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Abstract: A semiparametric accelerated failure time (AFT) model is proposed to

evaluate the effects of risk factors on the unbiased failure times for the target pop-

ulation given the observed length-biased data. The analysis of length-biased data

is complicated by informative right censoring due to the biased sampling mecha-

nism, and consequently the techniques for conventional survival analysis are not

applicable. We propose estimating equation methods for estimation and show the

asymptotic properties of the proposed estimators. The small sample performance

of the estimating methods are investigated and compared with that of existing

methods under various underlying distributions and censoring mechanisms. We

apply the proposed model and estimating methods to a prevalent cohort study, the

Canadian Study of Health and Aging (CSHA), to evaluate the survival duration

according to diagnosis of subtype of dementia.
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1. Introduction

Dementia is a common geriatric syndrome that affects more than 5 million

Americans (Lee and Chodosh (2009); Hebert et al. (2003)). Among people older

than 65 years in the United States, dementia is the fifth leading cause of death

(Minino et al. (2007)). Evaluation of survival duration from dementia onset has

become an important public health issue, since life expectancy is increasing and

consequently more older adults are being diagnosed with dementia. Although it

is generally agreed that dementia shortens life expectancy, the estimated survival

duration from the onset of dementia has a large variation, ranging from 3 to 9

years (Fitzpatrick et al. (2003); Helzner et al. (2003)). Most of these estimates

were based on prevalent cohort studies, in which subjects who were identified at

recruitment to the studies were followed to record their time to death. Although

prevalent sampling has been widely used in prospective cohort studies due to its

convenience and economic considerations, estimation of survival duration could
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be inflated without adjustment for prevalent sampling bias. Wolfson et al. (2001)

reported that the median survival estimate after adjustment for biased sampling

is much shorter than the previously reported estimates that ignored the bias.

Prevalent sampling has been widely used in prospective cohort studies, which

involves the observance of left-truncated failure times with potential right cen-

soring. Typically, subjects who have experienced the initiating event but have

not experienced the failure event at the time of examination (or recruitment) are

sampled into the cohort and followed prospectively for the failure event. The

initiating event may be the onset or diagnosis of a disease, and the failure event

may be death/recurrence of the disease. The time to the failure event may be

right censored. It is clear that the subjects under observation comprise a subset

of the original target population, and the subjects who did not survive to the

examination times are left truncated. If the initial event (e.g. the onset of a

disease) follows a stationary Poission process, i.e., the truncation time follows

a uniform distribution, these left-truncated data are called length-biased data.

The assumption of a uniform truncation distribution can be examined by formal

goodness-of-fit tests (Addona and Wolfson (2006); Mandel and Betensky (2007)).

Length-biased data are often encountered in studies of epidemiologic co-

horts, cancer prevention, and labor economy (Zelen and Feinleib (1969); Lan-

caster (1979); Vardi (1989); Nowell and Stanley (1991); De Una-Alvarez, Otero-

Giraldez, and Alvarez-Llorente (2003); Zelen (2004); Greenberg et al. (2005);

Song et al. (2006)), in which the probability of an individual being selected from

the target population is proportional to the duration from the first event to the

failure event. Although the issues of length bias and the need to correct for bias

in estimation and inference in various applications have been well recognized for

decades in the epidemiology and statistics literature, considerable methodological

gaps remain. Previous work has largely focused on one-sample estimates for the

length-biased failure time distribution, either conditional on the observed trun-

cation times (Turnbull (1976); Lagakos, Barraj, and De Gruttola (1988); Wang

(1991); Kalbfleisch and Lawless (1991); Wang, Brookmeyer, and Jewell (1993);

Luo and Tsai (2009)), or with an unconditional approach (Vardi (1982, 1989);

Asgharian, M’Lan, and Wolfson (2002); Asgharian and Wolfson (2005)). There

is little work considering regression analysis for modeling the association between

risk factors and population failure times. Recently, under the proportional haz-

ards model, Tsai (2009) extended the pseudo-partial likelihood approach of Wang

(1996), and Qin and Shen (2010) proposed inverse weighted estimating equation

approaches for right-censored length-biased data.

The accelerated failure time (AFT) model is an important alternative to

Cox’s proportional hazards model and appeals to investigators because of its

straightforward interpretation. Large sample properties and methods of infer-

ence have been extensively investigated over the last twenty years for traditional



ANALYZING LENGTH-BIASED DATA WITH AFT MODEL 315

right-censored survival data (Prentice (1978); Buckley and James (1979); Miller

and Halpern (1982); Ritov (1990); Tsiatis (2009); Lai and Ying (1991a); Ying

(1993); Lin and Ying (1995); Jin et al. (2003)). However, the length-biased sam-

pling and the resultant violation of the assumption for independent censoring

complicate the use of the AFT model on right-censored length-biased data. Re-

cently, Chen (2010) and Mandel and Ritov (2010) utilized the invariant property

of the covariate effects in the AFT model to propose estimating methods for

length-biased data not subject to right censoring. When length-biased failure

times are subject to right censoring, the aforementioned methods cannot be eas-

ily extended to accommodate the induced dependent censoring. Shen, Ning, and

Qin (2006) proposed an estimating equation approach under the transformation

model as well as the AFT model. The advantage of the estimating equation

approach is its ease in calculation because of the closed form of the solution for

the estimating equations. However, the equations are based on the first moment

property of the observed failure times, which may not be efficient. In a subse-

quent paper, Ning, Qin, and Shen (2011) generalized a Buckley-James type of

estimator in traditional survival analysis of length-biased data. The proposed

estimators under the AFT model have pros and cons under different scenarios.

