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Abstract: Model-assisted regression estimators are popular in sample surveys for

making use of auxiliary information and improving the Horvitz-Thompson esti-

mators of population totals. In the presence of strata and unequal probability

sampling, however, there are several ways to form model-assisted regression esti-

mators: regression within each stratum or regression by combining all strata, and

a separate ratio adjustment for population size, or a combined ratio adjustment,

or no adjustment. In the literature, there is no comprehensive theoretical compar-

ison of these regression estimators. We compare the asymptotic efficiencies of six

model-assisted regression estimators under two asymptotic settings. When there

are a fixed number of strata with large stratum sample sizes, our result shows that

one of the six regression estimators is a clear winner in terms of asymptotic effi-

ciency. When there are a large number of strata with small stratum sample sizes,

however, the story is different. Some comparisons in special cases are also made.

Some simulation results are presented to examine finite sample performances of

regression estimators and their variance estimators.

Key words and phrases: Asymptotic efficiency, bootstrap, combined regression es-

timators, separate regression estimators, unequal probability without replacement

sampling, variance estimation.

1. Introduction

Auxiliary information from sources such as administrative records is often

available in sample surveys. Model-assisted regression estimators are the most

popular estimators that utilize auxiliary information to gain efficiency in esti-

mating population totals. Although regression estimators are constructed using

a regression model between the variables of interest and some covariates, they are

consistent and asymptotically normal under the traditional design-based frame-

work in which the randomness of survey estimators is from repeated sampling.

Thus they are robust against violation of the assumed regression model. But,

when the regression model is correct, they are more efficient than the estimators

that do not use the auxiliary information.

Let U denote the finite population of interest with N units stratified into

H strata, U = U1 ∪ · · · ∪ UH , where Uh contains Nh units and N1 + · · · +
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NH = N . For unit i ∈ U , let yi be a nonconstant variable of interest and xi
be a nonconstant auxiliary variable associated with yi. Although we consider a

univariate xi throughout, all results can be generalized to the case of multivariate

xi in a straightforward manner. Consider the estimation of the population total

Y =
∑

i∈U yi based on a sample S = S1 ∪ · · · ∪ SH from U , where each Sh is a

sample from Uh according to some probability sampling plan and S1, . . . , SH are

independently selected. Let nh be the size of Sh and n = n1 + · · · + nH . For

i ∈ S, yi is observed. The Horvitz-Thompson estimator of the total Y is

Ŷ =
∑
h

Ŷh, Ŷh =
∑
i∈Sh

wiyi,

where w−1
i is the first-order inclusion probability of unit i in Sh, a known quantity

from the sampling design. Under the traditional design-based framework, yi’s are

fixed values and the only randomness is from the repeated selection of S from U .

Let Es be the expectation with respect to repeated sampling. Then, it is well

known that Es(Ŷ ) = Y .

For the auxiliary variable, the value of xi is observed for i ∈ S, and the

value of Xh =
∑

i∈Uh
xi is known (e.g., from administrative records) for each h.

To utilize the auxiliary variable xi, the model-assisted approach (e.g., Särndal,

Swensson, and Wretman (1992)) can be adopted to form regression estimators.

In the presence of strata, however, there are two ways to apply the regression:

regression within each stratum or regression by combining all strata. Also, one

can apply a separate ratio adjustment for population size, or a combined ratio

adjustment, or no adjustment. This leads to six regression estimators of Y :

ŶC0 =
∑
h

[
Ŷh + β̂(Xh − X̂h)

]
= Ŷ + β̂(X − X̂), (1.1)

ŶS0 =
∑
h

[
Ŷh + β̂h(Xh − X̂h)

]
= Ŷ +

∑
h

β̂h(Xh − X̂h), (1.2)

ŶCC =
∑
h

[NŶh
N̂

+ β̂

(
Xh −

NX̂h

N̂

)]
=
NŶ

N̂
+ β̂

(
X − NX̂

N̂

)
, (1.3)

ŶSC =
∑
h

[NŶh
N̂

+ β̂h

(
Xh −

NX̂h

N̂

)]
=
NŶ

N̂
+
∑
h

β̂h

(
Xh −

NX̂h

N̂

)
, (1.4)

ŶCS =
∑
h

[NhŶh

N̂h

+ β̂

(
Xh −

NhX̂h

N̂h

)]
=
∑
h

NhŶh

N̂h

+ β̂

(
X −

∑
h

NhX̂h

N̂h

)
,

(1.5)

ŶSS =
∑
h

[NhŶh

N̂h

+ β̂h

(
Xh −

NhX̂h

N̂h

)]
, (1.6)
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where X =
∑

i∈U xi, X̂ =
∑

i∈S wixi, X̂h =
∑

i∈Sh
wixi, N̂ =

∑
i∈S wi, N̂h =∑

i∈Sh
wi,

β̂ =

∑
h

∑
i∈Sh

wiyi(xi − X̂h/N̂h)∑
h

∑
i∈Sh

wi(xi − X̂h/N̂h)2
(1.7)

is the slope estimator assuming a single regression line over all strata, and

β̂h =

∑
i∈Sh

wiyi(xi − X̂h/N̂h)∑
i∈Sh

wi(xi − X̂h/N̂h)2
(1.8)

is the slope estimator for the regression line within stratum h. The first subscript

u in Ŷuv given by (1.1)−(1.6) indicates whether a combined regression line over

all strata is assumed (u = C) or a separate regression line for each stratum is

considered (u = S). The second subscript v in Ŷuv indicates whether no ratio

adjustment for population size is applied (v = 0), a combined (over strata) ratio

adjustment N/N̂ is applied (v = C), or a separate ratio adjustment Nh/N̂h

within each stratum is applied (v = S). Some of the estimators in (1.1)−(1.6)

are the same or similar to those proposed by previous researchers (e.g., Isaki

and Fuller (1982), Wright (1983), Montanari (1987), Särndal, Swensson, and

Wretman (1992) and Fuller (2009)) and are frequently used in practice; the others

are included for comparison. When combined regression is applied, knowing X,

instead of each Xh, is enough for estimators ŶC0, ŶCC , and ŶCS .

