =

√
pn1/(pn1 + n2), and C = 1/(2π

√
1− ρ2 ).

3.2. Restricted confidence intervals when σ2
1/σ

2
2 is unknown

Let s2g =
∑ng

i=1(Xgi − X̄g)
2/(ng − 1), g = 1, 2. The unrestricted CI for µg is

X̄g ± tνgsg/
√
ng, where νg = ng − 1. We again consider an intermediate random

variables X̃, with mean µ̃, obtain a CI [L̃, Ũ ] for µ̃, and define the restricted CI

for µ1 as

L̂1 = min(X̄1 − tν1
s1√
n1

, L̃), Û1 = min(X̄1 + tν1
s1√
n1

, Ũ). (3.2)

In this case, it is not possible to find an intermediate random variable X̃ =

γX̄1 + (1 − γ)X̄2 with exactly appropriate properties. Even for a fixed γ, the

interval estimation for µ(γ) = E(X̃) is in fact a variant of the Behrens-Fisher

problem.

We propose two methods to approximate the distribution of X̃. The first

adjusts the width of the interval by incorporating uncertainty in the estimates

of σ2
1 and σ2

2 while the second additionally modifies the effective sample size.

Method 1. ForX(γ) = γX̄1+(1−γ)X̄2, var{X(γ)} = γ2σ2
1/n1+(1−γ)2σ2

2/n2 is

minimized at γ∗ = n1σ
2
2/(n1σ

2
2+n2σ

2
1), giving X∗ = (n1σ

2
2X̄1+n2σ

2
1X̄2)/(n1σ

2
1+

n2σ
2
1) and the minimum variance σ∗2 = σ2

1σ
2
2/(n2σ

2
1 + n1σ

2
2). Replacing σ2

1 and

σ2
2 with unbiased estimators s21 and s22, the approximation for X∗ is

X̃ =
n1s

2
2X̄1 + n2s

2
1X̄2

n1s22 + n2s21
.

However, the coverage rate for µ̃ = E(X̃) based on X̃ ± zσ̂∗, where σ̂∗2 =

s21s
2
2/(n2s

2
1 + n1s

2
2), is too low, because the estimate σ̂∗2 does not incorporate
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the uncertainty in the estimation of σ2
1 and σ2

2. One approach to allow for this

is to modify the estimated variance based on thresholds of tνg distributions.

Since P (X̄g − µg > tνgsg/
√
ng) = P [X̄g − µg > {sgtνg/(z

√
ng)}z] = α/2, we

approximate the distribution of X̄g − µg with a N(0, s2gt
2
νg/(z

2ng)) distribution.

This gives exactly the same 1 − α CI for µg, g = 1, 2 as using a t distribution.

Thus, replacing s2g with s2gt
2
νg/z

2 in σ̂∗2 gives the estimate

σ̃2 =
t2ν1t

2
ν2s

2
1s

2
2

n2t2ν1s
2
1 + n1t2ν2s

2
2

× 1

z2
. (3.3)

The approximate CI for µ̃ is then X̃ ± zσ̃.

Method 2. Since (X̄g − µg)
√
ng/sg ∼ Tg, conditional on X̄g and s2g, µg ∼f

X̄g+(sg/
√
ng)Tg, g = 1, 2, where Tg is a standard T random variable with degrees

of freedom νg and ∼f represents the fiducial distribution, which is equivalent to

a Bayesian posterior distribution under the usual noninformative priors. The

variance of µ̃ is minimized at γ̂ = n∗
1s

2
2/(n

∗
2s

2
1 + n∗

1s
2
2), where n∗

g = ng(ng −
3)/(ng − 1), g = 1, 2. This suggests taking

X̃ =
n∗
1s

2
2X̄1 + n∗

2s
2
1X̄2

n∗
1s

2
2 + n∗

2s
2
1

. (3.4)

We still suggest using the variance estimate in (3.3), giving the CI

L̃ = X̃ − zσ̃, Ũ = X̃ + zσ̃. (3.5)

The use of σ̃2 is desirable because the CI for µ1, derived from (X̃ − zσ̃, X̃ +

zσ̃) using σ̃2 from (3.3), always gives smaller or at least equal length interval

compared to the unrestricted interval (X̄1 − tn1−1s1, X̄1 + tn1−1s1), whereas this

does not hold if we replace ng by n∗
g in (3.3).