Hence, it is desirable to develop more efficient estimation methods under the AFT

model given right-censored length-biased data and to compare their performance

for various censoring distributions and underlying distributions.

Our goal is to use the semiparametric AFT model to infer the relationship

between the unbiased survival time and the diagnosis of a subtype of dementia

using data from the Canadian Study of Health and Aging (CSHA). The CSHA

is a large national epidemiology study of dementia and other health problems of

people aged 65 years and over in Canada (Lindsay et al. (2004); Wolfson et al.

(2001)). In the first phase of the study, conducted from 1991 to 1992, 14,026

subjects aged 65 or older were randomly selected from 36 urban and surrounding

rural areas in 10 Canadian provinces. Among them, 10,263 agreed to participate

and were screened for dementia with the Modified Mini-Mental State Examina-

tion. Researchers identified 1,132 subjects with dementia and classified them into

subcategories of dementias. Our analysis is limited to subjects with a diagnosis of

probable Alzheimer’s disease, possible Alzheimer’s disease, or vascular dementia.

While there is no consensus regarding the association between dementia subtype

and survival outcome, it is of great interest to estimate the survival distribution

by each diagnosis type and to investigate the association under a flexible model

structure. Information about the date of onset of dementia was collected in a

hierarchical fashion from the answers to three questions from the Cambridge Ex-

amination for Mental Disorders of the Elderly (Wolfson et al. (2001)). In the

second phase of the CSHA, conducted from 1996 to 1997, all participants who
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could be contacted were re-evaluated for dementia; subjects with dementia who

died before and during the follow-up study were identified and the dates and

causes of death were recorded. The third phase of the CSHA from 2001 to 2002

was generally the same as the second phase of the study. As expected, selection

bias occurred under the described sampling circumstances: the observed time

intervals from dementia diagnosis to death tended to be longer for subjects in

the CSHA compared to those from subjects in the general population. An ana-

lytic approach that ignores such selection bias could result in an overestimation

of the survival duration for subjects with dementia, and consequently an under-

estimation of the deleterious effect of dementia on life expectancy. Moreover, the

estimation of the association between dementia diagnoses and disease prognosis

could be biased as well.

The paper is organized as follows. Section 2 introduces the notation and the

semi-parametric AFT model. In Section 3, we propose two types of semi-rank-

based regression methods to model length-biased right-censored data under the

AFT model and describe the associated large sample properties of the estimators.

We examine the performance of the proposed estimators through a simulation

study in Section 4. We revisit the motivating example and present the analysis

results of the CSHA in Section 5. We conclude with a discussion in Section 6,

and provide details of the proofs in the Appendix.

2. Notation and Models

Consider the CSHA, in which subjects who were identified with dementia but

had survived up to the time of recruitment were sampled and followed prospec-

tively until death or censoring. Let T̃ be the unbiased time measured from onset

of dementia to death in the target population, T be the observed length-biased

time in the sample population, A be the time of recruitment measured from onset

of dementia, V be the time from recruitment to death, and C be the residual

censoring time measured from recruitment. Denote the covariate of interest as

the p-vector X. Conditional on X, the residual censoring time C and (A, V ) are

assumed to be independent. Observed data are represented by n independent

samples, (Yi, Ai, δi,Xi), where Yi = min{Ti, Ai + Ci}, δi = I(Vi ≤ Ci), and I(.)

is the indicator function. Given the covariates, X = x, let f(.|x) be the density

function for the unbiased time T̃ . Under the sampling constraint that the value

of T̃ is observed only when T̃ > A, the density function of the length-biased time

T is

fLB(t|x) =
tf(t|x)∫∞

0 uf(u|x)du
=
tf(t|x)
µ(x)

,

where µ(x) ≡
∫∞
0 uf(u|x)du.
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The AFT model (Kalbfleisch and Prentice (1980); Cox (1984)) relates the
logarithms of the survival time to the covariate of interest as,

log T̃i = XT
i β + ϵi, (2.1)

where β is a P × 1 parameter vector and ϵi, i = 1, · · · , n are independently and
identically distributed (i.i.d.) random errors with an unspecified distribution.

3. Semi-rank-based Estimation Methods

For classical survival data, Tsiatis (2009) proposed a rank-based estimating
equation by considering the transformed time scale under the AFT model. For
left-truncated and right-censored data, Lai and Ying (1991b) introduced a class
of rank-based estimators under the AFT model. Under length-biased sampling,
the censoring time A + C is dependent on the failure time A + V even if the
censoring time C is independent of (A, V ). Hence, the generalizations of the
above methods entail new challenges in adjusting for non-informative censoring.
The generalized methods not only depend on the rank, but also rely on the
magnitude of failure time for length-biased data.

