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Abstract: Experimental design and analysis is an effective and commonly used tool

in scientific investigations and industrial applications. Orthogonal arrays, such as

factorial and fractional factorial designs, are popular experimental plans for identi-

fying important factors. Motivated by an antiviral drug experiment, we introduce

a new class of composite designs based on a two-level factorial design and a three-

level orthogonal array. These designs have many desirable features and are effective

for factor screening and response surface modeling. Some advantages are that they

can use resolution IV designs in the screening stage, they can perform in-depth

analyses, and they can be used in either a single or a sequential experiment. We

study the construction method and compare the new composite designs with exist-

ing ones. We illustrate the methodology with data from an experiment that studies

the effects of five antiviral drugs on the Herpes simplex virus type 1.

Key words and phrases: Composite design, drug combination, fractional factorial

design, generalized minimum aberration, response surface methodology.

1. Introduction

In many experiments the researcher is faced with a number of factors that

affect the response of interest. An appealing technique is the response surface

methodology (Box and Wilson (1951)) that seeks to relate the response vari-

able to several predictors through experimentation, modeling, data analysis, and

optimization (Wu and Hamada (2009)). The initial stage of factor screening

identifies important factors from a larger number of potential factors, typically

using a two-level factorial or fractional factorial design, possibly with some center

points. The second stage of sequential experimentation determines the optimum

region, and the final stage fits a polynomial model in this region. The last stage

often uses some second-order designs that allow the estimation of a second-order

model. Many second-order designs have been proposed in the literature, the most

popular are the central composite designs (CCD) introduced by Box and Wilson

(1951) and variations such as the small composite designs of Draper and Lin

(1990). Other second-order designs include those of Box and Behnken (1960),
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augmented pairs designs (Morris (2000)), subset designs (Gilmour (2006)), and

more. For a comprehensive account of response surface methodology, see Box

and Draper (2007), Khuri and Cornell (1996), and Myers, Montgomery, and

Anderson-Cook (2009).

Progress in science and technology often calls for innovation in methodolog-

ical and theoretical development of experimental design. Since the successful

demonstration of HIV treatment with drug combinations, combinatory drugs

have been broadly applied to various aspects of disease treatment (De Clercq

(2004)). The advantage of combinatory drugs is that they often have higher ef-

ficacy and lower drug dosages than individual drugs. However, it is challenging

to identify potential drug combinations by trial and error because of the large

number of possible combinations and the complexity of the underlying biological

system. Researchers at UCLA Micro Systems Laboratories investigated a system

with Herpes simplex virus type 1 (HSV-1) and six antiviral drugs: IFN-alpha (A),

IFN-beta (B), IFN-gamma (C), Ribavirin (D), Acyclovir (E), and TNF-alpha

(F ). They chose seven dosage levels for each drug, which led to 76 = 117, 649

drug combinations. They used a feedback system control method to search for

optimal drug combinations (Ding et al. (2012)). The search was stochastic and

performed in iterations. Each iteration tested 32 drug combinations and took

up to 4 days due to the preparation of cell culture and viral infection. Each

virus and drug combination was performed in a test tube, the experimental unit.

They conducted 21 iterations and found that the drug effects were nonlinear and

non-additive and that there were complex drug interactions; however, they could

not pinpoint drug interactions. One of the authors was consulted in order to un-

derstand the HSV-1 system and the interactions. Some standard designs such as

fractional factorial designs and central composite designs were used for this pur-

pose. After a few iterations, TNF-alpha (F ) was found not effective in treating

HSV-1 and dropped (Jaynes et al. (2013)). With consideration of experimental

cost, time, and statistical efficiency, one of us constructed a composite design

consisting of a 16-run factorial design with 2 levels and an 18-run orthogonal

array with 3 levels. The resulting composite design had 3 levels and 34 runs so

that the entire experiment could be conducted in one iteration. Two researchers

conducted the experiment independently with different random orders, yielding

two replicates. Table 1 shows the design and data of the experiment, where the

run order was randomized. For each drug −1, 0, and 1 correspond to no drug,

intermediate drug dosage, and high drug dosage, respectively. The observed

data, readout, were the percentage of infected cells after the combination drug

treatment. Ding et al. (2012, 2013) and Jaynes et al. (2013) gave details of the

experimental procedure and other technical issues.
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Table 1. Design and data of the antiviral drug experiment.