Another way to calculate L̃ and Ũ is to use the exact fiducial distribution of

µ̃,

µ̃ ∼ X̃ + γ̂
( s1√

n1

)
T1 + (1− γ̂)

( s2√
n2

)
T2, (3.6)

and numerically calculate the percentiles of this distribution. Simulations show

that the restricted CI using the exact fiducial distribution of µ̃ in (3.6) gives

similar results to the CI at (3.5) using σ̃2 when comparing average width and

coverage rate.

4. Confidence Intervals with Three or More Groups

4.1. Confidence intervals with known variances

Suppose Xgi ∼ N(µg, σ
2
g), i = 1, . . . , ng, g = 1, . . . , G, and assume that µ1 ≤

µ2 ≤ · · · ≤ µG. Let X̄g =
∑ng

i=1Xgi/ng and X̄ℓ,u =
∑u

g=ℓ(X̄gngσ
−2
g )/

∑u
g=ℓ(σ

−2
g ),
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(a) Ūg−1,g ≤ Ūg,g+1 (b) Ūg−1,g > Ūg,g+1

Figure 4. Upper limits of the CI for the middle group in three or more
sample case.

1 ≤ ℓ ≤ u ≤ G, with µℓ,u denoting its mean. The unrestricted CI for µℓ,u is

X̄ℓ,u ± zσℓ,u, where σ2
ℓ,u = 1/

∑u
g=ℓ(ngσ

−2
g ), and L̄ℓ,u and Ūℓ,u denote lower and

upper limits. Note that µg,g = µg and σ2
g,g = σ2

g/ng, g = 1, . . . , G.

We reduce the problem to one of comparing two groups. For group 1, we

can construct the CI for µ1 based on the comparison of groups 1 and 2. Thus

the CI for µ1 is

L̂1 = min(L̄1,1, L̄1,2), Û1 = min(Ū1,1, Ū1,2). (4.1)

Similarly, the CI for µG is based on the comparison of groups G−1 and G, and

is
L̂G = max(L̄G,G, L̄G−1,G), ÛG = max(ŪG,G, ŪG−1,G). (4.2)

We consider the CI for µg, where 1 < g < G. This involves two two-sample prob-

lems, groups g− 1 and g, and groups g and g+1, which would each give respec-

tively lower and upper bound (L̄g−1,g, Ūg−1,g) and (L̄g,g+1, Ūg,g+1). For the upper

bound of the CI for µg, if Ūg,g+1 ≥ Ūg−1,g, then min{Ūg,g+1,max(Ūg,g, Ūg−1,g)}
and max{Ūg−1,g,min(Ūg,g, Ūg,g+1)} are both possible upper bounds, but both

are equal to median{Ūg−1,g, Ūg,g, Ūg,g+1} (see Figure 4(a). If Ūg,g+1 < Ūg−1,g,

it is not clear how to pick a value for Ûg. In the two-sample case for groups

g − 1 and g, Ûg = max(Ūg,g, Ūg−1,g) implies that Ûg ≥ Ūg−1,g, while in the

two-sample case for groups g and g + 1, Ûg = min(Ūg,g, Ūg,g+1) implies that

Ûg ≤ Ūg,g+1. Since Ūg,g+1 < Ūg−1,g, a good value for Ûg should be between Ūg,g+1

and Ūg−1,g. Note that the true means are ordered as µg−1,g ≤ µg−1,g+1 ≤ µg,g+1,

though Ūg−1,g+1 may not be between Ūg,g+1 and Ūg−1,g. We propose Ûg =

median(Ūg−1,g, Ūg−1,g+1, Ūg,g+1) (see Figure 4(b)), and note that Ûg = Ūg−1,g+1
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in most, but not all cases. The proposed restricted CI for µg is

Ûg =

{
median(Ūg−1,g, Ūg,g, Ūg,g+1) if Ūg,g+1 ≥ Ūg−1,g,

median(Ūg−1,g, Ūg−1,g+1, Ūg,g+1) otherwise,

L̂g =

{
median(L̄g−1,g, L̄g,g, L̄g,g+1) if L̄g,g+1 ≥ L̄g−1,g,

median(L̄g−1,g, L̄g−1,g+1, L̄g,g+1) otherwise.

(4.3)

4.2. Confidence intervals with unknown variances

Here the restricted CIs can also be defined using (4.1)−(4.3). We discuss

how to define the limits of unrestricted CI (L̄ℓ,u, Ūℓ,u), 1 ≤ ℓ ≤ u ≤ G.