3.1. Estimation method based on modified risk set

For general left-truncated and right-censored data, Lai and Ying (1991b)
took the at-risk set at time t as R∗(t,b) = {i ≤ n : Ai exp (−XT

i b) < t ≤
Yi exp (−XT

i b)}, and proposed the rank-based estimating equations for β based
on the at-risk sets,

ULT (β) =

n∑
i=1

δi

[
Xi −

∑n
j=1XjI{j ∈ R∗(Yie

−XT
i β,β)}∑n

j=1 I{j ∈ R∗(Yie
−XT

i β,β)}

]
. (3.1)

This estimating equation, originally proposed for general left-truncated data,
does not effectively utilize information on the truncation time and is consequently
inefficient for length-biased data. Under the stationarity assumption for length-
biased data, Tsai (2009) proposed the pseudo-partial likelihood method under
Cox’s proportional hazards model by including the information for the stationar-
ity process. Under the AFT model assumption for T̃ , we include the information
on truncation time for length-biased data and modify this “at risk” set to in-
crease the estimation efficiency. Given the observed data (Y = y, δ,X = x), the
conditional expectation of the indicator function of the “at risk” set is

R(y, t) = E[I (A < t ≤ Y ) |δ, Y = y,X = x]

= δI(y ≥ t)
P (A < t, T = y, C ≥ y −A|X = x)

P (T = y, C ≥ y −A|X = x)

+(1− δ)I(y ≥ t)
P (A < t, T ≥ y, C = y −A|X = x)

P (T ≥ y, C = y −A|X = x)
.
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Using the fact that the bivariate distribution of (T,A) givenX = x is f(t|x)/µ(x)
for t > a > 0,

R(y, t) = δI(y ≥ t)
f(y|x)

∫ t
0 Ḡ(y − a|x)da/µ(x)

f(y|x)
∫ y
0 Ḡ(y − a|x)da/µ(x)

+(1− δ)I(y ≥ t)

∫∞
y f(s|x)/µ(x)ds

∫ t
0 g(y − a|x)da∫∞

y f(s|x)/µ(x)ds
∫ y
0 g(y − a|x)da

;

one has

R(y, t) = δI(y ≥ t)
W (y|x)−W (y − t|x)

W (y|x)
+ (1− δ)I(y ≥ t)

G(y|x)−G(y − t|x)
G(y|x)

,

where G(.|x), Ḡ(.|x), and g(.|x), respectively, are the cumulative distribution
function, survival function, and density function for the residual censoring time
given X = x, and W (t|x) is the integral of the survival function of residual
censoring time from 0 to t, W (t|x) =

∫ t
0 Ḡ(s|x)ds. For brevity, we remove x from

the functions of G and W in the derivations.
By modifying (3.1), we replace the indicator function for the at-risk set

with the conditional expectation of the indicator function in (3.2). Note that
information of the stationary process is utilized in the equation:

ŨI(β) =
1

n

n∑
i=1

δi

{
Xi −

∑n
j=1XjR(Yje

−XT
j β, Yie

−XT
i β)∑n

j=1R(Yje
−XT

j β, Yie
−XT

i β)

}
(3.2)

=
1

n

n∑
i=1

∫ ∞

0

{
Xi −

∑n
j=1XjR(Yje

−XT
j β, t)∑n

j=1R(Yje
−XT

j β, t)

}
dNi(β, t),

where Ni(β, t) = I
(
Yie

−XT
i β ≥ t, δi = 1

)
. Note that X is a categorical variable

in the motivating example and the survival function of the censoring variable
C can be estimated consistently for each of the three categories if the censoring
distributions are not the same. Otherwise, G and W can be estimated using
the pooled data. After plugging in the consistent estimators of the unknown
quantities into R(y, t),

R̂(y, t) = δI(y ≥ t)
Ŵ (y)− Ŵ (y − t)

Ŵ (y)
+ (1− δ)I(y ≥ t)

Ĝ(y)− Ĝ(y − t)

Ĝ(y)
,

where Ĝ(y) is the Kaplan-Meier estimator of the cumulative distribution function

for the residual censoring variable and Ŵ (y) =
∫ y
0
̂̄G(s)ds. With the estimated

R̂(y, t), we obtain the estimating equation for β,

UI(β) =
1

n

n∑
i=1

∫ ∞

0

{
Xi −

∑n
j=1XjR̂(Yje

−XT
j β, t)∑n

j=1 R̂(Yje
−XT

j β, t)

}
dNi(β, t). (3.3)
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Here (3.3) is not a continuous function of β, so it is not always possible to obtain
an exact solution. We take a solution of (3.3), β̂I , to be the minimizer of the
Euclidean norm of UI(β) (Wei, Ying, and Lin (1993)). Let β0 be the true value
of β. The consistency and weak convergence of β̂I can be established under
regularity conditions listed in the Appendix.

Theorem 1. If A.1-A.5 in the Appendix hold, β̂I is a consistent estimator of
β0 and

√
n(β̂I − β0) converges weakly to a normal distribution with mean zero

and variance-covariance matrix ΣI .

The variance-covariance matrix ΣI in Theorem 1 is given in the Appendix.
The asymptotic normality of

√
n(β̂I − β0) is derived by using the asymptotic

linearity of the estimating equation UI(β) and empirical process theory. The
detailed proof of Theorem 1 is in the Appendix. The estimation of the variance-
covariance matrix ΣI is not straightforward because of the unknown hazard func-
tion in ΣI . Given the established weak convergence of β̂I , we use the bootstrap
resampling method to approximate the variance of β̂I .