Intuitively, regression by combining strata is motivated by the thinking that

it produces more efficient estimators when all regression models across strata are

the same (which is not always true as we show in Section 2). Although some

discussions on the relative efficiencies among the six estimators in (1.1)−(1.6)

can be found in the literature (e.g., Cochran (1977), Särndal, Swensson, and

Wretman (1992) and Fuller (2009)), a comprehensive theoretical comparison of

these estimators is not available.

The purpose of this paper is to study the asymptotic relative efficiencies

among these six estimators under the model-assisted approach that imposes a

regression model between yi and xi in each stratum. We consider two types of

sampling designs, one with a fixed number of strata and a large number of sam-

pled units within each stratum and the other one with a large number of strata

and a few sampled units within each stratum. Under the first type of design, we

are able to draw some definite conclusions on the relative performance of estima-

tors (1.1)−(1.6) provided the regression models are correct. Note that if we do

not use any model, all six estimators are consistent and asymptotically normal

under the design-based framework, but their asymptotic relative efficiencies can-

not be precisely assessed unless some special designs are considered, for example,

stratified simple random sampling. An example is given in Section 2.
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Under the model-assisted framework, some asymptotic results for two types

of designs are given in Sections 2 and 3, respectively. Some simulation results are

presented in Section 4. The last section contains some discussion. All technical

proofs are given in the Appendix.

2. Asymptotic Results for Large nh’s and Fixed H

To consider asymptotics, the population U is viewed as a member of a se-

quence of populations {U (k), k = 1, 2, . . .}, where the number of units in U (k)

increases to infinity as k → ∞. All quantities, such as yi, Nh, etc., depend on the

index k but k is omitted for simplicity. All limiting processes are with respect to

k → ∞.

In this section, we assume that, in each stratum h, the population size Nh

and the sample size nh → ∞ as k → ∞. The number of strata, H, is fixed.

The sampling design with a fixed H and large nh’s is commonly used in many

surveys, for example, business surveys.

We can establish the asymptotic normality of estimators in (1.1)−(1.6) when

the yi’s and xi’s are fixed values and the randomness is from the sample selection

of Sh, h = 1, . . . , H. A simple example, however, indicates that, under the

design-based approach, we cannot generally tell which estimator in (1.1)−(1.6)

is the most efficient one unless a special design is considered.

Consider that H = 1, each i ∈ U has probability pi to be selected, and

sampling is with replacement. We compare the estimators Ŷ1 =
∑

i∈S yi/npi
and Ŷ2 = NŶ1/N̂ , N̂ =

∑
i∈S 1/npi, that are special cases of estimators in (1.1)

and (1.2), respectively. Suppose there exists a positive constant M such that

M−1 ≤ Npi ≤ M for all i ∈ U and N−1
∑

i∈U y
2
i ≤ M . Then, by the Central

Limit Theorem,
√
n(Ŷ1 −Y )/N

√
v1

d→N(0, 1), where
d→ denotes convergence in

distribution and

v1 =
1

N2

∑
i∈U

pi

(
yi
pi

− Y

)2

.

Applying the delta method, we obtain that
√
n(Ŷ2 − Y )/N

√
v2

d→N(0, 1), where

v2 = v1 −
2Y

N3

∑
i∈U

pi

(
1

pi
−N

)(
yi
pi

− Y

)
+
Y 2

N4

∑
i∈U

pi

(
1

pi
−N

)2

.

Then, Ŷ2 is asymptotically more efficient than Ŷ1 if and only if

Ȳ 2

N2

∑
i∈U

1

pi
<

2Ȳ

N2

∑
i∈U

yi
pi

− Ȳ 2, (2.1)
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where Ȳ = Y/N . Under the design-based framework, however, yi’s are fixed
values and we cannot tell whether (2.1) holds except for a few special cases. This
is similar to the discussion in Section 6.6 of Cochran (1977).

If we assume the yi’s are iid with mean µy, then (2.1) holds for sufficiently
large N unless µy = 0 or pi = N−1 (simple random sampling). This can be
seen as follows. Suppose µy = 0 and pi is not a constant. By the Law of Large
Numbers and the condition M−1 ≤ Npi ≤M for all i ∈ U ,

Ȳ → µy and
∑
i∈U

yi
piN2

−
∑
i∈U

µy
piN2

→ 0 a.s..

This together with Jensen’s inequality

1

N

∑
i∈U

1

pi
>
( 1

N

∑
i∈U

pi

)−1
= N

implies that (2.1) holds for large enough N .
We consider the model-assisted approach that views (yi, xi), i ∈ U , as ran-

dom vectors following a model. To utilize the auxiliary variable xi, we consider
the regression model

yi = αh + βhxi + ϵi, i ∈ Uh, h = 1, . . . , H, (2.2)

where αh and βh are, respectively, the unknown intercept and slope for the
regression within stratum Uh, ϵi, i ∈ Uh, are iid with mean 0 and an unknown
variance, xi, i ∈ Uh, are iid with an unknown variance, and ϵi’s are independent of
xi’s. The estimator β̂h in (1.8) is the least squares estimator of βh, h = 1, . . . , H.
If we combine all regression lines into a single line, then the estimator β̂ in (1.7)
is the least squares estimator of the common slope. Although the combined
regression is wrong when βh’s are unequal, estimators in (1.1)−(1.6) are still
consistent and asymptotically normal since they are model-assisted estimators.
This is even true when model (2.2) is incorrect.

A theorem establishes the asymptotic normality of estimators (1.1)−(1.6),
with respect to the probability under regression model (2.2) and repeated sam-
pling. Let Ps, Es, and Vs be the probability, expectation, and variance with
respect to repeated sampling, and let Pm, Em, and Vm be the probability, expec-
tation, and variance with respect to model (2.2). We require some conditions.