When wg = σ2/σ2
g , g = 1, . . . , G, is known, for some unknown σ2, take

the intermediate random variable X̄ℓ,u =
∑u

g=ℓ(X̄gngwg)/
∑u

g=ℓ(ngwg) with cor-

responding mean µℓ,u. The unrestricted CI for µℓ,u is (L̄ℓ,u, Ūℓ,u) = X̄ℓ,u ±
tνs(

∑u
g=ℓ ngwg)

−1/2, where s2 =
∑G

g=1{wg
∑ng

i=1(Xgi − X̄g)
2}/(

∑G
g=1 ng − G)

and ν =
∑G

g=1 ng −G.

If σ2
g , g = 1, . . . , G, needs to be estimated separately, let s2g =

∑ng

i=1(Xgi −
X̄g)

2/(ng − 1). In this situation, we use Method 2 of Section 3.2 to obtain the

means and CIs for the combined groups. With n∗
g = ng(ng − 3)/(ng − 1), the

mean estimate for groups from ℓ to u is

X̄ℓ,u =

( u∑
g=ℓ

n∗
gs

−2
g X̄g

)( u∑
g=ℓ

n∗
gs

−2
g

)−1

.

The variance approximation for this mean is

σ̄2
ℓ,u =

( u∑
g=ℓ

ngs
−2
g t−2

ng−1z
2

)−1

.

With µℓ,u = EX̄ℓ,u, the approximation of the unrestricted CI for µℓ,u is (L̄ℓ,u, Ūℓ,u)

= X̄ℓ,u ± zσ̄ℓ,u.

5. Other Restricted Confidence Intervals

There are other approaches to construct restricted CIs, including bootstrap

based CIs and constant length CIs (Hwang and Peddada (1994)).

Two sampling schemes for the bootstrap based on pivotal distributions are

considered. The first is based on the unrestricted MLE, in which Xb
gi, b =

1, . . . , B, i = 1, . . . , ng, g = 1, . . . , G, is sampled from N(X̄g, σ
2
g) if σ2

g is known,

Xb
gi is sampled from X̄g + s Tg/

√
wg, where Tg is standard T random variable
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Table 2. Half life of an antibiotic in rats.

Dose
Data (h) Mean

Standard restricted MLE
(mg/kg) Deviation Same Vars Diff. Vars

5 1.17 1.12 1.07 0.98 1.04 1.076 0.073 1.076 1.076
10 1.00 1.21 1.24 1.14 1.34 1.186 0.126 1.186 1.186
25 1.55 1.63 1.49 1.53 1.550 0.059 1.524 1.547
50 1.21 1.63 1.37 1.50 1.81 1.504 0.231 1.524 1.547

200 1.78 1.93 1.80 2.07 1.70 1.856 0.145 1.856 1.856

with degrees of freedom
∑G

g=1(ng − 1) if wg is known, or Xb
gi is sampled from

X̄g + sgTg, where Tg is standard T random variable with degrees of freedom

ng − 1 if σ2
g is estimated. The second scheme is based on the restricted MLE

µ̂g, in which Xb
gi is sampled in the three different ways described except that

the mean is µ̂g instead of X̄g, where µ̂g is the restricted MLE of µg. For each

bootstrap sample, a bootstrap estimate µ̂b
g, b = 1, . . . , B, is obtained by applying

the restricted maximum likelihood method. CIs are based on the percentiles of

the bootstrap distribution of µ̂b
g.

Hwang and Peddada (1994) proposed a constant length CI in which the

center of the CI is shifted from the unrestricted MLE to the restricted MLE.

They showed that, under fairly general conditions, the coverage probability of

the CI centered on the restricted MLE exceeds the nominal level. In our setting,

the constant length CI is µ̂g ± zσg/
√
ng if σ2

g is known, or is µ̂g ± tvsg/
√
ng if σ2

g

is unknown, where v =
∑G

g=1(ng − 1) for known wg or v = ng − 1 for the case

when σ2
gs are estimated separately.

6. Example

The half-life of a drug is the time needed to halve the concentration of the

drug in the body of a human or an animal. The half-life may vary with the

concentration of the drug, and usually is longer for higher concentration levels.

Table 2 has data from Hirotsu (2005). It shows the half-lives in hours of an

antibiotic at four different doses injected into rats. The higher dose level should

result in a higher concentration and hence it is reasonable to assume the half life

is shorter for the lower dose level.