3.2. Estimation equation based on inverse weighting and ranking

In the absence of right censoring, Wang (1996) derived a score estimating
equation from the pseudo-likelihood function under Cox’s proportional hazards
model:

1

n

n∑
i=1

{
Xi −

∑n
j=1Xje

XT
j βI(Tj ≥ Ti)/Tj∑n

j=1 e
XT

j βI(Tj ≥ Ti)/Tj

}
= 0. (3.4)

Under the AFT model assumption for T̃ in (2.1), the transformed data T̃0 ≡
T̃ e−XTβ are i.i.d. and the AFT model (2.1) can be equivalently expressed by
Cox’s proportional hazards model with no covariate effects (Tsiatis (2009)),

λ
T̃0
(t) = λ0(t),

where λ0(t) is an unspecified hazard function of eϵ. We can thus generalize (3.4)
under Cox’s model to the AFT model with the transformed length-biased data,

1

n

n∑
i=1

{
Xi −

∑n
j=1XjI(Tje

−XT
j β ≥ Tie

−XT
i β)/(Tje

−XT
j β)∑n

j=1 I(Tje
−XT

j β ≥ Tie
−XT

i β)/(Tje
−XT

j β)

}
= 0. (3.5)

In the presence of potential right censoring to length-biased data, only Y =
min{T,A+C} and the corresponding censoring indicator are observed. Qin and
Shen (2010) proposed an estimating equation to accommodate the dependent
right censoring under Cox’s proportional hazards model:

1

n

n∑
i=1

δi

{
Xi −

∑n
j=1Xje

XT
j βδjI(Yj ≥ Yi)/Ŵ (Yj)∑n

j=1 e
XT

j βδjI(Yj ≥ Yi)/Ŵ (Yj)

}
,
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where Ŵ (t) =
∫ t
0
̂̄G(s)ds is a consistent estimator of W (t). Using a technique

parallel to that of Qin and Shen (2010) under the proportional hazards model,

we take an estimating equation under the AFT model as,

UII(β) =
1

n

n∑
i=1

δi

{
Xi−

∑n
j=1XjδjI(Yje

−XT
j β≥Yie−XT

i β)/Ŵ (Yje
−XT

j β)∑n
j=1 δjI(Yje

−XT
j β≥Yie−XT

i β}/Ŵ (Yje
−XT

j β)

}

=
1

n

n∑
i=1

{
Xi−

∑n
j=1XjδjI(Yje

−XT
j β≥ t)/Ŵ (Yje

−XT
j β)∑n

j=1 δjI(Yje
−XT

j β≥ t)/Ŵ (Yje
−XT

j β)

}
dNi(β, t). (3.6)

As (3.6) is a step function of β, we take a solution, β̂II , to be the minimizer of

the Euclidean norm of UII(β). The consistency and weak convergence of β̂II

can be established under regularity conditions listed in the Appendix.

Theorem 2. If A.1-A.5 in the Appendix hold, β̂II is a consistent estimator of

β0 and
√
n(β̂II − β0) converges weakly to a normal distribution with mean zero

and variance-covariance matrix ΣII .

4. Simulation

We explored the finite sample properties of the two semi-rank-based proposed

estimators (β̂I and β̂II) via simulation studies. We compared the two proposed

estimators with estimators by three existing methods: the inverse weighted es-

timating equation UIW of Shen, Ning, and Qin (2006), the Buckley-James-type

estimating equation UBJ of Ning, Qin, and Shen (2011), and the rank-based

estimating equation (3.1) ofLai and Ying (1991b) for general left-truncated data,

specified as:

UIW (β) =
1

n

n∑
i=1

δiXi

Ŵ (Yi)
(log Yi −XT

i β) = 0, (4.1)

UBJ(β) =
1

n

n∑
i=1

Xi

{
δi

log Yi −XT
i β

Yi exp(−XT
i β)

+ (1− δi)

∫∞
Yi0
u−1 log udF̂0(u;β)

1− F̂0(Yi0;β)

}
, (4.2)

where

F̂0(t;β) =

∫ t
0 s

−1dĜ0(s;β)∫∞
0 s−1dĜ0(s;β)

is the consistent estimate of the unbiased distribution of transformed data T̃0
derived from Vardi’s nonparametric estimate for the biased distribution of T0. We

further investigated these semiparametric estimators and maximum likelihood

estimator(MLE) in terms of the efficiency and the robustness, with respect to
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the distribution assumption of the random error, of the MLE. Specifically, we

derived the MLE under the assumption that the distribution of the random error

is normal, then evaluated all estimators including the MLE under the normal

assumption by using data generated from normal or uniform distributions.

We generated the unbiased failure times T̃i from an AFT model with two

covariates:

log(T̃i) = α0 + α1X1i + α2X2i + ϵi,

where X1i is a binary covariate with P (X1i = 1) = 0.5, and X2i is a continuous

covariate with a uniform(0,1) distribution. We set α0 = 1, α1 = 0.5, and α2 = 1.

The ϵis were generated either from a uniform (−0.5, 0.5) distribution or from

a Normal(0, 1/12) distribution. After an exponential transformation, we have

unbiased survival times. The truncation times and residual censoring times were

generated in the original time scale (not log-scale); the truncation times generated

from a uniform distribution with an upper boundary bigger than the upper bound

of T̃ to ensure the stationarity assumption. We kept only the pairs satisfying

Ai < T̃i. The residual censoring times, Ci, were independently generated from

a uniform distribution over (0, c), where c was chosen to yield the censoring

percentage of 15%, 30%, or 50%. For each specified set of parameters, a sample

size of 100 or 200 was chosen and each scenario was repeated 1,000 times.