(C1) For any h, nh/Nh → 0 and there exists φh such that Nh/N → φh.

(C2) For any h, σ2xh = Vm(xi) < ∞, σ2h = Vm(ϵi) < ∞, i ∈ Uh, and there exists
δ > 0 such that as k → ∞,∑

i∈Sh

Em |Rh(wi − 1)(xi − µxh)|2+δ +
∑

i∈Uh/Sh

Em |xi − µxh|2+δ

[
Vm

(
Rh

∑
i∈Sh

wixi −
∑
i∈Uh

xi

)]1+δ/2
→ 0,
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∑
i∈Sh

Em |Rh(wi − 1)ϵi|2+δ +
∑

i∈Uh/Sh

Em |ϵi|2+δ

[
Vm

(
Rh

∑
i∈Sh

wiϵi −
∑
i∈Uh

ϵi

)]1+δ/2
→ 0,

where Rh = 1, N̂/N , or N̂h/Nh, and µxh = Em(xi) for i ∈ Uh.

(C3) There exists M > 1 such that for any h, Nh/(nhM) < wi < NhM/nh.

Theorem 1. If (2.2) and (C1)−(C3) hold, then

Ŷuv − Y

N
√
ϕuv

d→N(0, 1),

where u = C or S, v = 0, C, or S,

ϕSS =N−2
[∑

h σ
2
h

(∑
i∈Uh

wi −Nh

) ]
,

ϕCS = ϕSS + 1
N2

∑
h σ

2
xh(βh − β)2

(∑
i∈Uh

wi −Nh

)
,

ϕSC = ϕSS + Vs

(∑
h αh

(
N̂h

N̂
− Nh

N

))
,

ϕCC = ϕCS + Vs

(∑
h[αh + µxh(βh − β)]

(
N̂h

N̂
− Nh

N

))
,

ϕS0 = ϕSS + 1
N2Vs

(∑
h αh(N̂h −Nh)

)
,

ϕC0 = ϕCS + 1
N2Vs

(∑
h

[
αh + µxh(βh − β)

]
(N̂h −Nh)

)
,

and

β =

∑
hNhβhσ

2
xh∑

hNhσ
2
xh

.

The proof is given in the Appendix. The condition nh/Nh → 0 is not needed

when sampling is with replacement or simple random sampling without replace-

ment.

The following are some conclusions for the relative efficiencies among esti-

mators in (1.1)−(1.6). For two estimators Ŷu and Ŷv, Ŷu ≽ Ŷv denotes that Ŷu
is asymptotically as efficient as Ŷv, Ŷu ≻ Ŷv denotes that Ŷu is asymptotically

more efficient than Ŷv, and Ŷu ∼= Ŷv denotes that Ŷu and Ŷv are asymptotically

equivalent.

1. Asymptotically, no other estimator is more efficient than ŶSS , even when

regression lines across strata are the same. Some other estimators may be

asymptotically as efficient as ŶSS under some special situations.
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2. When αh = α ̸= 0 and βh = β for all h, ŶCC
∼= ŶCS

∼= ŶSC ∼= ŶSS ≻ ŶC0
∼=

ŶS0. When αh = 0 and βh = β for all h, all estimators in (1.1)−(1.6) are

asymptotically equivalent.

3. When βh = β for all h, ŶC0
∼= ŶS0, ŶCC

∼= ŶSC , ŶCS
∼= ŶSS , ŶSS ≽ ŶS0, and

ŶSS ≽ ŶSC . When N̂ = N , ŶS0 ∼= ŶSC . No general conclusion can be made

about ŶS0 and ŶSC .

4. When there exist h1 and h2 such that βh1 ̸= βh2 , ŶS0 ≻ ŶC0, ŶSC ≻ ŶCC

and ŶSS ≻ ŶCS . Thus, applying the same ratio, the estimators using separate

lines are more efficient than those using a single line.

5. When αh = α ̸= 0 for all h, ŶSC ∼= ŶSS ≻ ŶS0. When αh = 0 for all h,

ŶSC ∼= ŶSS ∼= ŶS0.

6. When there exist h1 and h2 such that αh1 ̸= αh2 , ŶSS ≻ ŶSC and ŶSS ≻ ŶS0
unless N̂h1 = Nh1 and N̂h2 = Nh2 .

There is a definite conclusion. Asymptotically, ŶSS is the winner among all

estimators in (1.1)−(1.6) even when the regression lines across strata are the

same. This phenomenon has been noticed by previous researchers (see, e.g.,

Fuller (2009)). One explanation is that, when all nh’s are large, the information

about the equality of regression lines does not help to improve model-assisted

estimators of the forms (1.1)−(1.6) that are robust against model violation. Some

model-based estimators may be more efficient than ŶSS when all regression lines

are the same, but they are not robust against model violation. Furthermore, the

situation is quite different if some nh’s are small, as the results in the next section

indicate.

Another point is that the result in Theorem 1 still holds if β̂h in (1.8) is

replaced by a different consistent estimator of βh. Fuller (2009) indicates that,

given a sampling design, an optimal slope estimator can be derived (e.g., (2.4.2)

in Fuller (2009)) that is asymptotically more efficient than β̂h in (1.8) in terms

of estimating βh. For the estimation of Y , however, the efficiency of β̂h is a

second-order asymptotic effect. It does not improve the asymptotic efficiency of

ŶSS .

3. Asymptotic Results for Large H and Small nh’s

To increase efficiency, many surveys involve a large number of strata. To

reduce the cost, a few units are sampled from each stratum. See, for example,

Krewski and Rao (1981). We consider a different asymptotic setting: all nh’s are

bounded by a fixed constant and H → ∞.

For estimators based on separate regressions, ŶSS , ŶSC , and ŶS0, each nh
has to be sufficiently large so that a regression within stratum h can be fitted.