Factor Readout
Run A B C D E Replicate 1 Replicate 2

1 1 −1 −1 −1 −1 69.8 72.0
2 −1 1 −1 −1 −1 66.4 67.4
3 −1 −1 1 −1 −1 83.0 68.6
4 −1 −1 −1 1 −1 16.2 23.4
5 −1 −1 −1 −1 1 46.1 33.6
6 1 1 1 −1 −1 68.6 65.5
7 1 1 −1 1 −1 6.8 7.2
8 1 1 −1 −1 1 15.6 19.1
9 1 −1 1 1 −1 11.1 7.0
10 1 −1 1 −1 1 19.8 20.3
11 1 −1 −1 1 1 3.7 4.7
12 −1 1 1 1 −1 5.8 3.9
13 −1 1 −1 1 1 2.6 4.0
14 −1 1 1 −1 1 42.2 23.2
15 −1 −1 1 1 1 1.8 5.2
16 1 1 1 1 1 3.1 3.4
17 −1 −1 −1 −1 −1 78.6 81.9
18 0 0 0 0 0 13.3 16.7
19 1 1 1 1 1 3.4 3.8
20 −1 −1 0 0 1 21.4 25.2
21 0 0 1 1 −1 8.6 4.4
22 1 1 −1 −1 0 18.0 27.3
23 −1 0 −1 1 0 7.3 2.4
24 0 1 0 −1 1 17.9 23.7
25 1 −1 1 0 −1 52.9 54.3
26 −1 1 1 0 0 13.2 8.8
27 0 −1 −1 1 1 2.1 4.5
28 1 0 0 −1 −1 73.4 73.9
29 −1 0 1 −1 1 19.6 14.6
30 0 1 −1 0 −1 59.1 41.7
31 1 −1 0 1 0 1.4 2.6
32 −1 1 0 1 −1 7.3 4.8
33 0 −1 1 −1 0 22.3 24.0
34 1 0 −1 0 1 14.1 18.3

Motivated by this, we introduce a new class of composite designs that com-

bine a two-level factorial or fractional factorial design and a three-level orthog-

onal array, and refer to them as orthogonal-array composite designs (OACD).

An orthogonal array of N runs, k columns, s levels, and strength t, denoted by

OA(N, sk, t), is an N×k matrix in which all st level combinations appear equally

often in every N × t submatrix. The strength t is often omitted when t = 2. Or-
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thogonal arrays, including factorial or fractional factorial designs, are used in

various applications. Hedayat, Sloane, and Stufken (1999) has a full account of

the theory and application of orthogonal arrays. The current research is inspired

by the recent developments in the study of nonregular fractional factorial designs;

see Xu, Phoa, and Wong (2009) for a comprehensive review.

There are numerous applications using either 2-level factorial designs or 3-

level orthogonal arrays; see Box, Hunter, and Hunter (2005), Dean and Voss

(1999), Mee (2009), Montgomery (2009), and Wu and Hamada (2009) for exam-

ples. However, there are few published applications using both a 2-level factorial

design and a 3-level orthogonal array in a single experiment. The goal here is

to introduce the idea of combining two- and three-level designs and to provoke

future research in the area. In Section 2 we formally introduce the concept of

OACDs and explore their properties. Advantages include the ability of using res-

olution IV designs for factor screening, the ability of in-depth analyses, and the

capability for sequential experimentation. In Section 3 we study the construction

of OACDs and present a list of designs with 3 to 10 factors. In Section 4 we com-

pare OACDs with other composite designs in terms of such statistical properties

as estimation efficiency and projections. In Section 5 we consider blocking an

OACD in a sequential experiment and give conditions when an OACD can be

orthogonally blocked. In Section 6 we analyze the data from the antiviral drug

experiment; we fit three models using different parts of the data and compare

the results. Section 7 gives a summary.