Table 1 displays the means and empirical standard errors of each estima-

tor. We make some observations: (i) All estimators were close to the true values

with mild or moderate censoring (15-30%), the biases of β̂I and β̂II were slightly

larger than those of the others, but all were in a reasonable range with heavy cen-

soring (50%). (ii) β̂I performed as well as β̂II with mild or moderate censoring

(15-30%) and was less efficient with heavy censoring (50%), in particular when

the random errors were normal. (iii) The two proposed estimators were consis-

tently more efficient than the estimators fromULT for general left-truncated data

regardless of the underlying distribution for the random errors. The unknown

censoring distribution has to be estimated in the proposed estimating methods

due to the unique data structure of length-biased data. The uncertainty from

the estimated censoring distribution could result in a relative large bias for the

proposed methods compared to the LT method. (iv) Under normal errors, the

estimators by UIW performed as well as the two proposed estimators and better

for heavy censoring, and UBJ outperformed all other semiparametric estimators

with mild or moderate censoring (15-30%) in terms of efficiency. (iiv) Under

uniform errors, the estimators from UI and UII consistently outperformed the

other semiparametric estimators, whereas the estimators from UIW and UBJ

were less efficient than the estimator from ULT .

Table 2 compares the estimated relative efficiency of the six estimators; the

estimated relative efficiency was calculated as the ratio of two mean squared
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Table 2. Relative efficiency for six estimators.

Cohort Cen% UI UIW UBJ ULT Parametric
Size Cen% Estimator Estimator Estimator Estimator MLE

ϵ ∼ U(−0.5, 0.5)
100 15% (1.01, 1.02) (2.54, 2.38) (2.37, 2.33) (1.33, 1.35) (2.16, 2.09)
100 30% (1.04, 0.99) (2.02, 1.90) (1.69, 1.48) (1.31, 1.41) (2.18, 1.89)
100 50% (1.18, 1.65) (1.46, 1.43) (2.19, 2.17) (1.16, 2.24) (1.64, 1.77)
200 15% (1.02, 1.03) (3.40, 3.09) (3.12, 2.61) (1.30, 1.19) (3.16, 2.91)
200 30% (1.07, 0.95) (2.19, 1.98) (2.01, 1.66) (1.20, 1.01) (2.77, 2.27)
200 50% (1.42, 1.87) (1.74, 1.67) (2.37, 2.29) (1.10, 1.54) (2.90, 2.45)

ϵ ∼ Normal(0, 1/12)
100 15% (1.00, 1.05) (0.99, 1.03) (0.97, 0.93) (1.38, 1.27) (0.86, 0.92)
100 30% (1.13, 0.97) (0.95, 0.89) (0.74, 0.74) (1.42, 1.13) (0.92, 0.89)
100 50% (1.47, 1.48) (0.96, 0.91) (1.30, 1.38) (1.36, 1.32) (1.11, 0.93)
200 15% (1.08, 1.00) (1.04, 0.90) (0.96, 0.79) (1.44, 1.13) (0.91, 0.91)
200 30% (1.22, 1.03) (0.96, 0.79) (0.82, 0.65) (1.31, 1.01) (1.06, 0.96)
200 50% (1.53, 1.75) (0.79, 0.86) (1.17, 1.20) (1.12, 1.09) (1.16, 1.25)

errors (MSEs), the MSE of the estimator from UII being used as a reference.

From Table 2, we find that (i) when the censoring percentage increases, the

efficiency gain of β̂II relative to β̂I increases; (ii) when the error is uniform,

the two proposed estimators are much more efficient than the estimators from

UIW or UBJ even with mild censoring, and the estimators from ULT can be

more efficient than those from UIW or UBJ ; (iii) when the error is normal, using

the Buckley-James method is more efficient than using the proposed methods

except under heavy censoring, and then ULT is the least efficient method. It is

not surprising that the parametric MLE is the most efficient estimator when the

error distribution is correctly specified in the likelihood. However, we also find

that (i) compared to the MLE under correctly specified distribution assumption,

the efficiency loss of the five semiparametric estimators is mild for length-biased

data; (ii) the two proposed semiparametric estimators are much robust than the

MLE with respect to the distribution assumption.

There is no uniform best estimation method in terms of statistical efficiency

among the estimation methods considered, that depends on the degree of cen-

soring and the underlying distribution. When the distribution of log T̃ is close

to normal, the inverse weighted and Buckley-James methods, derived from the

least squares principle, are more efficient than the two proposed semi-rank-based

estimation methods; when the underlying distribution is uniform, the proposed

semi-rank-based estimation methods are better. Figure 1 summarizes a deci-

sion guideline on the estimation methods for various combinations of underlying

distribution and censoring patterns.
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Figure 1. Decision tree plot of the estimation method selection for length-
biased data.

5. Data Application

Occurrence of dementia shortens life expectancy, and the accurate estimation

of survival time could empower clinicians and patients with dementia to make

timely decisions about their treatment. The CSHA is a national longitudinal

study of Canadian people aged 65 years and over, focusing on prevalence and

incidence of dementia. In the study, subjects with dementia were identified and

classified into subcategories of dementia. Our goal was to estimate and compare

survival following the onset of dementia according to the subcategory of dementia

(Alzheimer’s disease, possible Alzheimer’s disease, or vascular dementia). The

available data were collected from 818 subjects with dementia. Among them, 393

subjects were diagnosed as having probable Alzheimer’s disease, 252 as having

possible Alzheimer’s disease, and 173 as having vascular dementia. For each

subject, the date of dementia onset was collected during the clinical examination

in the first stage of the CSHA (Wolfson et al. (2001)), and the date of censoring or

death was collected prospectively during the second or third phase of the CSHA.