The analysis is based on two scenarios. First, we assume the observations

are normal with means that depend on the doses but with the same variance.

Second, we assume that the variances of different dose levels may not be equal.

The results are shown in Table 3. Some CIs are unchanged while some become

narrower. The CIs for doses of 25 mg/kg and 50 mg/kg are narrower for both

scenarios, whereas the sample means of the half-lives do not satisfy the constraint.

The most noticeable reduction in the width of the restricted CI is for the dose
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Table 3. Estimates and CIs of half lives in the example in Section 6.

Dose Assuming Equal variances Assuming Different variances
(mg/kg) MLE RMLE standard CI restricted CI RMLE standard CI restricted CI

5 1.08 1.08 (0.94, 1.21) (0.94, 1.21) 1.08 (0.99, 1.17) (0.99, 1.17)
10 1.19 1.19 (1.05, 1.32) (1.05 ,1.32) 1.19 (1.03, 1.34) (1.03, 1.34)
25 1.55 1.52 (1.40, 1.70) (1.40, 1.62) 1.55 (1.46, 1.64) (1.46, 1.63)
50 1.50 1.52 (1.37, 1.64) (1.42, 1.64) 1.55 (1.22, 1.79) (1.46, 1.79)

200 1.86 1.86 (1.72, 1.99) (1.72, 1.99) 1.86 (1.68, 2.04) (1.68, 2.04)

of 50 mg/kg when we estimate the variances separately, where the width of the

restricted CI is about 58% of the unrestricted one.

7. Simulation Study

We have undertaken numerous simulation studies for the two-sample case.

We considered many different scenarios by varying µ1, µ2, σ
2
1, σ

2
2, n1, and n2. We

found that the proposed approaches give excellent coverage rates close to the

nominal level even in small sample sizes, and that the widths are narrower than

those of unrestricted intervals and can be substantially narrower. The two meth-

ods in 3.2 give similar results with very slightly better properties for Method 2.

We present results only for the more interesting and challenging three-sample

case.

Let the population means of the three groups be ordered as µ1 ≤ µ2 ≤ µ3.

Coverage probabilities and the average width of CIs were calculated based on

10,000 simulated datasets and each bootstrap CI was based on 1,999 bootstrap

estimates. The distributions and sample sizes for the simulations are listed in

Table 4. We included in the comparison the CI based on the unrestricted es-

timates (Unres), the shifted constant length CI (Shifted Const), the bootstrap

methods, and the method of Section 4. The three parametric bootstrap methods

are, the completely unrestricted (Bootstrap Unres), the method where the boot-

strap samples are simulated from a distribution centered at X̄g and the restricted

MLE is estimated (Bootstrap RMLE), and the method where the bootstrap sam-

ples are simulated from a distribution centered at µ̂g and the restricted MLE is

estimated (Bootstrap-R RMLE).

We present the results for coverage rates and average CI widths in Table 5

for known ratios of variances, and in Table 6 for the case where all variances are

estimated.

As expected, the shifted constant length CI centered on the restricted MLE

has higher coverage probability than the nominal level; however, the CI can be

extremely conservative for µ2 when all three population means are close to one

another and the sample size for group 2 is not large (cases (a), (b), (f) in Table
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Table 4. Different combinations of population means, variances and sample
sizes used in simulation studies.

µ σ2 n
(a) -0.1, 0, 0.1 10, 10, 10 5, 5, 5
(b) -0.1, 0, 0.1 10, 10, 10 5, 5, 50
(c) -0.1, 0, 0.1 10, 10, 10 5, 50, 10
(d) -1.0, 0, 1.0 10, 10, 10 10, 10, 10
(e) -0.1, 0, 2.0 10, 10, 10 10, 50, 10
(f) 0, 0, 0 10, 10, 10 10, 10, 10

Table 5. Empirical coverage rate and average width of 95% CI for µ1, µ2

and µ3 when the ratios of variances are known.