2. Orthogonal-array Composite Designs

We first give a general definition of composite designs. For k factors, denoted

by x1, . . ., xk, a composite design consists of: (i) nc cube points (x1, . . . , xk) with

all xi = −1 or 1; (ii) na additional points with all xi = −α, 0 or α; (iii) n0 center

points with all xi = 0. Note that the cube points have 2 levels and the additional

points have 3 levels. A composite design has a total of nc + na + n0 points and

has three or five different levels depending on whether α = 1 or not. Two-level

factorial or fractional factorial designs are often used as the cube points and

referred to as the factorial portion. Box and Wilson (1951) and Box and Hunter

(1957) originally proposed to use a full factorial or a fractional factorial design

of resolution V in a central composite design (CCD). This can lead to a large

number of runs when k > 5. To reduce the run sizes, Draper and Lin (1990)

proposed small composite designs (SCD) by using Plackett-Burman designs as

the factorial portion. In both CCD and SCD, na = 2k axial points (with one of

xi = α or −α and all other xi = 0) are chosen as the additional points. Morris

(2000) introduced the augmented pairs design (APD) by adding one point for

each pair of the cube points. An APD has na = nc(nc − 1)/2 additional points.
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We propose to use runs of a 3-level orthogonal array as the additional points

and refer to the resulting design as an OACD: an OACD is a composite design

such that its na additional points form a 3-level orthogonal array. The design in

Table 1 is a 34-run OACD with nc = 16, na = 18, n0 = 0 and α = 1. The factorial

portion (the first 16 runs) is a 2-level fractional factorial design with resolution V

defined by I = ABCDE; the 18 additional runs form a 3-level orthogonal array

with a center point (run 18) and no extra center point. We can construct many

OACDs with different run sizes by combining readily available 2-level factorial

designs and 3-level orthogonal arrays.

Composite designs are often used to fit a second-order model. For k quanti-

tative factors, the second-order model is

y = β0 +

k∑
i=1

βixi +

k∑
i=1

βiix
2
i +

k−1∑
i=1

k∑
j=i+1

βijxixj + ϵ, (2.1)

where β0, βi, βii and βij are the intercept, linear, quadratic and bilinear (or inter-

action) terms, respectively, and ϵ ∼ N(0, σ2) is the error term. For the quadratic

terms βii to be estimable, all factors must have at least 3 levels. A design is

called a second-order design if it allows all parameters in (2.1) to be estimated.

The 34-run OACD given in Table 1 is a second-order design: we can use the

2-level factorial portion to estimate the linear effects and two-factor interactions

among the factors, and use the 3-level orthogonal array to estimate linear and

quadratic effects.

The OACD differs from the CCD or SCD in the way they choose the addi-

tional points. The CCD or SCD employs a one-factor-at-a-time approach for the

additional points because each axial point has only one nonzero component. As a

consequence, the axial points provide no information on bilinear (or interaction)

terms; resolution IV designs cannot be used as the two-level portion. For this

reason, the SCD must use a resolution III design as the factorial portion even if a

resolution IV design with the same size exists. In contrast, the additional points

in the OACD study the effects in a factorial fashion and provide new information

on bilinear terms as well as linear and quadratic terms. One immediate benefit

is that the OACD can use resolution IV designs as the two-level portion, impor-

tant in a sequential experiment because the OACD can use a better design than

the SCD in the initial stage. Thus, to study 6 factors in 16 runs, the OACD

approach can use a resolution IV design while the SCD approach has to start

with an inferior resolution III design even though a resolution IV design with the

same size exists. A resolution IV design enables all linear effects to be estimated

apart from any bilinear effects, whereas in a resolution III design some linear

effects are fully aliased with bilinear effects. Resolution IV designs are generally
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preferred to resolution III designs of the same size in the initial screening stage.

In Section 4 we further demonstrate that using resolution IV designs instead of

resolution III designs as the factorial portion leads to more efficient estimation,

particularly the estimation of the linear effects.

Another reason for using an orthogonal array as the additional points is

data analysis. The analysis of the initial screening stage can suggest some useful,

but not conclusive, evidence on the significance of the effects. Even with the

added runs the results may not be conclusive due to possible mistakes or errors

in the experiment or variation of factors not used in the experiment. The OACD

allows one to perform multiple analyses with different parts of the data for cross

validation. One can perform separate analyses for the two-level factorial portion

and the three-level orthogonal array (if both have at least 8 runs). For the two-

level portion, one can use standard analysis techniques and fit a model with

linear and bilinear terms. For the three-level orthogonal array, one can fit a

model with linear and quadratic effects. One can further use all of the data and

fit a second-order or other model to estimate linear, bilinear and quadratic terms.

Then each of the linear effects is estimated three times and each of the bilinear

and quadratic effects is estimated twice, and one can check the consistency of

the estimations from the three models. If the data are reliable and the models

are appropriate, we expect the estimates to be consistent across different models;

a discrepancy indicates possible problems with the models or potential outliers.