Subjects who died quickly after dementia onset were more likely to be excluded

(left truncated) from the study and, in turn, the observed survival duration from

dementia onset in the prevalent cohort tended to be longer than that in the

target population. Hence, adjustment of biased sampling is important to avoid

an overestimation of survival for patients with dementia.

Wolfson et al. (2001) provided a figure that included three estimated survival

functions according to diagnosis of subcategory of dementia, using the Expecta-

tion Maximization(EM) algorithm of Vardi (1989) for length-biased and right-

censored data. The figure suggested some differences among the three subgroups;

however, the one sample estimation could not answer whether differences were

statistically significant or not. We applied the proposed inference methods under
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Suvival Function for Probable Alzheimer Suvival Function for Possible Alzheimer Suvival Function for Vascular Dementia

Figure 2. Plot of estimated survival functions according to the subcategory
of dementia.

the accelerated failure time model log T̃ = α0 +α1X1 +α2X2 + ϵ to evaluate the

effects of different diagnostic subcategories of dementia on survival, whereX1 and

X2 indicate whether the subject had vascular dementia or probable Alzheimer’s

disease, respectively.

The stationarity assumption that the truncation time is uniformly distributed

was examined using the formal test given by Addona and Wolfson (2006). The

test gave a p-value of 0.94, suggesting that the observed left-truncated data were

length-biased data. The applicability of the AFT time to the application was

checked using QQ-plots (Ning, Qin, and Shen (2011)). We checked the underly-

ing distributions of log T̃ for three subgroups by comparing the nonparametric

estimators of survival distributions (Vardi (1989)) and normal survival distribu-

tions. The plots shown in Figure 2 suggest that the underlying distributions of

survival duration from dementia onset are close to normal. Considering the cen-

soring degrees among the three groups (20% ∼ 24%), the Buckley-James method

should be a good choice among the estimation methods considered. However,

for comparison, all estimated results, including the proposed two estimators,

the three estimators by equations UIW , UBJ , and ULT , and the corresponding

bootstrap standard errors, are listed in Table 3.

The estimators and inference from the five estimating methods with adjust-

ment for length-biased sampling were comparable. The results indicate a trend

for shorter survival time for the category of vascular dementia, though the differ-

ence was not statistically significant. Among the estimation methods applied, the

estimator from the proposed estimating equation UII had a smaller variation,

standardized by dividing the size of the estimator, than the estimators from the
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Table 3. Estimates (Est) and standard errors (SE) of regression coefficients
for dementia data.

UI EstimatorUII EstimatorUIW EstimatorUBJ EstimatorULT Estimator
Est(SE) Est(SE) Est(SE) Est(SE) Est(SE)

Vascular
Dementia -0.152(0.114) -0.156(0.083) -0.210(0.112) -0.187(0.128) -0.106(0.076)
Probable
Alzheimer -0.138(0.118) -0.102(0.057) -0.135(0.151) -0.114(0.150) -0.033(0.063)

other estimating equations. Estimators obtained from the estimating equations

UI , UIW , and UBJ were fairly comparable.

6. Discussion

In this article, we have introduced two estimation methods for right-censored

length-biased data under the AFT model. Besides the straightforward interpre-

tation of the parameters, another appealing feature of the AFT model is that the

observed failure time data can be transformed to a different time scale so that

the transformed samples are i.i.d. without the covariate effect. This facilitates

the use of existing estimating equations proposed for Cox’s proportional hazards

model or other rank-based estimating equations after some modifications. In

contrast to the existing rank-based approaches (Lai and Ying (1991b); Tsiatis

(2009)), the proposed semi-rank-based methods rely on both the magnitude and

the rank of failure times in the estimating equations. In the two proposed meth-

ods, the intercept in the AFT model is not estimated and the inference focus

is on the slope parameters. If it is of interest to estimate the intercept in the

AFT model, the inverse weighted method of (Shen, Ning, and Qin (2006)) can

be easily adapted for this purpose.

The censoring distribution is often considered a nuisance quantity when an-

alyzing traditional survival data assuming non-informative censoring. Due to

the informative censoring caused by biased sampling, the distribution of the cen-

soring variable plays an important role in the construction of both estimating

equations.

We here compared the performance of the two proposed methods with three

existing methods in empirical studies. The inverse weighted estimating equation

approach (Shen, Ning, and Qin (2006)) is the most computationally efficient with

a simple closed form of the solution, but it is not the most statistically efficient

in general. There is no uniformly most efficient estimation method among the

five investigated methods; estimation efficiency depends on the underlying dis-

tribution and censoring patterns. In general, if the log-transformed failure times

is normal, the least squares or weighted least squares methods should be more
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efficient; if the underlying distribution of log-transformed times is uniform or

exponential, rank-based methods should be better.