Since model (2.2) involves a two term regression function, we require nh > 2 for
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ŶSS , ŶSC , and ŶS0. If xi is multivariate with dimension p, then nh > p + 1 for

each h is required.

When nh is small, it is not possible to obtain a consistent estimator for a

parameter related only with stratum Uh. However, quantities such as totals over

all strata can be consistently estimated. Consider ŶSS as an example. Let Em|x be

the expectation under (2.2), conditional on the xi’s. Then Em|x(yi) = αh+βhxi,

i ∈ Uh, and

Em|x(ŶSS) =
∑
h

[NhEm|x(Ŷh)

N̂h

+ Em|x(β̂h)
(
Xh −

NhX̂h

N̂h

)]
=
∑
h

[NhαhN̂h

N̂h

+
Nh(βhX̂h)

N̂h

+ βh

(
Xh −

NhX̂h

N̂h

)]
=
∑
h

(Nhαh + βhXh)

=
∑
h

Em|x(Yh)

= Em|x(Y ).

Thus, ŶSS is unbiased with respect to model (2.2). Since ŶSS is a sum (over h)

of independent random variables having finite means and variances (under some

conditions), we can apply Liapounov’s Central Limit Theorem to establish the

asymptotic normality of ŶSS . This is the approach considered by Krewski and

Rao (1981). We need some conditions.

(D1) There exists M1 such that |αh|+|βhµxh| < M1 for any h.

(D2) There exists M2 such that 1/M2 < σ2xh = Vm(xi) < M2 and 1/M2 < σ2h =

Vm(ϵi) < M2 for any h, and there exists δ > 0 such that, as H → ∞,

H∑
h=1

Em

∣∣∣RhŶh +Qh(Xh −RhX̂h)− Em[RhŶh +Qh(Xh −RhX̂h)]
∣∣∣2+δ

{ H∑
h=1

Vm[RhŶh +Qh(Xh −RhX̂h)]
}2+δ

→ 0,

where Rh = 1, N̂/N , or N̂h/Nh, and Qh = β̂h or β̂.

(D3) As H → ∞, ∑
h βh

∑
i∈Sh

wi(xi − X̂h/N̂h)
2∑

h

∑
i∈Sh

wi(xi − X̂h/N̂h)2
→p β,

Es

{√n
N

H∑
h=1

[αh + (βh − β)µxh]
(NN̂h

N̂
−Nh

)}
→ 0.
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Theorem 2. If model (2.2), (C3), and (D1)−(D3) hold, then

Ŷuv − Y

N
√
ϕuv

d→N(0, 1),

where u = C or S, v = 0, C, or S, and

ϕC0 =
1

N2

∑
h

Vs

(
ΛhN̂h

)
+

1

N2

[∑
h

Γh

( ∑
i∈Uh

wi −Nh

)]
,

ϕS0 =
1

N2
EsEm

[∑
h

∑
i∈Sh

σ2h

(
ζhi+wi−1

)2]
+

1

N2

∑
h

σ2h(Nh−nh)+
1

N2
Vs

(∑
h

αhN̂h

)
,

ϕCC = Vs

(∑
h

Λh
N̂h

N̂

)
+

1

N2

[∑
h

Γh

( ∑
i∈Uh

wi −Nh

)]
,

ϕSC =
1

N2
EsEm

[∑
h

∑
i∈Sh

σ2h

(
ζhi+wi−1

)2]
+

1

N2

∑
h

σ2h(Nh − nh)+Vs

(∑
h

αh
N̂h

N̂

)
,

ϕCS =
1

N2
Es

[∑
h

Γh

(N2
h

N̂2
h

∑
i∈Sh

w2
i −Nh

)]
,

ϕSS =
1

N2

∑
h

σ2hEsEm

[ ∑
i∈Sh

(
ψhi +

Nh

N̂h

wi − 1
)2]

+
1

N2

∑
h

σ2h(Nh − nh),

with Λh = αh + (βh − β)µxh, Γh = σ2h + (βh − β)2σ2xh, x̄h = X̂h/N̂h,

ζhi =
−(xi − x̄h)wi∑

i∈Sh

(xi − x̄h)2wi

(
X̂h−Xh

)
, and ψhi =

−(xi − x̄h)wi∑
i∈Sh

(xi − x̄h)2wi

(NhX̂h

N̂h

−Xh

)
.

The proof is given in the Appendix. Note that
∑

i∈Sh
ψhi = 0 and

∑
i∈Sh

ζhi
= 0 for any h. If

∑
i∈Sh

(xi − x̄h)w
2
i = 0 for any h, which occurs for example

when wi is a constant within stratum h, then

ϕSS =
1

N2

{∑
h

σ2hEsEm

∑
i∈Sh

ψ2
hi

}
−
∑
h

(βh−β)2σ2xhEs

(N2
h

N̂2
h

∑
i∈Sh

w2
i −Nh

)
+ϕCS .

(3.1)

As for the relative efficiencies among estimators in (1.1)−(1.6), we have the

following discussion.

1. With simple random sampling (SRS) within each stratum, N̂h = Nh, N̂ = N ,

ŶC0 = ŶCC = ŶCS , and ŶS0 = ŶSC = ŶSS . Thus, we compare ŶCS and ŶSS .

Under SRS within each stratum,
∑

i∈Sh
ψhiwi = 0 for any h. If βh = β for
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any h, then it follows from (3.1) that

ϕSS =
1

N2

{∑
h

σ2hEsEm

∑
i∈Sh

ψ2
hi

}
+ ϕCS > ϕCS (3.2)

and, hence, ŶCS ≻ ŶSS . However, it also follows from (3.1) that, when (βh −
β)2 increases to ∞, the ratio ϕSS/ϕCS increases to infinity, so ŶSS ≻ ŶCS if

(βh − β)2 is sufficiently large for some h.

