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Abstract: Statistical inference with missing data requires assumptions about the

population or about the response probability. Doubly robust (DR) estimators use

both relationships to estimate the parameters of interest, so that they are consistent

even when one of the models is misspecified. In this paper, we propose a method of

computing propensity scores that leads to DR estimation. In addition, we discuss

DR variance estimation so that the resulting inference is doubly robust. Some

asymptotic properties are discussed. Results from two limited simulation studies

are also presented.

Key words and phrases: Calibration, double protection, nonresponse, variance es-

timation.

1. Introduction

Missing data occurs in surveys because some of the sampled units refuse

to respond to the survey or because of the inability to contact them. Dropout

or noncompliance in clinical trials may also lead to missing responses for some

subjects. It is well known that unadjusted estimators may be heavily biased if

the respondents differ from the nonrespondents systematically with respect to the

study variables. It is thus desirable to develop estimation procedures exhibiting

low biases.

To adjust for the bias associated with missing data, two modeling approaches

are often used: the response probability (RP) model approach that requires the

specification of a response model describing the unknown nonresponse mechanism

and the outcome regression (OR) model approach that requires the specification

of the model describing the distribution of the study variable. In survey sam-

pling the RP model approach is also called the nonresponse model approach,

whereas the OR model approach is called the prediction model approach or the

imputation model approach. An estimator is said to be doubly robust (DR) if it

remains asymptotically unbiased and consistent if either model (nonresponse or

outcome regression) is true. DR procedures offer some protection against mis-

specification of one model or the other. This is clearly an attractive property

and is closely related with the philosophy of model-assisted estimation in survey
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sampling (Särndal, Swensson and Wretman (1992); Firth and Bennett (1998);
Fuller (2009)).

In recent years, DR estimation procedures have attracted a lot of attention
in mainstream statistics; e.g., Robins, Rotnitzky, and Zhao (1994), Scharfstein,
Rotnitzky, and Robins (1999), Tan (2006), Bang and Robins (2005), Kang and
Schafer (2008), Cao, Tsiatis, and Davidian (2009), among others. In the survey
sampling context, DR estimation has been studied in Kott (1994), Kott (2006),
Kott and Chang (2010), Kim and Park (2006), and Haziza and Rao (2006), among
others. Kott (2006) discussed the doubly robustness of the variance estimator
proposed by Folsom and Singh (2000) in the context of calibration for unit non-
response in survey sampling; see also Kott and Chang (2010). In the context of
imputation for missing data, DR variance estimation has been discussed in Haz-
iza and Rao (2006) and Kim and Park (2006) when the overall sampling fraction
is negligible. Haziza and Rao (2006) considered Taylor linearization procedures,
whereas replication variance estimation was studied in Kim and Park (2006).
However, Haziza and Rao (2006) and Kim and Park (2006) did not address the
double robustness of the variance estimators for large sampling fractions.

We consider DR inference in the sense that the inference based on point
estimator and variance estimator is justified if either one of the two models, non-
response model or outcome regression model, holds. The proposed doubly robust
estimator is quite efficient and provides a variance estimator that can be easily
implemented using software designed for complete data variance estimation. In
finite population sampling, the proposed variance estimator is slightly modified.

In Section 2, the basic setup is introduced. The proposed DR estimator and
its variance estimator are discussed in Section 3. In Section 4, the proposed
method is applied to the survey sampling context and the proposed variance
estimator is modified to account for the finite population. Results from two
simulation studies are presented in Section 5 to compare the performance of the
proposed estimator with those from existing methods. Concluding remarks are
made in Section 6.

2. Basic Setup

Suppose we have n independent realizations of a random variable Y , y1, . . .,
yn, from some distribution, and that we are interested in estimating θ = E(Y ). In
the absence of nonresponse to the study variable y, the parameter θ is consistently
estimated by the sample mean

θ̂n =

n∑
i=1

wiyi, (2.1)

where wi = 1/n. In Section 4, we use a different set of weights wi as we treat
the problem of DR inference in the survey sampling context.
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In addition to the study variable y, suppose a vector of auxiliary variables,

x, is available in the sample. Let δi be a response indicator attached to unit i

such that δi = 1 if yi is observed and δi = 0, otherwise. Instead of observing

(xi, yi) for the whole sample, we observe (xi, yi) for δi = 1 and observe only xi for

δi = 0. We assume that the response mechanism is missing at random (MAR)

in the sense of Rubin (1976).

A natural approach for estimating θ consists of first postulating a model for

the conditional distribution of yi given xi. In particular, if we are only interested

in the mean of the y-values, we consider the following model

E (yi | xi, δi = 0) = m (xi;β0) , (2.2)

where m (xi,β) is a continuous differentiable function of β. The model (2.2) is

called the OR model. Under MAR, (2.2) implies that E (yi | xi) = m (xi;β0).

A natural estimator of θ is the (deterministically) imputed estimator

θ̂p =

n∑
i=1

wi

{
δiyi + (1− δi)m(xi, β̂)

}
, (2.3)

where β̂ is a consistent estimator of the true parameter β0.