We have restricted attention to covariate-independent censoring. The Buckley-

James estimator is robust to this assumption. The proposed semi-rank-based

estimators can be easily generalized by including covariate-dependent weights in

the estimating equations when C depends on X, given that the conditional distri-

bution (G(t|X)) can be estimated consistently using nonparametric or semipara-

metric methods. One advantage of the proposed estimators over the Buckley-

James estimator is that there is no need to use a consistent estimator as an

initial value in the iterative estimation algorithms. As a result, the variances of

the proposed estimators do not depend on the the initial estimator.

Our work is based on the length-biased density function conditional on the

covariates X. There are some discussions on efficiency loss in the literature when

using likelihood conditional on the covariates for length-biased data (Bergeron,

Asgharian, and Wolfson (2008); Mandel and Ritov (2010)). Specifically, there can

be a loss of efficiency for the proposed estimator conditional on the covariates

when the marginal distribution of covariates is known (Bergeron, Asgharian, and

Wolfson (2008)). However, there is no loss of efficiency for the estimators based

on the likelihood conditional on X if the marginal distribution of the covariates is

unknown, which is common in applications. Extending the AFT model to include

time dependent covariates is nontrivial for length-biased data, due in part to the

sampling mechanism. The necessary developments for this important extension

are worthy of future research but are beyond the scope of this paper.
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Appendix

We use certain regularity conditions.
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(A.1) X is uniformly bounded by MX , and if there exists a constant vector c
such that cTX = 0 with probability one, then c = 0.

(A.2) The parameter space of β, B, is a compact set including the true value of
parameter β0.

(A.3) τ = inf{t : F0(t) = 1} <∞, where F0(t) is the cumulative density function
of T̃0.

(A.4) The density function of T̃0, f0, is a continuous and differentiable distribu-
tion function over (0, τ) with bounded derivative f ′0.

(A.5) The residual censoring time has a uniformly bounded density g.

Following the arguments for asymptotic properties of linear rank-based es-
timators (Ying (1993)) for right-censored data, we show the consistency and
asymptotic normality of β̂I and β̂II .

Proof of Theorem 1. Let N̄x(b, t) = (1/n)
∑n

i=1XiNi(b, t), N̄(b, t) = (1/n)∑n
i=1Ni(b, t), R̄(b, t) = (1/n)

∑n
i=1 R̂(Yie

−XT
i b, t), and R̄x(b, t) = (1/n)

∑n
i=1

XiR̂(Yie
−XT

i b, t).
For the estimating equation UI(b), let

mI(b) = E

[ ∫ ∞

0

{
X − EXR̂(Y e−XT b, t)

ER̂(Y e−XT b, t)

}
dN(b, t)

]
.

For any Nb > 0,

sup
||b−β0||≤Nb

||UI(b)−mI(b)||

≤ sup
||b−β0||≤Nb

∥∥∥E ∫ ∞

0
XdN(b, t)−

∫ ∞

0
dN̄x(b, t)

∥∥∥
+ sup

||b−β0||≤Nb

∥∥∥ ∫ ∞

0

R̄x(b, t)

R̄(b, t)
d
{
EN(b, t)− N̄(b, t)

}∥∥∥
+ sup

||b−β0||≤Nb

∥∥∥ ∫ ∞

0

{
EXR̂(Y e−XT b, t)

ER̂(Y e−XT b, t)
− R̄x(b, t)

R̄(b, t)

}
dEN(b, t)

∥∥∥. (A.1)

For any ϵ > 0, applying Lemma 1 in Ying (1993),

sup
||b−β0||≤Nb

||E
∫ ∞

0
XdN(b, t)−

∫ ∞

0
dN̄x(b, t)|| = o(n−1/2+ϵ) a.s..

The second term on the right side of (A.1) is o(n−1/2+ϵ) by applying integration
by parts and that fact that the total variation

sup
||b−β0||≤Nb

∫ ∞

0
|dR̄

x(b, t)

R̄(b, t)
| ≤ pMx

∫ ∞

0

−dR̄(b, t)
R̄(b, t)

= O(logn),
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where
∫
|dv(t)| of a vector function v(t) denotes the sum of the total variations

of all its components and p is the dimension of X.

Since∥∥∥EXR̂(Y e−XT b, t)

ER̂(Y e−XT b, t)
− R̄x(b, t)

R̄(b, t)

∥∥∥
≤ ||EXR̂(Y e−XT b, t)− R̄x(b, t)||

ER̂(Y e−XT b, t)
+

||ER̂(Y e−XT b, t)− R̄(b, t)||
ER̂(Y e−XT b, t)

,

the third term on the right side of (A.1) is also o(n−1/2+ϵ). Hence, for any ϵ > 0

sup
||b−β0||≤Nb

||UI(b)−m(b)|| = o(n−1/2+ϵ) a.s.. (A.2)

This implies that the estimating equation UI(b) can be uniformly approximated

by the nonrandom function mI(b) up to the order of n−1/2+ϵ. If the function

mI(b) has a unique solution given a compact region B containing β0 as an

interior point, the estimator β̂I , that satisfies UI(β̂I) = minb∈Cb
∥UI(b)∥, is

strongly consistent. As in Ying (1993), this assumption can be evaluated for any

given joint distribution of (T̃ , C,X). Let the slope of mI(b) be

ΓI(b) = −E
[ ∫ ∞

0
XT

{
X − EXR̂(η(b), t)

ER̂(η(b), t)

}
e−XT b

×{f ′0(t(b))W (t(b)) + f0(t(b))Ḡ(t(b))g(t(b))}dt
]
,

where η(b) = Y e−XT b and t(b) = te−XT b.