2. Under a general sampling design, there is no definite conclusion about the

relative efficiency among ŶC0, ŶCC , and ŶCS , because ϕC0, ϕCC , and ϕCS

involve expectations and variances with respect to sampling. For example,

there is no definite conclusion on which of

1

N2

∑
h

Vs

(
ΛhN̂h

)
and Vs

(∑
h

Λh
N̂h

N̂

)
is larger. Similarly, we are not able to draw a definite conclusion about the

relative efficiency among ŶS0, ŶSC , and ŶSS .

3. If βh = β and
∑

i∈Sh
ψhiwi = 0 for any h, then ŶCS ≻ ŶSS . This is because

(3.1) holds and, if βh = β, then (3.2) also holds. Similarly, if
∑

i∈Sh
ζhiwi = 0

for any h, then ŶCC ≻ ŶSC and ŶC0 ≻ ŶS0. If we further assume that

αh = α ̸= 0 for any h, then ŶCC ≻ ŶC0 and ŶSC ≻ ŶS0. When αh = 0 for any

h, ŶCC
∼= ŶC0 and ŶSC ∼= ŶS0.

4. If the βh’s are not all the same, (βh − β)2 increases to ∞ for some h, ϕC0,

ϕCC , and ϕCS all diverge to infinity. On the other hand, none of ϕC0, ϕCC ,

and ϕCS depends on (βh − β)2. This means that ŶS0 ≽ ŶC0, ŶSC ≽ ŶCC , and

ŶSS ≽ ŶCS when βh’s are different and the differences are large enough.

The result is quite different from that in Section 2 where all nh’s are large and

H is fixed. In Section 2 we found a clear winner in terms of asymptotic efficiency,

ŶSS , regardless of the scenario, whereas for small nh’s, there is no winner even

if we use SRS within each stratum. The asymptotic relative efficiency between

ŶCS and ŶSS depends on how the βh’s differ.

4. Empirical Results

In this section, we present some empirical results using simulated data sets.

We also discuss variance estimation and examine related confidence intervals.

4.1. Simulation results for large nh’s and fixed H

We considered a population with H = 4 strata. In stratum h, we generated

independent xi ∼ Γ(ϑh, θh), i = 1, . . . , Nh = 2000, where Γ(ϑh, θh) is the gamma
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distribution with shape parameter ϑh and scale parameter θh, yi = αh + βhxi +

ϵi and zi = |30 + xi + νi|, where ϵi’s and νi’s are independent and normally

distributed with mean 0 and variance 50, and they are independent of xi’s. Values

from different strata were independently generated. The values of the parameters

of the gamma distribution in each stratum were as follows.

ϑ1 θ1 ϑ2 θ2 ϑ3 θ3 ϑ4 θ4
4 10 3 8 2 9 3 11

For each h, we adopted the Rao-Hartley-Cochran (RHC) sampling scheme

to obtain a sample of size nh = 200 without replacement from Uh using zi’s as

the weights (see, e.g., Sampford (1967)).

1. Divide Uh into nh subgroups Uh1, . . . , Uhnh
, where each group consists of kh =

Nh/nh units.

2. Select unit j from each subgroup Uhq using {zi : i ∈ Uhq} as weights. Under

this sampling scheme, w−1
j = zj/

∑
i∈Uhq

zi.

3. Samples across strata are independently sampled.

Table 1 reports the value of (αh, βh) and, based on 2000 simulations, the

biases and standard deviations (SD) of six estimators, two estimated SD, ŜDS

obtained by substituting asymptotic variance formulas derived in Section 3 and

ŜDB based on the bootstrap variance estimator described in Bickel and Freedman

(1984), Shao and Tu (1995), and Antal and Tillé (2011) with B = 300, together

with the coverage probability, CPu, of the approximate 95% confidence interval

for the population total Y : [estimated total−1.96ŜDu, estimated total+1.96ŜDu],

where u = S or B.

The following observations summarize the results in Table 1.

1. All estimators have negligible biases.

2. The simulation results support the asymptotic theory in Theorem 1. When

βh’s and αh’s are different, ŶSS has the best performance. When αh’s and/or

βh’s are the same, other estimators are comparable with ŶSS . If ŶSS is not

the best, then the difference between the SD of ŶSS and the SD of the best

estimator is negligible.

3. Substitution and bootstrap variance estimators perform reasonably well.

When the estimator of SD performs well, so does the 95% approximate con-

fidence interval. In a few cases the substitution estimator ŜDS overestimates

substantially, which results in a too large CP. The bootstrap estimator ŜDB

is more stable, but always overestimates in our simulation.
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Table 1. Simulation Results for Six Estimators (Large nh’s and Fixed H).

h αh βh Y ŶC0 ŶS0 ŶCC ŶSC ŶCS ŶSS

1 0 1 230530 Bias -23.6 -21.6 -23.9 -22.1 -23.5 -19.0
2 0 1 SD 2055 2056 2057 2058 2058 2061

3 0 1 ŜDS 1982 1980 1982 1979 1982 1978

4 0 1 ŜDB 2077 2076 2077 2076 2076 2077
CPS 93.7% 93.2% 93.4% 93.3% 93.5% 93.1%
CPB 94.9% 94.8% 94.8% 94.6% 94.9% 94.6%

1 0 1 245886 Bias 17.5 15.1 20.7 15.7 36.1 18.0
2 0 1.5 SD 2043 1955 2046 1957 2234 1958

3 0 1.2 ŜDS 2359 1982 2357 1982 2289 1980

4 0 0.8 ŜDB 2190 2074 2195 2075 2358 2077
CPS 97.1% 95.1% 97.0% 94.9% 95.6% 95.1%
CPB 96.2% 96.1% 96.4% 96.1% 96.4% 96.1%

1 5 1 332923 Bias -67.4 -67.1 -53.1 -52.8 -58.6 -57.8
2 15 1 SD 2289 2290 2015 2015 1971 1975