Since

θ̂p − θ̂n = −
n∑

i=1

wi (1− δi)
{
yi −m(xi, β̂),

}
we have

E
{
θ̂p − θ̂n | δ1, . . . , δn,x1, . . . ,xn

}
= −

n∑
i=1

wi (1− δi)
{
E (yi | xi, δi = 0)−m(xi, β̂)

}
,

where E(· | δ1, . . . , δn,x1, . . . ,xn) denotes the conditional expectation with re-

spect to the OR model. Thus, the validity of the imputed estimator (2.3) follows

if (2.2) is true and β̂ is a consistent estimator of β0.

Now, suppose that the probability of response to the study variable y, pi =

Pr (δi = 1 | xi), follows a parametric model

pi = pi(ϕ0) =
exp

(
ϕ′
0xi

)
1 + exp

(
ϕ′
0xi

) (2.4)

for some ϕ0. The model (2.4) is called the RP model. We assume that the

intercept term is included in (2.4). In the classical two-phase sampling setup,

where the second-phase sample corresponds to the set of respondents, the second-

phase conditional inclusion probability pi is known and the two-phase regression

estimator
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θ̂tp =

n∑
i=1

wi

[
m(xi; β̂) +

δi
pi

{
yi −m(xi; β̂)

}]
= θ̂n +

n∑
i=1

wi

( δi
pi

− 1
){
yi −m

(
xi; β̂

)}
(2.5)

is approximately unbiased for θ under the nonresponse model (Cochran (1977))

regardless of whether or not (2.2) holds. When the RP model is not correct, the

estimator is still approximately unbiased if (2.2) and the MAR condition hold

and β̂ is consistent for β0. Thus, θ̂tp is doubly robust in the sense that it remains

valid if either one of the two models holds.

When the response probability is estimated, rather than known, we consider

a class of estimators of the form

θ̂DR(β̂, ϕ̂) = θ̂n +

n∑
i=1

wi

{ δi

pi(ϕ̂)
− 1

}{
yi −m

(
xi; β̂

)}
, (2.6)

indexed by (β̂, ϕ̂), where β̂ is consistent for β0 under the assumed OR model and

ϕ̂ is consistent for ϕ0 under the assumed RP model. As noted by Scharfstein,

Rotnitzky, and Robins (1999), the double robustness property also follows if pi
is replaced by p̂i = pi(ϕ̂) using a consistent estimator ϕ̂ for ϕ0. Note that

the doubly robust estimator, θ̂DR(β̂, ϕ̂), in (2.6) is a class of estimators and

different choices of (β̂, ϕ̂) lead to different doubly robust estimators. Scharfstein,

Rotnitzky, and Robins (1999) and Haziza and Rao (2006) used ϕ̂ estimated by

maximum likelihood and β̂ estimated by ordinary or iteratively reweighted least

squares. Recently, Cao, Tsiatis, and Davidian (2009) proposed a doubly robust

estimator using the optimal score equation based on influence function theory.

However, the proposed variance estimator of Cao, Tsiatis, and Davidian (2009)

is not necessarily doubly robust.

We propose a DR estimator of the form (2.6) using a different choice of (β̂, ϕ̂)

which leads to a simplified DR variance estimator. Thus, the proposed point and

variance estimation procedure leads to DR inference.

3. Main Results

Let

S(ϕ) ≡
n∑

i=1

wi

{ δi
pi(ϕ)

− 1
}
hi(ϕ) = 0 (3.1)

be the (weighted) score equation for ϕ0, where hi(ϕ) = {∂pi(ϕ)/∂ϕ} /{1−pi(ϕ)}.
Given the choice of p̂i = pi(ϕ̂MLE) where ϕ̂MLE satisfies (3.1), Cao, Tsiatis, and

Davidian (2009) considered so-called the optimal DR estimator among the class

of the estimators of the form
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θ̂DR(β̂) =

n∑
i=1

wi

{
m

(
xi; β̂

)
+
δi
p̂i
(yi −m(xi; β̂))

}
. (3.2)

Rubin and van der Laan (2008) considered the β̂ that minimizes

n∑
i=1

w2
i

δi
p̂i

( 1

p̂i
− 1

)
{yi −m (xi;β)}2 ,

which is essentially the conditional variance ignoring the effect of estimating ϕ0

in the estimated response probability p̂i = pi(ϕ̂). To correctly account for the
effect of estimating ϕ0, Cao, Tsiatis, and Davidian (2009) proposed minimizing

n∑
i=1

w2
i

δi
p̂i

( 1

p̂i
− 1

){
yi −m (xi;β)− c′hi(ϕ̂MLE)

}2

with respect to (β, c). Note that in this case there is no guarantee that the
resulting estimator is optimal under the OR model. In fact, the proposed es-
timator of Cao, Tsiatis, and Davidian (2009) is sub-optimal because they first
estimate ϕ̂ by ϕ̂MLE obtained from maximum likelihood and then seek for the
optimal estimator in the class of estimators θ̂∗DR(β̂) = θ̂DR(β̂, ϕ̂MLE) as a func-
tion of β̂. As discussed in Kim and Kim (2007) and Kim and Riddles (2012),
the choice of ϕ̂MLE does not necessarily lead to the optimal propensity score
estimators. For example, according to Kim and Riddles (2012), when the OR
model is m(xi;β) = x′

iβ, the optimal choice of ϕ̂ can be obtained by solving

n∑
i=1

wi
δi

pi (ϕ)
xi =

n∑
i=1

wixi, (3.3)

which is different from the score equation for the MLE of ϕ0. Thus, we expect
that the efficiency of the sub-optimal estimator of Cao, Tsiatis, and Davidian
(2009) can be improved for a suitable choice of ϕ̂.