The OACD thus has the built-in ability to perform some cross validation on the

data quality and analysis results. We illustrate this in Section 6 with the antiviral

drug experiment.

Like the CCD, the OACD can be used in a single experiment or in a sequential

experiment. An OACD can be used in two ways in a sequential experiment. We

can use the 2-level factorial portion in the first stage for factor screening and

add the 3-level orthogonal array in the last stage for response surface modeling.

Alternatively, we can use the 3-level orthogonal array for screening linear and

quadratic effects in the initial stage and add the two-level portion for exploring

the bilinear effects in the last stage. This feature is particularly appealing in

practice as many industrial and engineering experiments use 3-level orthogonal

arrays under the name of the Taguchi method. For example, we can use the

popular OA(18, 37) to study 5 or 6 factors in the screening experiment and use a

8 or 16-run two-level factorial in a follow-up experiment. Cheng and Wu (2001)

and Xu, Cheng, and Wu (2004) previously studied methods of using a single

3-level design for both factor screening and response surface exploration. Their

designs are not intended for sequential experiments.
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3. Construction of the OACD

To construct an OACD, we need to select a 2-level design and a 3-level

orthogonal array. In many cases, several 2-level and 3-level designs are available

and the choice of individual designs is important. A general guideline is that we

use good or optimal 2-level and 3-level designs, then properly align their columns

so that the resulting OACD has good or optimal properties with respect to some

criterion of interest.

For the 2-level design, we can choose a 2k full factorial (if k ≤ 4) or a regular

2k−p fractional factorial design. When choosing a regular fraction, we recommend

a minimum aberration design (which always has maximum resolution). Wu and

Hamada (2009) gave many minimum aberration designs, up to 128 runs. To have

a smaller design, we can use Plackett-Burman designs as the factorial portion,

see Draper and Lin (1990). We recommend the generalized minimum aberra-

tion criterion (Tang and Deng (1999); Xu and Wu (2001)) to choose columns

among Plackett-Burman designs. The generalized minimum aberration criterion

is an extension of the minimum aberration criterion and can screen out poor

designs effectively. Generalized minimum aberration designs minimize the over-

all contamination of nonnegligible interactions on the estimation of main effects

(Tang and Deng (1999); Xu and Wu (2001)) and tend to be model-robust under

traditional model-dependent efficiency criteria (Cheng, Deng, and Tang (2002)).

For the 3-level portion, one can pick an orthogonal array that accommodates

at least k 3-level factors and choose the minimum aberration or generalized min-

imum aberration subset. Once a 2-level and a 3-level design are chosen, they can

be put together to form an OACD. For example, the 34-run OACD given in Ta-

ble 1 is a simple combination of a minimum aberration 25−1
V design, E = ABCD,

and a generalized minimum aberration five-column design that is a subdesign of

the commonly used OA(18, 37). The levels, −1, 0, and 1, in the 3-level orthogonal

array can be rescaled to −α, 0 and α if necessary.

The properties of the resulting design may depend on which 2-level column

is aligned with which 3-level column. A naive approach that puts two designs to-

gether works well and resulting designs often have good properties when we com-

bine optimal 2-level and 3-level designs. In some situations, one can improve the

properties of resulting designs by carefully aligning 2-level and 3-level columns.

Each OACD has a total k! different column alignments. One approach, when

k is small, is to search all k! alignments and find an optimal column alignment

with respect to some criterion. This exhaustive search can be time consuming

and often unnecessary for large k, say k > 10. A second more practical approach

is to try a number of random alignments and choose the best column alignment

with respect to some criterion.
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A 3-level orthogonal array may contain a center point already and the num-

ber of extra center points (n0) can be as small as 0. When α = 1, the 2-level

design and the 3-level orthogonal array may have some common runs so that the

resulting OACD has repeat runs; for example, runs 16 and 19 in Table 1 are the

same. If desirable one can avoid any repeat runs by permuting the levels in some

columns of the 2-level or 3-level design, but repeat runs are useful in estimating

the pure error and therefore we recommend keeping them. Furthermore, keeping

them allows separate analyses for the two-level and three-level data. In cases

where the run size is critical, one can delete the repeat runs.