3 20 1 ŜDS 2268 2265 2035 2032 1983 1980

4 25 1 ŜDB 2374 2373 2133 2133 2080 2081
CPS 95.0% 95.0% 94.8% 95.0% 94.5% 94.8%
CPB 95.2% 95.4% 95.6% 96.1% 96.0% 95.7%

1 5 1 492270 Bias 55.6 -7.1 57.8 -6.2 142.5 10.9
2 10 1.5 SD 2431 2302 2259 2055 3374 1985

3 15 2 ŜDS 4249 2274 4135 2039 3586 1980

4 20 2.5 ŜDB 2717 2366 2547 2121 3595 2072
CPS 97.0% 95.0% 99.9% 94.3% 96.1% 93.9%
CPB 96.8% 95.2% 97.2% 94.7% 96.4% 95.1%

4.2. Simulation results for large H and small nh’s

We considered a population with H = 600 strata. In stratum h, we inde-

pendently generated xi ∼ Γ(ϑh, θh), i = 1, . . . , Nh = 60, where ϑh and θh were

independently generated from the uniform U(6, 8). In stratum h, yi’s and zi’s

were generated as in Section 4.2. Values from different strata were independently

generated. In stratum h, a sample of size nh = 4 was taken without replacement

within Uh, using SRS or RHC as described in Section 4.1. Samples across strata

were independently sampled. The regression parameters were chosen as follows:

(αh, βh) = (a1, b1), h = 1, . . . , H/2, and (αh, βh) = (a2, b2), h = H/2 + 1, . . . , H,

where values of ak and bk, k = 1, 2, are shown in Table 2.

Table 2 reports the same quantities as those in Table 1 (for SRS or RHC),

except that there is only one estimated SD (and hence one CP) for each estimator.

For ŶC0, ŶCC , and ŶCS , the estimated SD, ŜD, is based on the bootstrap with

B = 300 and bootstrap sample size nh − 1 (see, for example, McCarthy and

Snowden (1985), for the reason of using nh−1). This bootstrap method, however,
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Table 2. Simulation Results for Six Estimators (Large H and Small nh’s).

k ak bk Y Sampling ŶC0 ŶS0 ŶCC ŶSC ŶCS ŶSS

1 20 1.5 3372400 SRS Bias -111.7 49.5
2 20 1.5 SD 5003 7199

ŜD 5157 7350
CP 95.6% 95.8%

RHC Bias -39.0 20.8 -268.7 -216.8 -277.8 -225.1
SD 6471 6803 5311 5789 5356 7182

ŜD 6421 7315 5303 6517 5328 7146
CP 95.2% 95.0% 94.8% 95.4% 95.0% 94.4%

1 20 1.5 4705570 SRS Bias -1787.0 -428.3
2 20 3 SD 11052 7317

ŜD 11462 7298
CP 96.8% 94.8%

RHC Bias 69.6 263.6 29.2 222.7 172.5 826.7
SD 8042 6768 7125 5834 11489 7272

ŜD 8176 7465 7361 6560 12073 7162
CP 94.8% 95.6% 95.2% 97.2% 95.4% 94.6%

1 20 1.5 3555523 SRS Bias 154.9 199.0
2 30 1.5 SD 5107 6901

ŜD 5157 7358
CP 95.2% 96.2%

RHC Bias -676.8 -642.4 -596.9 -562.7 -554.5 -547.5
SD 7108 7321 5622 5928 5621 7136

ŜD 7022 7603 5394 6619 5342 7144
CP 95.4% 94.8% 94.6% 96.8% 94.0% 95.2%

1 20 1.5 4852641 SRS Bias -608.9 -90.7
2 30 3 SD 10908 7328

ŜD 11358 7342
CP 96% 95.1%

RHC Bias 585.5 391.3 389.2 192.3 982.4 301.9
SD 7547 7135 6327 5832 11339 7471

ŜD 8393 7770 7105 6662 12010 7122
CP 96.8% 95.0% 96.8% 96.3% 96.5% 94.2%

does not work for ŶS0, ŶSC , and ŶSS , because it is highly possible that the

bootstrap sample in stratum h contains only one or two points (yi, xi) from Sh

when nh is small, which prevents us from regression fitting. Thus, we consider

substitution estimators based on the result in Theorem 2:

ϕ̂S0 =
1

N2

∑
h

∑
i∈Sh

σ̂2h (ζhi+wi−1)2+
1

N2

∑
h

σ̂2h(Nh−nh)+
1

N2

[∑
h

α̂h(N̂h−Nh)
]2
,
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ϕ̂SC =
1

N2

∑
h

∑
i∈Sh

σ̂2h(ζhi+wi−1)2+
1

N2

∑
h

σ̂2h(Nh−nh)+
[∑

h

α̂h

(N̂h

N̂
− Nh

N

)]2
,

ϕ̂SS =
1

N2

∑
h

σ̂2h
∑
i∈Sh

(
ψhi +

Nh

N̂h

wi − 1
)2

+
1

N2

∑
h

σ̂2h(Nh − nh),

where ζhi and ψhi are given in Theorem 2.

Under SRS, ŶC0 = ŶCC = ŶCS and ŶS0 = ŶSC = ŶSS . Thus, the results are

shown for ŶCS and ŶSS only.

The following is a summary of the results in Table 2.

1. The biases of all estimators are negligible, although they are relatively large

compared with those in Table 1.

2. In terms of SD, ŶSS is no longer always the best. When regression lines are all

the same, the estimators using combined regression are much more efficient

than those using separate regression lines, which is quite different from the

situation with large nh’s. On the other hand, when the slopes of regression

lines are different, the estimators using separate regression lines are more

efficient than those using combined regression. Under RHC, among the three

estimators using separate regression lines, ŶSS is no longer the best, ŶSC is.

3. The substitution variance estimators for ŶS0, ŶSC , and ŶSS and the bootstrap

variance estimator for ŶC0, ŶCC , and ŶCS perform well and result in good CP

of confidence intervals.