Method
Unres Shifted Bootstrap Bootstrap Bootstrap-R New

Const Unres RMLE RMLE method

(a)
µ1 95.3(6.06) 97.5(6.06) 95.1(6.02) 92.1(4.58) 91.7(4.83) 95.8(5.20)
µ2 95.2(6.06) 99.2(6.06) 95.0(6.02) 95.9(4.07) 97.5(4.25) 96.5(4.37)
µ3 95.2(6.06) 97.3(6.06) 95.3(6.02) 91.1(4.57) 90.5(4.82) 95.3(5.20)

(b)
µ1 95.1(5.64) 97.3(5.64) 94.9(5.61) 89.6(3.66) 88.3(4.02) 95.0(4.84)
µ2 95.0(5.64) 99.6(5.64) 95.0(5.61) 95.7(2.65) 97.2(2.98) 97.0(2.93)
µ3 95.2(1.78) 95.6(1.78) 94.7(1.78) 93.5(1.69) 93.5(1.70) 95.0(1.74)

(c)
µ1 94.8(5.62) 97.5(5.62) 94.6(5.60) 90.7(3.48) 89.9(3.89) 95.7(3.75)
µ2 94.7(1.78) 96.5(1.78) 94.4(1.77) 94.7(1.63) 95.5(1.65) 95.5(1.67)
µ3 94.6(3.98) 97.2(3.98) 94.5(3.96) 91.5(2.68) 90.9(2.93) 95.4(2.88)

(d)
µ1 94.7(4.07) 96.4(4.07) 94.5(4.04) 94.6(3.48) 95.2(3.54) 95.1(3.75)
µ2 95.4(4.07) 98.3(4.07) 94.9(4.05) 95.7(3.13) 97.2(3.19) 96.2(3.43)
µ3 94.8(4.07) 96.7(4.07) 94.8(4.05) 94.9(3.49) 95.8(3.53) 95.3(3.75)

(e)
µ1 94.7(3.97) 97.5(3.97) 94.5(3.96) 93.3(2.70) 93.1(2.95) 95.7(2.85)
µ2 95.4(1.78) 96.4(1.78) 95.2(1.77) 95.1(1.66) 94.9(1.67) 95.5(1.70)
µ3 94.9(3.97) 96.0(3.97) 94.6(3.96) 94.7(3.60) 95.9(3.61) 94.9(3.80)

(f)
µ1 94.5(4.06) 97.2(4.06) 94.2(4.04) 90.6(3.04) 90.3(3.23) 94.9(3.46)
µ2 95.2(4.06) 99.5(4.06) 95.2(4.04) 95.5(2.72) 97.5(2.86) 96.3(2.89)
µ3 95.6(4.06) 97.8(4.06) 95.2(4.04) 91.0(3.04) 89.8(3.23) 95.6(3.47)

5 and 6. Even though the bootstrap method works well when all the population

means are well separated (case (d)), the coverage rates for some population means

can be well below the nominal level in some situations (µ1 for cases (a), (b),

(c) and (f)). There are no noticeable improvements from using the bootstrap

method with sampling centered on the restricted MLE compared to the bootstrap

method with sampling centered on the unrestricted MLE. Our method gives fairly

accurate coverage rate with reduced width of the intervals in all the situations

considered in this study.

The findings regarding the coverage rate and length of CI’s for the three-

group case apply to situations with more than three groups, since the CI for



CONFIDENCE INTERVALS UNDER ORDER RESTRICTIONS 443

Table 6. Empirical coverage rate and average width of 95% CI for µ1, µ2

and µ3 when the variances are estimated separately.

Method
Unres Shifted Bootstrap Bootstrap Bootstrap-R New

Const Unres RMLE RMLE method

(a)
µ1 95.2(7.45) 96.6(7.45) 95.1(7.41) 90.6(5.53) 88.2(5.63) 95.1(6.58)
µ2 95.7(7.39) 97.1(7.39) 95.7(7.35) 93.4(4.65) 92.5(4.59) 94.2(4.89)
µ3 95.1(7.39) 96.3(7.39) 95.0(7.35) 89.9(5.49) 86.9(5.59) 94.6(6.53)

(b)
µ1 95.0(7.35) 97.0(7.35) 94.7(7.31) 88.5(4.61) 87.2(4.98) 95.2(6.53)
µ2 94.8(7.37) 98.2(7.37) 94.6(7.34) 94.4(2.98) 95.2(3.21) 95.2(3.35)
µ3 95.3(1.79) 95.4(1.79) 95.0(1.78) 93.7(1.70) 92.2(1.69) 95.1(1.78)