We propose a DR estimator θ̂p of the form (2.3) using (β̂, ϕ̂), where (β̂, ϕ̂)
is obtained by solving

n∑
i=1

wiδi

{ 1

pi (ϕ)
− 1

}
{yi −m (xi;β)}xi = 0, (3.4)

n∑
i=1

wi

{ δi
pi (ϕ)

− 1
}
ṁ (xi;β) = 0, (3.5)

simultaneously, where ṁ (xi;β) = ∂m(xi;β)/∂β. Because an intercept term is
included in x, (3.4) implies that

n∑
i=1

wiδi
1

pi(ϕ̂)

{
yi −m(xi; β̂)

}
=

n∑
i=1

wiδi
{
yi −m(xi; β̂)

}
.
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Thus, by (3.4), the imputed estimator (2.3) can be expressed as a doubly robust

estimator of the form (2.6).

Condition (3.4) has been used in Scharfstein, Rotnitzky, and Robins (1999)

and Haziza and Rao (2006). Condition (3.5) is a calibration condition in the

sense that the propensity score adjusted estimator applied to ṁ (xi;β) leads

to the complete sample estimator. For example, consider the linear OR model

for which m(xi;β) = x′
iβ. Then, (3.5) is equivalent to (3.3). Condition (3.3)

was considered by Folsom (1991), Iannacchione, Milne, and Folsom (1991), and

Chang and Kott (2008) in the context of unit nonresponse in survey sampling.

From (3.3), it follows that estimates corresponding to the x-variables do not

suffer from nonresponse error. Condition (3.4) means that β̂ is computed as

β̂ =
{ n∑

i=1

δi(p̂
−1
i − 1)xix

′
i

}−1
n∑

i=1

δi(p̂
−1
i − 1)xiyi.

Writing yi = x′
iβ0 + ei, the imputed estimator θ̂p can be written as

θ̂p = θ̂n +
n∑

i=1

wi

{ δi

pi(ϕ̂)
− 1

}
x′
i

(
β0 − β̂

)
+

n∑
i=1

wi

{ δi

pi(ϕ̂)
− 1

}
ei.

Note that the second term here is zero if (3.5) holds. Thus, under (3.5),

θ̂p = θ̂n +

n∑
i=1

wi

{ δi

pi(ϕ̂)
− 1

}
ei

and the variability associated with β̂ can be safely ignored. Furthermore, using

the fact ∂p−1
i (ϕ) /∂ϕ = −

{
p−1
i (ϕ)− 1

}
xi under (2.4), we can apply a Taylor

expansion to get

θ̂p = θ̂n+

n∑
i=1

wi

{ δi
pi(ϕ

∗)
−1

}
ei−

n∑
i=1

wiδi

{ 1

pi(ϕ
∗)

−1
}
eixi

(
ϕ̂− ϕ∗

)
+Op

(
n−1

)
,

(3.6)

where ϕ∗ is the probability limit of ϕ̂. Using (3.4), it can be shown that

n∑
i=1

wiδi

{ 1

pi(ϕ
∗)

− 1
}
eixi = op (1)

and (3.6) reduces to

θ̂p = θ̂n +

n∑
i=1

wi

{ δi
pi(ϕ

∗)
− 1

}
ei + op

(
n−1/2

)
. (3.7)
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Thus, the variability associated with ϕ̂ can also be safely ignored.
We need some regularity conditions. The following theorem extends the

above results to the general form of E(yi | xi) = m(xi;β0).
Assume the following regularity conditions:

(C.1) There is a fixed constant KB such that p−1
i < KB for all i = 1, 2, . . . , n.

(C.2) The response probability function pi(ϕ) is differentiable with continuous
first order partial derivatives for all ϕ.

(C.3) The solution (β̂, ϕ̂) to (3.4) and (3.5) is uniquely determined and satisfies
(β̂, ϕ̂) = (β∗,ϕ∗) + op(1) for some (β∗,ϕ∗).

(C.4) The mean function m(xi;β) is twice differentiable with continuous second-
order partial derivatives for all β.

(C.5) W (β) = (X,Y,m(x;β), ṁ(x;β)) has finite fourth moment for all β.

Theorem 1. Under (C.1)−(C.5), we have

√
n
(
θ̂p − θ̃p

)
= op (1) , (3.8)

where

θ̃p =

n∑
i=1

wi

[
m (xi;β

∗) +
δi

pi (ϕ
∗)

{yi −m (xi;β
∗)}

]
(3.9)

and (β∗,ϕ∗) is the probability limit of (β̂, ϕ̂).

Proof. Write the DR estimator as θ̂p = θ̂p(β̂, ϕ̂), where (β̂, ϕ̂) is the solution to
(3.4) and (3.5). Now, if

U (β,ϕ) =

n∑
i=1

wi

( δi
pi(ϕ)

− 1
)
{yi −m (xi;β)} ,

we can write
θ̂p(β̂, ϕ̂) = θ̂n + U(β̂, ϕ̂). (3.10)

Note that U (β,ϕ) satisfies

∂

∂ϕ
U (β,ϕ) = −

n∑
i=1

wiδi

{1− pi(ϕ)

pi(ϕ)

}
{yi −m (xi;β)}xi,

∂

∂β
U (β,ϕ) = −

n∑
i=1

wi

{ δi
pi(ϕ)

− 1
}
ṁ (xi;β) .