5. Discussion

We study the asymptotic efficiencies of estimators (1.1)−(1.6) in two different

asymptotic settings under stratified sampling with H strata and model (2.2). In

the case where H is fixed and all stratum sample sizes tend to infinity, the

estimator ŶSS in (1.6) is asymptotically the most efficient estimator, regardless

of whether regression models in different strata are the same or not. When

all stratum sample sizes are small and H tends to infinity, however, no general

conclusion can be made.

When H is fixed and all stratum sample sizes are large, it is not difficult

to derive design-based consistent variance estimators for all six estimators in

(1.1)−(1.6). In fact, it can be shown that the bootstrap variance estimators

used in Section 4.1 are design-based consistent. For the case where all stratum

sample sizes are small and H is large, it can still be shown that the bootstrap

variance estimators for ŶC0, ŶCC and ŶCS described in Section 4.2 are design-

based consistent.
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There are estimators of Y other than those in (1.1)−(1.6). For example,

an anonymous referee commented that we could consider regression adjustments

instead of sample size adjustments, which lead to an estimator of the form

H∑
h=1

[NhŶh − β̂h(Xh − X̂h)− α̂h(Nh − N̂h)]

with some estimators α̂h and β̂h. Asymptotic results can be similarly derived.
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Appendix

Proof of Theorem 1. Let P,E, and V be the the probability, expectation and

variance under both model (2.2) and design. By the fact that yi = αh+βhxi+ϵi,

i ∈ Sh and the definition of ŶSS , we have

ŶSS − Y

N
=
∑
h

[
(βh− β̂h)

(X̂h

N̂h

− Xh

Nh

)
+
( 1

N̂h

∑
i∈Sh

wiϵi−
∑

i∈Uh
ϵi

Nh

)]Nh

N
. (A.1)

First, notice that

E
[X̂h

N̂h

− Xh

Nh

]
= EsEm

[X̂h

N̂h

− Xh

Nh

]
= 0 and E

[ 1

N̂h

∑
i∈Sh

wiϵi −
∑

i∈Uh
ϵi

Nh

]
= 0.

By (C2) and Liapounov’s Central Limit Theorem,

1√
ψ1h

[X̂h

N̂h

− Xh

Nh

]
d→N(0, 1),

where

ψ1h = V
(X̂h

N̂h

− Xh

Nh

)
= VsEm

(X̂h

N̂h

− Xh

Nh

)
+ EsVm

(X̂h

N̂h

− Xh

Nh

)
= EsVm

(X̂h

N̂h

− Xh

Nh

)
= σ2xhEs

[ ∑
i∈Sh

( wi

N̂h

− 1

Nh

)2
+

∑
i∈Uh/Sh

1

N2
h

]
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= σ2xh

[
Es

(∑
i∈Sh

w2
i

N̂2
h

)
− 1

Nh

]
,

and the third equality follows since Em

(
X̂h/N̂h − Xh/Nh

)
= 0. By (C3), we

have
∑

i∈Sh
w2
i /N̂

2
h < 1/(nhM). It is easy to show that Nh/N̂h →p 1. By the

Dominated Convergence Theorem and Liapounov’s Central Limit Theorem, we

have
1√
ϕ1h

[X̂h

N̂h

− Xh

Nh

]
d→N(0, 1), (A.2)

where

ϕ1h =
σ2xh
N2

h

[
Es

(∑
i∈Sh

w2
i

)
−Nh

]
=
σ2xh
N2

h

( ∑
i∈Uh

wi −Nh

)
,

and σ2xh = E[xi], i ∈ Uh. Similarly, we have

1√
ϕ2h

[ 1

N̂h

∑
i∈Sh

wiϵi −
∑

i∈Uh
ϵi

Nh

]
d→N(0, 1),

where ϕ2h = σ2h(
∑

i∈Uh
wi −Nh)/N

2
h . Therefore, by (A.1),

ŶSS − Y

N
√
ϕSS

=
∑
h

√
ϕ2h√
ϕSS

[√ϕ1h
ϕ2h

βh−β̂h√
ϕ1h

(X̂h

N̂h

−Xh

Nh

)
+

1√
ϕ2h

(∑
i∈Sh

wiϵi

N̂h

−
∑
i∈Uh

ϵi
Nh

)]Nh

N
,

where ϕSS =
∑

h ϕ2hN
2
h/N

2 =
[∑

h σ
2
h

(∑
i∈Uh

wi−Nh

)]
/N2. Using ϕ1h/ϕ2h =

σxh/σh, (A.2), and β̂h − βh →p 0, we obtain

ŶSS − Y

N
√
ϕSS

=
∑
h

√
ϕ2h√
ϕSS

[ 1√
ϕ2h

( 1

N̂h

∑
i∈Sh

wiϵi −
∑

i∈Uh
ϵi

Nh

)]Nh

N
+ op(1).

Therefore, by Slutsky’s Theorem,

ŶSS − Y

N
√
ϕSS

d→N(0, 1).

From the conditions, there exists bh such that∑
i∈Sh

wi(xi − X̂h/N̂h)
2∑

h

∑
i∈Sh

wi(xi − X̂h/N̂h)2
→p bh.

According to the definition of β̂, we have β̂ →p β, where β =
∑

h bhβh. Similarly,

we can obtain
ŶCS − Y

N
√
ϕCS

d→N(0, 1),
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where ϕCS =
∑

h τhN
2
h/N

2 and τh = (βh − β)2ϕ1h + ϕ2h. Therefore,

ϕCS =
1

N2

∑
h

σ2xh(βh − β)2
( ∑

i∈Uh

wi −Nh

)
+ ϕSS .

For ŶSC , we have

ŶSC − Y

N
=
∑
h

αh

(N̂h

N̂
−Nh

N

)
+
∑
h

(βh−β̂h)
(X̂h

N̂
−Xh

N

)
+
∑
h

(∑
i∈Sh

wiϵi

N̂
−
∑
i∈Uh

ϵi
N

)
.