(c)
µ1 95.5(7.39) 97.6(7.39) 95.4(7.36) 90.9(4.37) 90.3(4.78) 96.2(5.12)
µ2 95.1(1.79) 96.3(1.79) 94.7(1.78) 94.3(1.65) 94.5(1.65) 94.3(1.68)
µ3 94.7(4.39) 97.4(4.39) 94.7(4.37) 91.3(2.90) 90.8(3.14) 96.0(3.40)

(d)
µ1 95.0(4.40) 96.1(4.40) 94.6(4.37) 94.1(3.69) 94.6(3.75) 95.8(4.09)
µ2 95.1(4.39) 97.2(4.39) 94.9(4.37) 95.1(3.25) 96.2(3.30) 95.4(3.61)
µ3 95.0(4.42) 96.3(4.42) 94.9(4.40) 94.9(3.71) 95.2(3.76) 96.0(4.11)

(e)
µ1 94.4(4.39) 97.4(4.39) 94.2(4.37) 93.2(2.92) 93.3(3.17) 96.1(3.36)
µ2 95.3(1.79) 96.4(1.79) 95.2(1.77) 94.9(1.67) 94.5(1.67) 95.4(1.71)
µ3 94.8(4.42) 95.5(4.42) 94.6(4.40) 94.6(3.91) 95.4(3.91) 95.5(4.16)

(f)
µ1 94.9(4.43) 97.2(4.43) 94.5(4.41) 89.5(3.27) 88.4(3.42) 95.7(4.01)
µ2 95.4(4.40) 98.5(4.40) 95.1(4.38) 93.8(2.84) 95.2(2.93) 94.9(3.01)
µ3 95.1(4.36) 97.3(4.36) 95.0(4.34) 89.9(3.24) 88.6(3.40) 95.6(3.97)

a group only depends on the data for that group and its immediately adjacent

neighbors, and not on the data from more distant groups.

The results for known σ2
g are uniformly excellent for the new method and

are not presented.

8. Discussion

The CI developed in Section 3 utilizes a CI for an intermediate variable,

where that CI is centered at a weighted average of X1 and X2. An alternative

is to define the center of the CI for the intermediate variable as the restricted

MLE under the assumption that the mean of X1 equals the mean of X2. In

simulation studies this method gave CI’s with similar properties to that of the

second method in Section 3.2.

The methods developed in Sections 2, 3 and 4 are applicable to normal obser-

vations. On account of the Central Limit Theorem, we expect the coverage rates

of the restricted CIs for the means to be close to the nominal level in nonnormal

populations if the sample size is fairly large. We found this to be empirically true

in simulations (not shown), except when the distribution is highly skewed and

the sample size is relatively small. Even in this case, the coverage rates were not
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substantially below the nominal level, and showed much better coverage rates

than the alternative bootstrap CI’s.

The method proposed in this paper can be generalized to other distributions

by using transformations. For example, if T is a monotone transformation and

T (µ̂g) is approximately normally distributed, then it is possible to apply our

method to estimate the CI for T (µg) and then apply T−1 to obtain the CI for

µg. For example, for the binomial case with success probability µg, the variance

stabilizing transformation sin−1(
√
µg) could be used.

The strategy for obtaining a confidence interval for group g that we developed

can be broadly described using two stages: in the first stage, for some sets of

neighboring combined groups ℓ, . . . , u, an unrestricted CI, (L̄ℓ,u, Ūℓ,u), for µℓ,u is

obtained using a normal or t distribution; in the second stage, the CI for µg is

modified using the bounds L̄ℓ,u and Ūℓ,u based on the order restrictions using,

for example, (4.1), (4.2), and (4.3). An alternative is to use the bootstrap in the

first stages to obtain (L̄ℓ,u, Ūℓ,u) instead of the normal or t distribution.

The method for three or more samples discussed in Section 4 could poten-

tially be made more efficient by combining groups rather than just considering

the closest group. Specifically when obtaining the upper bound for µg, consider

a combination of groups g + 1, . . . , u, rather than just group g + 1, then apply

the obvious generalizations of (4.1), (4.2), and (4.3). Whether it is beneficial

to combine groups depends on the closeness of the means of neighboring groups

and the decision of whether to combine groups could be based on either prior

knowledge, or potentially a pre-test from the available data. For example, one

approach for the three group situation would be to test H0 : µ1 ≤ µ2 = µ3 vs

Ha : µ1 ≤ µ2 < µ3 at a certain significance level to decide whether µ2 and µ3 are

close to each other, and so to decide whether or not to combine groups 2 and 3

to construct the restricted CIs for µ1.
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