Thus, conditions (3.4) and (3.5), are equivalent to

∂

∂(β,ϕ)
U (β,ϕ) = 0. (3.11)



382 JAE KWANG KIM AND DAVID HAZIZA

Because of the existence of the second moment of the partial derivatives in (3.11),

standard arguments for the asymptotic normality of (β̂, ϕ̂) can be used to show

that

(β̂, ϕ̂)− (β∗,ϕ∗) = Op

(
n−1/2

)
. (3.12)

Because (β̂, ϕ̂) satisfies (3.11), its probability limit (β∗,ϕ∗) satisfies

E
{ ∂

∂(β,ϕ)
U (β,ϕ) | β = β∗,ϕ = ϕ∗

}
= 0. (3.13)

Condition (3.13) that implies that the contribution due to estimating the param-

eters (β,ϕ) is negligible in the asymptotic distribution of U (β,ϕ), is often called

Randles (1982) condition. From (3.12) and (3.13), we obtain

U(β̂, ϕ̂) = U(β∗,ϕ∗) + op(n
−1/2). (3.14)

Therefore, combining (3.10) and (3.14), we have (3.8).

The probability statement in (3.8) is made in the doubly robust sense that

the convergence in probability holds if one of the two models is true. If the

reference distribution in (3.8) is with respect to (2.2), then β∗ = β0. If the

reference distribution in (3.8) is with respect to (2.4), then ϕ∗ = ϕ0. When the

two models are true, then (β∗,ϕ∗) = (β0,ϕ0) and the variance of θ̃p is

V
(
θ̃p

)
= V

(
θ̂n

)
+ E

{ n∑
i=1

w2
i {pi(ϕ0)

−1 − 1}e2i
}
, (3.15)

where ei = yi − m(xi;β0). Under simple random sampling, (3.15) is equal to

the semiparametric lower bound of the asymptotic variance and, as a result, θ̂p
is locally efficient (Robins, Rotnitzky, and Zhao (1994)).

Taking

ηi (β,ϕ) = m (xi;β) +
δi

pi (ϕ)
{yi −m (xi;β)} , (3.16)

(3.8) means that

n∑
i=1

wiηi(β̂, ϕ̂) =

n∑
i=1

wiηi (β
∗,ϕ∗) + op

(
n−1/2

)
.

Thus, if (xi, yi, δi) are i.i.d., the ηi(β
∗,ϕ∗) are i.i.d., even though ηi(β̂, ϕ̂) are not

necessarily i.i.d.. Because ηi (β
∗,ϕ∗) are i.i.d., we can apply the Central Limit

Theorem and the Slutsky Theorem to get

√
n
(
θ̂p − θ

)
L→N

(
0, σ2

)
, (3.17)
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where
L→ denotes the convergence in distribution and σ2 = V ar {ηi(β∗,ϕ∗)}.

Furthermore, since ηi(β
∗,ϕ∗) are i.i.d with bounded fourth moments, we can

apply the standard complete sample method to estimate the variance of θ̃p =∑n
i=1wiηi (β

∗,ϕ∗). Then

V̂ (β∗,ϕ∗) =
1

n

1

n− 1

n∑
i=1

(ηi − η̄n)
2 , (3.18)

where ηi = ηi(β
∗,ϕ∗) and η̄n = n−1

∑n
i=1 ηi, satisfies

V̂ (β∗,ϕ∗)

V

p→ 1,

where V = n−1σ2 and
p→ denotes the convergence in probability. Therefore, by

the Slutsky Theorem again, we have

θ̂p − θ√
V̂ (β̂, ϕ̂)

L→N (0, 1) . (3.19)

This asymptotic result can be used to construct confidence intervals for θ = E(Y ).

The reference distribution in (3.19) is either the OR model or the RP model.

The variance estimator (3.18) of the proposed DR estimator is computation-

ally attractive because the linearized values, (3.16), are easy to compute.

4. Extension to Survey Sampling

We consider the problem of doubly robust inference in the survey sampling

context. Consider a finite population U of size N . We are interested in estimating

the mean of the finite population, θN = N−1
∑

i∈U yi. To that end, a sample s,

of size n is selected according to a given sampling design p(s). In the complete

data situation, a basic estimator is the expansion estimator given by (2.1) with

wi = 1/(Nπi), where πi denotes the first-order inclusion probability of unit i

in the sample. In the presence of nonresponse to the y-variable, the imputed

estimator θ̂p of θN is given by (2.3) with wi = 1/(Nπi). Note that θ̂p reduces to

θ̂n in the complete data case.

In finite population sampling, the set of respondents can be viewed as the

result of a three-stage process. First, the finite population is generated from an

infinite population according to a given model. Then, a sample s of size n, is

selected from the finite population according to a given sampling design p(s).