For comparison purposes in Section 4, we list two OACDs for k = 3 and three

OACDs for k = 4, . . . , 10 in Table 2. The first column in Table 2 corresponds

to the number of factors, k. The next three columns correspond to the two-level

factorial portion: the specific design used, the number of cube points (nc), and

the design generators or columns. Here a 2k design is a full factorial and no

generators or columns are given. A 2k−p
r design is a regular fractional factorial

design with k factors, each at two levels, consisting of 2k−p runs, and of resolution

r. The p generators are given in the fourth column. All the 2k−p designs used

in Table 2 have maximum resolution and minimum aberration. There are six

cases where Plackett-Burman designs with 12 or 20 runs are used, and the fourth

column shows the subset of the design. For convenience, the Plackett-Burman

designs are given in the Appendix. The last two columns in Table 2 specify the

3-level orthogonal array: the specific design and the column choice. We use four

commonly used orthogonal arrays of strength 2, namely OA(9, 34), OA(18, 37),

OA(27, 313), and OA(36, 312); see the Appendix. The OA(9, 34) and OA(27, 313)

are regular fractional factorial designs. For convenience, we arrange OA(27, 313)

according to Xu (2005) so that the first k columns form a minimum aberration

design. All 3-level columns in Table 2, with the exception of k = 6, are chosen

because they form a minimum aberration or generalized minimum aberration

design. For k = 6, the generalized minimum aberration design from OA(18, 37)

consists of the column choice (2 − 7); however, this choice does not lead to

a second-order design when it is combined with the 12-run Plackett-Burman

design. For this reason, we choose the first 6 columns.

We arrange the 3-level columns in Table 2 so that when the 2-level and 3-level

designs are combined, the resulting OACD is optimal with respect to D-efficiency

(defined in Section 4.2) under the second-order model. For example, consider the

second design listed for k = 5 in Table 2. For the 2-level factorial portion we use a

subset of a 12-run Plackett-Burman design with columns (1-5) and for the 3-level

design we use an OA(18, 37) with columns (2,5,3,4,6). The resulting OACD has

maximum D-efficiency when columns (1,2,3,4,5) of the Plackett-Burman design

are aligned with columns (2,5,3,4,6) of the OA(18, 37), respectively.
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Table 2. Some OACDs for k = 3, . . . , 10.

2-level factorial portion 3-level OA

k Design nc Columns and generators Design(na) Columns

3 23 8 - OA(9) (1-3)

3 23−1
III 4 C = AB OA(9) (1-3)

4 24 16 - OA(9) (1-4)

4 PB(12) 12 (1-4) OA(9) (1,3,4,2)

4 24−1
IV 8 D = ABC OA(9) (1-4)

5 25−1
V 16 E = ABCD OA(18) (2-6)

5 PB(12) 12 (1-5) OA(18) (2,5,3,4,6)

5 25−2
III 8 D = ABC,E = AB OA(18) (2-4,6,5)

6 26−1
V I 32 F = ABCDE OA(18) (1-6)

6 PB(20) 20 (1-5,13) OA(18) (1,4,6,3,2,5)

6 PB(12) 12 (1-5,7) OA(18) (2,5,3,4,6,1)

7 27−1
V II 64 G = ABCDEF OA(18) (1-7)

7 27−2
IV 32 F = ABCD,G = ABE OA(18) (1,2,5,3,4,7,6)

7 PB(20) 20 (1-5,13,16) OA(18) (3,1,5,7,4,2,6)

8 28−2
V 64 G = ABCDE,H = ABCF OA(27) (1-8)

8 28−3
IV 32 F = ABCD,G = ABE,H = ACE OA(27) (1,3,4,5,2,7,8,6)

8 PB(20) 20 (1-5,13,16,15) OA(27) (6,3,8,4,2,1,7,5)

9 29−2
V 128 H = ABCDE, J = ABCFG OA(27) (1-9)

9 29−3
IV 64 G = ABCDE,H = ABCF, J = ADF OA(27) (1,3,8,2,6,7,5,4,9)

9 29−4
IV 32 F = ABCD,G = ABE,H = ACE, J = ADE OA(27) (5,6,1,7,2,4,9,3,8)

10 210−3
V 128 H = ABCDE, J = ABCFG,K = ABDF OA(27) (1-10)

10 210−4
IV 64 G = ABCDE,H = ABCF, J = ADF,K = ABEF OA(27) (5,6,8,2,3,4,10,7,9,1)

10 210−5
IV 32 F = ABCD,G = ABE,H = ACE, J = ADE, OA(36) (7,6,3,2,9,1,10,8,5,4)

K = BCDE

We present two or three OACDs with different sizes in Table 2 for each k.