Similar to the previous proof, by the fact that β̂h →p βh, the asymptotic distri-

bution of (ŶSC − Y )/N is as same as T , where

T =
∑
h

αh

(N̂h

N̂
− Nh

N

)
+
∑
h

( 1

N̂

∑
i∈Sh

wiϵi −
1

N

∑
i∈Uh

ϵi

)
.

Therefore, under (C1)−(C3),

T − E[T ]√
ϕSC

d→N(0, 1),

where E[T ] = Es[
∑

h αh(N̂h/N̂ − Nh/N)] and ϕSC = ϕSS+Vs[
∑

hαh(N̂h/N̂ −
Nh/N)]. Under (C3), Nh/M <N̂h<NhM , N2

h/(Mnh) <
∑

i∈Sh
w2
i < MN2

h/nh.

Therefore N/M < N̂ < NM and
∑

h(N
2
h/(nhM)) <

∑
h

∑
i∈Sh

w2
i < M

∑
h

(N2
h/nh). Then ∣∣∣∑

h

αh

(NN̂h

N̂Nh

− 1
)∣∣∣ <∑

h

|αh|
(
M2 + 1

)
. (A.3)

Since nh/Nh → 0 then, for any fixed ϵ0 > 0, when nh is large enough,√∑
h

σ2h

( Nh

nhM
− 1
)
> ϵ0,

ϕSC ≥ ϕSS >
1

N2

∑
h

σ2h

( N2
h

nhM
−Nh

)
> 0.

Then

|E[T ]|√
ϕSC

≤
Es

[∣∣∣∑h αh

(
NN̂h/N̂Nh−1

)∣∣∣]√∑
h σ

2
h

(
Nh/nhM−1

) ≤ 1

ϵ0
Es

[∑
h

|αh|
∣∣∣NN̂h

N̂Nh

− 1
∣∣∣]→ 0,
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where the last inequality holds from N̂h/Nh →p 1, (A.3), and the Dominated

Convergence Theorem. Therefore, T/
√
ϕSC

d→N(0, 1), which implies

ŶSC − Y

N
√
ϕSC

d→N(0, 1).

Similarly, we can get the asymptotic properties of ŶS0, ŶCC , and ŶC0.

Proof of Theorem 2. By the Law of Large Numbers, we have β̂ → β. Then,
similar to the proof of Theorem 1, we have

ŶCS − Y

N
=
∑
h

[
(βh − β̂)

(X̂h

N̂h

− Xh

Nh

)
+
( 1

N̂h

∑
i∈Sh

wiϵi −
∑

i∈Uh
ϵi

Nh

)]Nh

N
. (A.4)

By (D2), it is easy to show that (ŶCS − Y )/N has the same distribution as T2,
where

T2 =
∑
h

[
(βh − β)

(X̂h

N̂h

− Xh

Nh

)
+
( 1

N̂h

∑
i∈Sh

wiϵi −
∑

i∈Uh
ϵi

Nh

)]Nh

N
.

For T2, E[T2] = EsEm[T2] = 0. Therefore, by Liapounov’s Central Limit Theo-
rem, we have

T2√
ϕCS

d→N(0, 1),

where

ϕCS = Es

[ 1

N2

(∑
h

(βh − β)2σ2xh + σ2h

)(N2
h

N̂2
h

∑
i∈Sh

w2
i −Nh

)]
.

For ŶCC , by Liapounov’s Central Limit Theorem, we have

(ŶCC − Y )/N −
∑
h

Es

[
(αh + (βh − β)µxh)(N̂h/N̂−Nh/N)

]
√
ϕ∗CC

d→N(0, 1),

where

ϕ∗CC = Vs

[∑
h

(
αh + (βh − β)µxh

)(N̂h

N̂
− Nh

N

)]
+

∑
h

[
σ2h + (βh − β)2σ2xh

]
Es

(∑
i∈Sh

w2
i

N̂2
−

2
∑

i∈Sh
wi

N̂N
+
Nh

N2

)
.

It can be shown that
√
n
(
N̂/N−1

)
= Op(1) and

∑
hN

2
h/(

√
nN2) = o(1). Based

on these facts, and similar to the proof of Theorem 1, we get

(ŶCC − Y )/N −
∑
h

Es

[(
αh + (βh − β)µxh

)(
N̂h

N̂
− Nh

N

)]
√
ϕCC

d→N(0, 1).
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Similar to the proof of Theorem 1, by (D1) and (D3),∑
h

Es

[(
αh + (βh − β)µxh

)(
N̂h

N̂
− Nh

N

)]
√
ϕCC

→ 0.

Therefore,
ŶCC − Y

N
√
ϕCC

d→N(0, 1).

For ŶSS , we have

ŶSS − Y

N
=
∑
h

[
(βh − β̂h)

(X̂h

N̂h

− Xh

Nh

)
+
( 1

N̂h

∑
i∈Sh

wiϵi −
∑

i∈Uh
ϵi

Nh

)]Nh

N
,

=
∑
h

[ ∑
i∈Sh

(
ψhi +

wi

N̂h

− 1

Nh

)
ϵi −

∑
i∈Uh/Sh

( 1

Nh

)
ϵi

]Nh

N
,

where

ψhi =
−(xi − x̄h)wi∑
i∈Sh

(xi − x̄h)2wi

(X̂h

N̂h

− Xh

Nh

)
.

Therefore,
ŶSS − Y

N
√
ϕSS

d→N(0, 1),

where

ϕSS =
∑
h

N2
h

N2
σ2hEsEmσ

2
h

[ ∑
i∈Sh

(
ψhi +

wi

N̂h

− 1

Nh

)2
+
Nh − nh
N2

h

]
.

Similarly, we can get the asymptotic properties of ŶC0, ŶSC , and ŶS0.
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