Finally, the set of respondents is generated from s according to the unknown

nonresponse mechanism. Therefore, we identify three sources of randomness: the

model m, which generates the vector of population values YU = (y1, . . . , yN )′;
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the sampling design p(s), which generates the vector of sample indicators IU =

(I1, . . . , IN )′ such that Ii = 1 if unit i is selected in the sample and Ii = 0,

otherwise; the nonresponse mechanism, which generates the vector of response

indicators δU = (δ1, . . . , δN )′. Here, the response indicator δi is defined for all

the population units.

For the RP model approach, the vector YU is held fixed and, under the RP

model approach, the properties of an estimator are evaluated under the joint

distribution induced by the sampling design and the nonresponse mechanism.

Given YU , the population mean θN is a fixed quantity that we want to estimate.

For the OR approach, the properties of estimators are evaluated with respect

to the joint distribution induced by the outcome regression model m and the

sampling design. Here, the population mean θN is random so we face a prediction

problem rather than an estimation problem. In both approaches, the vector

XU = (x1, . . . ,xN )′ is held fixed.

We discuss the asymptotic properties of the DR estimator θ̂p of the form (2.3)

using (β̂, ϕ̂), where (β̂, ϕ̂) is obtained by solving simultaneously (3.4) and (3.5).

Under some regularity conditions, the asymptotic equivalence in (3.8) holds and

the resulting imputed estimator is doubly robust.

Traditionally, the total variance of the DR estimator θ̂p has been expressed as

the sum of the sampling variance and the nonresponse variance. This decompo-

sition of the total variance results from viewing nonresponse as a second-phase of

selection; e.g., Särndal (1992) and Deville and Särndal (1994), among others. We

consider an alternative framework, which we call the reverse framework; e.g., Fay

(1991), Rao and Shao (1992), Shao and Steel (1999) and Kim and Rao (2009).

It consists of viewing the situation prevailing in the presence of nonresponse as

follows: first, applying the nonresponse mechanism, the finite population U is

randomly divided into a population of respondents Ur and a population of non-

respondents Um; given (Ur, Um), a sample s, containing both respondents and

nonrespondents, is selected from U according to the given sampling design.

Under the RP model approach, the total variance of θ̂p, V (θ̂p | XU ,YU ), can

be expressed as

V RP
T = V RP

1 + V RP
2 , (4.1)

where V RP
1 = E{V (θ̂p | YU ,XU , δU )|YU ,XU} and V RP

2 = V {E(θ̂p | YU ,XU ,

δU )|YU ,XU}. Under the OR model, the total variance of θ̂p is

VT = V OR
1 + V OR

2 , (4.2)

where V OR
1 = E{V (θ̂p − θN | YU ,XU , δU ) | XU , δU} and V OR

2 = V {E(θ̂p − θN |
YU ,XU , δU ) | XU , δU}. An estimator of V RP

T (respectively V OR
T ) is thus obtained

by separately estimating V RP
1 and V RP

2 (respectively V OR
1 and V OR

2 ). Under
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mild regularity conditions, the component V RP
1 (respectively V OR

1 ) is of order

O
(
n−1

)
, whereas the components V RP

2 (respectively V OR
2 ) is of order O

(
N−1

)
.

Therefore, the contribution of V RP
2 (respectively V OR

2 ) to the total variance,

V RP
2 /V RP

T (respectively V OR
2 /V OR

T ) is of order O
(
N−1n

)
and is negligible when

the sampling fraction n/N is negligible.

In order to estimate either V RP
1 or V OR

1 , it suffices to estimate V (θ̂p|YU ,XU ,

δU ), the variance due to sampling conditional on YU ,XU and δU . We can apply

Theorem 1, which states that θ̂p is asymptotically equivalent to θ̃p given by (3.9),

so we can approximate V (θ̂p|YU ,XU , δU ) by V (θ̃p|YU ,XU , δU ). For example,

for a fixed size or random size without replacement sampling design, we have

V (θ̃p|YU ,XU , δU ) =
1

N2

∑
i∈U

∑
j∈U

(πij − πiπj)
ηi
πi

ηj
πj
, (4.3)

where ηi is given by (3.16) and πij denotes the second order inclusion probability

for units i and j. An estimator of V RP
1 (respectively V OR

1 ), denoted by V̂1, is

then

V̂1 =
1

N2

∑
i∈s

∑
j∈s

(πij − πiπj)

πij

η̂i
πi

η̂j
πj
,

where η̂i is obtained from ηi by replacing (β0,ϕ0) with (β̂, ϕ̂). Note that V̂1 is

obtained by applying a complete data variance estimation method to η̂i in the

sample. Under mild regularity conditions (e.g., Deville (1999)), the estimator V̂1
is consistent for either V RP

1 or V OR
1 regardless of the validity of the assumed RP

or OR model. Consistency of V̂1 follows from standard regularity conditions used

in the complete data case. If the sampling fraction n/N is negligible, a consistent

estimator of the total variance of θ̂p (under either the RP or the OR model) is

given by V̂1.

When the sampling fraction is not negligible, one must take the term V RP
2

into account (in the case of the RP model) or V OR
2 (in the case of the OR model).