We call them OACD X, OACD Y, and OACD Z, corresponding to the largest,

the second largest, and the smallest run size, respectively. The three OACDs

are chosen based on popular existing designs and run size consideration. In

particular, for each k, the OACD X has a similar run size to the CCD and the

OACD Z has a comparable run size to the SCD. It is possible to construct other

OACDs with different sizes and properties, especially when k ≥ 6, if we combine

different 2-level or 3-level designs. In practice, one can choose or construct an

OACD based on the consideration of the run size or design efficiency, which is to

be discussed in the next session.

4. Comparisons with Existing Composite Designs

We compare the OACDs given in Table 2 with three classes of composite

designs: the CCD, APD, and SCD. The factorial portion of the CCD is a minimal

fractional factorial design (or full factorial plan) of resolution V in all k factors.

In all cases, the CCD and OACD X have the same factorial portion. The factorial
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Table 3. Comparison of the number of runs and degrees of freedom, with n0 = 5.

CCD APD SCD OACD X OACD Y OACD Z
k N df N df N df N df N df N df
3 19 4 15 4 15 4 22 7 18 4 - -
4 29 4 41 8 21 4 30 6 26 7 22 5
5 31 4 41 6 27 4 39 6 35 6 31 6
6 49 4 41 4 33 4 55 5 43 5 35 5
7 83 4 41 4 43 4 87 4 55 4 43 5
8 85 4 83 4 57 4 96 4 64 4 52 5
9 151 4 83 4 63 4 160 5 96 4 64 4
10 153 4 83 4 73 4 160 4 96 4 73 4

portion used in the APD is the 8-run Plackett-Burman design for k = 4, . . . , 7,

and the 12-run Plackett-Burman design for k = 8, . . . , 10; see Morris (2000). The

factorial portion in the SCD is taken from a Plackett-Burman design according

to Table 4 of Draper and Lin (1990). In the study performed by Morris (2000),

the SCD for k = 9 was omitted due to singularity. We believe that the reason for

the singularity is that Morris used a cyclical shift to the right when constructing

Plackett-Burman designs, whereas Draper and Lin (1990) performed a cyclical

shift to the left, which allows the SCD of 9 factors to be considered.

We need to specify the value of α and number of center points for compar-

ison. Following Morris (2000), we choose α = 1 so that all designs have 3 levels

and are comparable, and five center points (n0 = 5). Note that the number of

center points is arbitrarily chosen, and can vary depending on the experimental

requirements. As pointed out by Morris (2000), the choice of the number of

center points can greatly influence the estimation efficiency of a design; however,

the general relationship between designs remains roughly the same.

4.1. Number of runs and degrees of freedom

An important concern in the construction of experimental design is the trade-

off between estimation efficiency and run size. Generally, a design with smaller

number of runs is favorable due to cost; however, designs with a larger number

of runs provide more efficiency. Table 3 compares the total number of runs, N ,

and the degrees of freedom, df, for replication for each design considered.

The CCD and OACD X have larger run sizes than other classes with the

exception of k = 4 and 5, when the APDs have the largest run sizes. The SCD

and OACD Z have smaller run sizes than others with the exception of k=3 and 7.

All designs have at least 4 degrees of freedom for pure error estimation,

corresponding to the original 5 center point replicates taken. Generally, the

OACD X, Y, and Z have more degrees of freedom for error estimation than the

other designs, hence have a larger number of runs.



COMBINING TWO-LEVEL AND THREE-LEVEL ORTHOGONAL ARRAYS 279

Figure 1. Efficiencies of composite designs with n0 = 5: (a) D-efficiency;
(b) DL-efficiency; (c) DB-efficiency; (d) DQ-efficiency. Composite design
(symbol): APD (A), CCD (C), SCD (S), OACD X (X), OACD Y (Y) and
OACD Z (Z).

4.2. Model coefficient estimation

We compare design efficiencies in parameter estimation; D optimality is the

popular choice in this. For an N -point design, if X is the model matrix of the

second-order model (2.1) with p = (k + 1)(k + 2)/2 parameters, the (overall) D-

efficiency is D = N−1|X′X|1/p, describing the information per run for the design.