The function mI(b) is a continuous function, so by a Taylor expansion, we

have
mI(b) = ΓI(b− β0) + o(b− β0), (A.3)

where ΓI = ΓI(β0). Following (A.2) and (A.3), the estimating equation UI is

asymptotically linear, for dn → 0+ in probability,

sup
∥b−β0∥≤dn

∥ UI(b)−UI(β0)− Γ(b− β0) ∥= op(n
−1/2+ ∥ b− β0 ∥).

As β̂I → β0 a.s., we have

√
nUI(β̂I) =

√
nUI(β0) + ΓI

√
n(β̂I − β0) + op(1). (A.4)

We next study the asymptotic properties of the estimating equations, UI(β0).

Let Ê and E represent the sample empirical mean and the limit of average ex-

pectation. Using these notations, the estimating equation UI(β) can then be

expressed as
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UI(β) = Ê [XN(β, τ)]−
∫ τ

0

Ê [XR̂(Y e−XTβ, t)]

Ê [R̂(Y e−XTβ, t)]
dÊ [N(β, t)]. (A.5)

The function R(y, t) is estimated by using the Kaplan-Meier estimator
of the survival function for the censoring. The estimators Ê [XR̂(Y e−XTβ0 , t)]
and Ê [R̂(Y e−XTβ0 , t)] converge to the limits E [XR(Y e−XTβ0 , t)] and E [R(Y
e−XTβ0 , t)]. By the Central Limit Theorem,

√
n
{
Ê [XN(β0, τ)]− E [XN(β0, τ)]

}
converges weakly to a normal variable, W1, with mean zero, and

√
n
{
Ê [N(β0, t)]− E [N(β0, t)]

}
converges to a Gaussian process, W2. Furthermore,

√
n
{
Ê [R̂(Y e−XTβ0 , t)]− E [R(Y e−XTβ0 , t)]

}
= n−1/2

n∑
i=1

ψi1(t;β0) + op(1),

√
n
{
Ê [XR̂(Y e−XTβ0 , t)]− E [XR(Y e−XTβ0 , t)]

}
= n−1/2

n∑
i=1

ψi2(t;β0) + op(1).

By the Central Limit Theorem and the i.i.d. representations, the two processes
converge weakly to Gaussian processes W3 and W4, respectively. Under the reg-
ularity conditions, the mapping of UI(β0) from the four processes is compactly
differentiable with respect to the supremum norm. We therefore apply the func-
tional delta method and establish the asymptotic i.i.d. representation of equation
UI(β0), n

1/2UI(β0) = n−1/2
∑n

i=1 ψIi(β0) + op(1), where

ψIi(β0) =XiNi(β0, τ)− E [XN(β0, τ)]

+

∫ τ

0

ψi1(t;β0)E [XR(Y e−XTβ0 , t)]

E [R(Y e−XTβ0 , t)]2
dE [N(β0, t)]

−
∫ τ

0

ψi2(t;β0)

E [R(Y e−XTβ0 , t)]
dE [N(β0, t)]

−
∫ τ

0

E [XR(Y e−XTβ0 , t)]

E [R(Y e−XTβ0 , t)]
d (Ni(β0, τ)− E [N(β0, t)]) .

Then, with (A.4),

√
n
(
β̂I − β0

)
= Γ−1

I n−1/2
n∑

i=1

ψIi(β0) + op(1).

Thus the desired asymptotic normality of β̂I follows from the classical Central
Limit Theorem;

√
n(β̂I −β0) converges to a normal variable with mean zero and

variance ΣI = Γ−1
I ΣUIΓ

−1
I , where ΣUI = E[ψIi(β0)]

⊗2.
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Proof of Theorem 2. By arguments similar to those in the proof of Theorem

1, we get the asymptotic behavior of β̂II ; give only the key steps here. The

estimating equation UII(b) can be shown to be uniformly approximated by the

nonrandom function mII(b) up to the order of n−1/2+ϵ, where

mII(b) = E

[ ∫ ∞

0

{
X − EXδI(η(b) ≥ t)/Ŵ (η(b)

EδI(η(b) ≥ t)/Ŵ (η(b)

}
dN(b, t)

]
.

If mII(b) has a unique solution given a compact region B containing β0 as an

interior point, the estimator β̂II is strongly consistent. The slope function of

mII(b) is

ΓII(b) = −
∫ ∞

0
XT

{
X − EXδI(η(b) ≥ t)/Ŵ (η(b)

EδI(η(b) ≥ t)/Ŵ (η(b)

}
e−XT b

×
{
f ′0(t(b))W (t(b)) + f0(t(b))Ḡ(t(b))g(t(b))

}
dt.

Furthermore, the estimating equation UII is asymptotically linear and

√
nUII(β̂II) =

√
nUII(β0) + ΓII

√
n(β̂II − β0) + op(1), (A.6)

where β̂II = ΓII(β0). Using the functional delta method, we can establish the

asymptotic i.i.d. representation of equation UII(β0), denoted as n1/2UII(β0) =

n−1/2
∑n

i=1 ψIIi(β0) + op(1). Then the classical Central Limit Theorem implies

that
√
n(β̂II − β0) converges to a normal variable with mean zero and variance

ΣII = Γ−1
II ΣUIIΓ

−1
II , where ΣUII = E[ψIIi(β0)]

⊗2.
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