Once again, we use the asymptotic equivalence between θ̂p and θ̃p established in

Theorem 1. We have

E(θ̃p − θN |YU ,XU , δU ) =
1

N

∑
i∈U

(η∗i − yi),

where η∗i = ηi(β
∗,ϕ∗) is defined as (3.16). Under the RP model,

V RP
2 = V

{
E(θ̃p − θN |YU ,XU , δU )|YU ,XU

}
=

1

N2

∑
i∈U

pi(1− pi)

p2i
{yi −m(xi,β

∗)}2.
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Thus, an estimator of V RP
2 , denoted by V̂2, is

V̂2 =
1

N2

∑
i∈s

π−1
i δi

(1− pi(ϕ̂))

pi(ϕ̂)2
ê2i , (4.4)

where êi = yi − m(xi, β̂). Because (β̂, ϕ̂) is a consistent estimator of (β∗,ϕ0)

under the RP model, V̂2 in (4.4) is asymptotically unbiased and consistent for

V RP
2 under the RP model. Therefore, a consistent estimator of the total variance

under the RP model is given by

V̂T = V̂1 + V̂2. (4.5)

To see if V̂T in (4.5) is doubly robust, one needs to check if V̂2 in (4.4) is

consistent for V OR
2 under the OR model. We first note that

V OR
2 = V

{
E(θ̃p − θN |YU ,XU , δU ) | XU , δU

}
=

1

N2

∑
i∈U

( δi
pi(ϕ

∗)
− 1

)2
V (yi | xi)

=
1

N2

∑
i∈U

{ δi
pi(ϕ

∗)2
− 2δi
pi(ϕ

∗)
+ 1

}
V (yi | xi). (4.6)

Thus, the asymptotic bias of V̂2 in (4.4), as an estimator of V OR
2 under the OR

model, is

E
{
V̂2

}
− V OR

2
.
=

1

N2

∑
i∈U

E
{ δi
pi(ϕ

∗)
− 1

}
V (yi | xi). (4.7)

Thus, under the OR model, if we further assume that V (yi | xi) = ψ(xi;α0) for

some α0 and a consistent estimator α̂ is available, then the right side of (4.7) can

be estimated by

B̂
(
V̂2

)
=

1

N2

∑
i∈s

π−1
i

{ δi

pi(ϕ̂)
− 1

}
ψ(xi; α̂). (4.8)

The expected value of the estimated bias term in (4.8) is asymptotically equal to

zero under the RP model because pi(ϕ̂) converges to the true response probability.

Also, we expect the term B̂(V̂2) to be large if the RP model is misspecified and

the OR model does not fit the data well, in which case the quantity ψ(xi; α̂) is

likely to be large. Thus, the bias-adjusted estimator of the total variance

V̂T = V̂1 + V̂2 − B̂(V̂2) (4.9)

is doubly robust.
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5. Simulation Study

We performed two simulation studies. The first, presented in Section 5.1,

compares the performance of several point and variance estimators in the infi-

nite population set-up. In Section 5.2, the case of finite population sampling is

considered.

5.1. Infinite population set-up

The simulation study can be described as a 2 × 2 × 5 factorial design with

R =5,000 replications within each cell. The factors are two types of sampling

distributions, two types of the nonresponse mechanisms, and five types of point

estimators. For the sampling distributions, the first was generated from a linear

regression model, and the second was generated according to a non-linear model.

For the linear model, we used

yi = 1 + x1i + ϵi, (5.1)

where x1i ∼ N(1, 1), ϵi ∼ N(0, 1), and x1i and ϵi are independent. For the non-

linear model, we used the same x1i and ϵi, but yi was generated independently

according to

yi = 0.5(x1i − 1.5)2 + ϵi. (5.2)

Two random samples of size n = 500 were separately generated from the two

models. From each sample, we generated two types of the respondents from

Bernoulli(p1i) (Type A) and Bernoulli(p2i) (Type B), respectively, with logit(p1i)

= x2i and logit (p2i) = −0.5 + 0.5(x2i − 2)2, where x2i ∼ exp(1) and x2i is

independent of (x1i, ϵi). The overall response rates were about 60% in both

cases.

In each sample, we computed five estimators for θ = E(Y ): the complete

sample estimator (θ̂n = n−1
∑n

i=1 yi, Complete); The proposed doubly robust

estimator, (New); the doubly robust estimator of Haziza and Rao (2006), (HR);

the doubly robust estimator of Cao, Tsiatis, and Davidian (2009), (CTD); the

doubly robust estimator of Tan (2006), (Tan).

We considered three scenarios at the estimation stage:

1. Scenario 1: Both models are correct, the sample was generated from (5.1)

and the respondents were generated from the Type A model. The “working”

OR model is E(yi | x1i) = β0 + β1x1i and the “working” RP model is δi ∼
Bernoulli(pi) with logit(pi) = ϕ0 + ϕ1x2i.

2. Scenario 2: Only the OR model is correct, we used the working models in

Scenario 1 but the sample was generated from (5.1) and the respondents were

generated from the Type B model.
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3. Scenario 3: Only the RP model is correct, we used the working models in

Scenario 1 but the sample was generated from (5.2) and the respondents were

generated from the Type A model.

For the estimators HR, CTD and Tan, (ϕ̂0, ϕ̂1) was computed by maximum

likelihood, whereas it was computed by solving

n∑
i=1

wi
δi

pi(ϕ)
(1, x2i) =

n∑
i=1

wi (1, x2i) (5.3)

for the New estimator, where ϕ = (ϕ0, ϕ1) and wi = 1/n. Once the p̂i’s were

computed, both HR and the New methods used (β̂0, β̂1) given by

(β̂0, β̂1)
′ =

{ n∑
i=1

wiδi
(
p̂−1
i − 1

)
xix

′
i

}−1
n∑

i=1

wiδi
(
p̂−1
i − 1

)
xiyi, (5.4)

where xi = (1, x1i)
′. For the CTD estimator, we used

(β̂0, β̂1, ĉ0, ĉ1)
′=

{ n∑
i=1

wiδip̂
−1
i

(
p̂−1
i −1

)
x̃ix̃

′
i

}−1
n∑

i=1

wiδip̂
−1
i

(
p̂−1
i −1

)
x̃iyi,

(5.5)

where x̃i = (1, x1i, p̂i, p̂ix2i)
′. The doubly robust estimator of Tan (2006) is

computed as

θ̂tan =

n∑
i=1

wi
δiyi
p̂i

−
n∑

i=1

wi

( δi
p̂i

− 1
)(

k̂0 + k̂1m̂i

)
,

where m̂i = β̂0 + β̂1x1i and

(k̂0, k̂1, d̂0, d̂1)
′ =

{ n∑
i=1

wiδip̂
−1
i

(
p̂−1
i − 1

)
z̃iz̃

′
i

}−1
n∑

i=1

wiδip̂
−1
i

(
p̂−1
i − 1

)
z̃iyi,

(5.6)

where z̃i = (1, m̂i, p̂i, p̂ix2i)
′.

Table 1 presents the Monte Carlo averages and variances of the five esti-

mators under the different scenarios. New, HR, CTD, and Tan were all ap-

proximately unbiased in all scenarios, illustrating that their double robustness.

Turning to relative efficiency, the New estimator showed the best performances in

all cases. In Scenario 1, the CTD estimator had the largest variance. In Scenario

2, the New estimator showed the best performance - the calibration condition

(5.3) can be justified as the optimality condition when the OR model is true.

Tan’s estimator showed slightly higher variance under Scenario 2, whereas the

CTD estimator had slightly higher variance under Scenario 3.
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Table 1. Monte Carlo average and variance of the point estimators in simu-
lation one.

Scenario Method Mean Variance Standardized
Variance

Complete 2.00 0.003925 100
1 New 2.00 0.005524 141

(Both models true) CTD 2.00 0.005907 150
HR 2.00 0.005524 141
Tan 2.00 0.005530 141

Complete 2.00 0.003925 100
2 New 2.00 0.005278 134

(OR model true) CTD 2.00 0.005287 135
HR 2.00 0.005360 137
Tan 2.00 0.005623 143

Complete 0.62 0.003466 100
3 New 0.62 0.005936 171

(RP model true) CTD 0.62 0.006540 189
HR 0.62 0.005939 171
Tan 0.62 0.005942 171

We only consider variance estimation for the CTD method and the New

method. The variance estimator proposed by Cao, Tsiatis, and Davidian (2009)

was computed using (3.18) with

ηi = m(xi; β̂) +
δi
p̂i

{
yi −m(xi; β̂)

}
− ĉ (δi − p̂i) (1, x2i)

′ , (5.7)

where β̂ = (β̂0, β̂1) and ĉ = (ĉ0, ĉ1) were computed from (5.5). The variance

estimator for the New estimator was computed using (3.18) with

ηi = m(xi; β̂) +
δi
p̂i

{
yi −m(xi; β̂)

}
(5.8)

and β̂ = (β̂0, β̂1) given by (5.4). In (5.8), we obtained p̂i using maximum likeli-

hood. Variance estimation in the context of Tan’s estimator was not computed

here as Tan (2006) did not discuss variance estimation.

Table 2 gives the Monte Carlo bias of the variance estimators and the cov-

erage of the interval estimators of the CTD and the New estimators. We used

(θ̂−1.96
√
V̂ , θ̂+1.96

√
V̂ ) for interval estimation. The proposed variance estima-

tor for the New estimator showed small relative biases (less than 5% in absolute

values) in all scenarios, suggesting that the variance estimator for the New es-

timator is doubly robust. The variance estimator for CTD showed somewhat

modest bias (8.27%) under Scenario 3.
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Table 2. Monte Carlo percent relative bias of the two variance estimators
and coverage of the two interval estimators in simulation one.

Scenario Method Relative Coverage
Bias (%) (%)

1 New 2.27 95.1
CTD 5.75 94.9

2 New 4.69 95.5
CTD 3.33 95.4

3 New -0.04 94.7
CTD 8.27 94.7

Table 3. Characteristics of the population.

Stratum 1 2 3 4
Nh 2000 1500 1000 500
β0h 10 15 20 25
β1h 1 1.5 2 2.5
β2h 1 1.5 2 2.5
R2

h 0.64 0.52 0.57 0.61

5.2. Survey sampling set-up

We carried out a simulation study in the survey sampling set-up. We gen-

erated a population of size N = 5, 000 consisting of four strata U1, . . . , U4 of

size N1, . . . , N4, respectively. We generated 5 variables: a variable of interest y

and three auxiliary variables x1-x3. Each of the x-variable was independently

generated from a Gamma distribution with parameters 2 and 25. Then, given x1
and x2, the y-values were generated according to

yi = β0h + β0h + β1hx1i + β2hx2i + ϵi, for i ∈ Uh,

where the ϵi’s were generated from a normal distribution with mean 0 and vari-

ance σ2h, i ∈ Uh, whose value was set to lead to a given coefficient of determination

(R2
h). The characteristics of the population are shown in Table 3.

The objective consisted in estimating the finite population mean θN =

n−1
∑

i∈U yi. From the population we generated R = 5, 000 samples, in each

stratum a simple random sample sh of size nh was selected from Uh, h = 1, 2, 3, 4.

Equal allocation was used with nh = 125 and nh = 250, which correspond to an

overall sampling fraction of 10% and 20%, respectively. This particular design

leads to unequal probability of selection for units in different strata.

In each selected sample, nonresponse to the study variable y was generated

according to

logit (pi) = −2 + 0.03x1i + 0.03x2i.

In each stratum, the response rate was approximately equal to 70%.
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We computed five estimators of the mean: the complete sample estimator

(C) given by (2.1) with wi = 1/(Nπi); the propensity score adjusted (PSA)

estimator given by (2.1) with wi = 1/(Nπip̂i); the estimator of Haziza and Rao

(2006) (HR); the estimator of Cao, Tsiatis, and Davidian (2009) (CTD); the

proposed estimator (New). We considered three scenarios:

(i) Scenarios 1: The RP and the OR models were correctly specified.

(ii) Scenario 2: Only the OR model was correctly specified. For the RP working

model, we used logit(pi) = ϕ0 + ϕ1x1i + ϕ2x3i.

(iii) Scenario 3: Only the RP model was correctly specified. For the OR working

model, we used E(yi | xi) = β0 + β1x1i + β3x3i.

As a measure of the bias of an estimator θ̂, we used the Monte Carlo Percent

Relative Bias (RB),

RB(θ̂) = 100× EMC(θ̂)− θN
θN

,

where EMC(θ̂) = R−1
∑R

r=1 θ̂
(r) and θ̂(r) denotes the estimator θ̂ for the r-th

sample. To compare the efficiency of the estimation procedures, we computed the

percent relative efficiency, using the complete sample estimator as the reference.

In each sample, we computed the estimator of the total variance (corre-

sponding to the New estimator) given by (4.9). In order to compute (4.8), we

used

ψ(xi; α̂) =

∑
i∈swiδiê

2
i∑

i∈swiδi
,

where êi denotes the residual attached to unit i obtained after fitting the working

outcome regression model. As a measure of the bias of V̂T , we used the Monte

Carlo percent relative bias of the variance estimator. The relative bias of V̂T is

shown in Table 4 (in parentheses).

Table 4 presents the Monte Carlo percent relative bias and percent relative

efficiency (with respect to the complete data estimator) of five estimators under

the three scenarios. The HR, CTD, and New estimators all showed negligible bias

in all scenarios, which is an indication that they are all doubly robust. The PSA

estimator showed a modest bias when the RP model was misspecified. In terms

of efficiency, the estimators HR, CTD, and New showed similar performances

in all the scenarios, although the CTD was slightly less efficient than the other

two. When the RP model was misspecified (Scenario 2), the PSA estimator

showed a low efficiency, as expected, and the other two estimators showed almost

identical performances. In Table 4, the proposed variance estimator shows good

performances in all scenarios (with a relative absolute bias less than 5%).
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Table 4. Monte Carlo percent relative bias and percent relative efficiency
of five estimators and Monte Carlo percent relative bias of the proposed
variance estimator.

f = 0.1 f = 0.2
Scenario Method RB RE RB RE

Complete 0.00 100 0.00 100
PSA 0.04 271 0.01 278

1 HR 0.04 270 0.01 278
CTD 0.08 274 0.03 281
New 0.04 270 0.01 278

(-1.2) (2.5)
Complete 0.00 100 0.00 100

PSA 0.76 394 0.75 550
2 HR 0.03 267 0.01 296

CTD 0.05 270 0.02 298
New 0.03 267 0.01 296

(-1.4) (-3.1)
Complete 0.00 100 0.01 100

PSA 0.05 265 0.04 288
3 HR 0.06 264 0.05 289

CTD 0.09 268 0.06 291
New 0.06 264 0.05 288

(3.7) (1.7)

Percent relative biases of the variance estimators are in parenthesis.

6. Concluding remarks

In this paper, we proposed a new doubly robust estimator that showed good

finite sample performances in simulation studies. The resulting variance estima-

tor is also doubly robust and can be readily implemented using complete data

software.

The proposed estimator is based on single deterministic imputation and it

is well known that the single imputation of the form (2.3) can lead to biased

estimates for the population proportions. In this case, fractional imputation,

considered by Fay (1996), Kim and Fuller (2004) and Fuller and Kim (2005),

can be used to obtain valid estimates for several parameters. Doubly robust

fractional imputation will be discussed elsewhere.

In the simulation studies, the new method showed better efficiency than the

other doubly robust estimators in most cases, but there is no guarantee that it is

uniformly optimal. Further investigation in this direction is also a topic of future

research.
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