For s, a subset of factors, the Ds-efficiency is

Ds = N−1|XT
s Xs −XT

s X(s)(X
T
(s)X(s))

−1XT
(s)Xs|1/q,

where Xs and X(s) are the submatrices of X corresponding to the parameters in

s and not in s, respectively, and q is the number of parameters in s.

We divide the model parameters into three groups: the k linear parameters

(βi, i = 1, . . . , k), the k(k − 1)/2 bilinear parameters (βij , 1 ≤ i < j ≤ k), and

the k pure quadratic parameters (βii, i = 1, . . . , k). For each subset of the model

parameters we compute the Ds-efficiency, DL, DB, and DQ, say.

Figure 1 shows a graphical representation of the D-efficiencies of the designs

under consideration for k = 3, . . . , 10. Figure 1(a) compares overall D-efficiency
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for all designs. Generally, OACD X has the highestD-efficiency, followed by CCD

and OACD Y. The overall D-efficiency for OACD Z is higher than the APD and

SCD, except for k = 4. Figure 1(b) shows DL-efficiency. The general pattern is

similar to the overall D-efficiency considered in Figure 1(a): the OACD X has

the highest efficiency followed by the CCD and then the OACD Y. Figure 1(c)

shows DB-efficiency. The OACD X has slightly higher DB-efficiency than the

CCD, followed by the OACD Y; the OACD Z, APD, and SCD are similar in

their efficiencies. Figure 1(d) shows DQ-efficiency. For all k, the APD has the

highest efficiency, with the exception of k = 3, where the SCD performs just as

well. The other designs are all comparable.

For the OACDs in Table 2, the 2-level and 3-level columns are aligned to

maximize overall D-efficiency. For OACD X, the D-efficiency is invariant under

the column alignment since X′X does not depend on the 2-level design when it

is a full factorial or has resolution V. For OACD Y and Z, the D-efficiency could

be reduced, often slightly, with a random alignment; however, a few alignments

could result in designs with D-efficiency of 0 for the OACD Y with k ≥ 8 and

the OACD Z with k ≥ 6, due to small run sizes.

Among the three types of OACDs in Table 2, OACD X has the highest

efficiency and largest run size, and OACD Z has the smallest run size and lowest

efficiency. If the primary goal is precise estimation, OACD X is recommended; if

the runs are expensive and a small design is desirable, OACD Z is recommended.

The OACD Y compromises on run size and design efficiency and could be a

better choice in other situations.

The original 34-run OACD used in the antiviral experiment was OACD X

for k = 5. The comparison in Figure 1 confirms that the 34-run OACD is more

effective than the CCD or other designs in estimating the parameters.

4.3. Projection properties

An OACD has a simple and appealing structure when it is projected onto

any two factors. The two-level portion produces four corner points (±1,±1), each

replicated nc/4 times. When α = 1, the three-level orthogonal array generates

four corner points, four mid-side points (0,±1) or (±1, 0), and one center point

(0, 0), each replicated na/9 times.

Figure 2 gives a graphical representation of the projection properties for the

six designs for k = 4, with n0 = 0: CCD, APD, SCD, OACD X, OACD Y, and

OACD Z. Each plot shows the number of design points in each corner, mid-side,

and center, in a two-dimensional projection. Roughly speaking, more design

points located at the corners lead to higher D, DL and DB efficiency, while more

design points located at the mid-sides and center increase quadratic efficiency.

The OACDs have relatively more corner points and less center point replicates
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Figure 2. Projection properties of composite designs in four factors, with
n0 = 0.

than CCD, APD, and SCD. This is desirable for achieving high overall efficiency.

The APD has more mid-side points than any of the other designs, which explains

why the estimates for the quadratic effects are more efficient.

5. Blocking the OACD

When OACDs are used in a sequential experiment, it is important to know

how blocking affects the design properties and efficiency. A second-order design

is said to block orthogonally if it is divided into blocks in such a manner that block

effects do not affect the usual estimates of the parameters of the second-order

model.

Box and Hunter (1957) showed that, in general, for a second order composite

design to block orthogonally with N number of points assigned to b blocks with

nw points in the wth block, two conditions must hold.

1. Each block is a first-order orthogonal design, so,

nw∑
u=1

xiuxju = 0, i ̸= j = 0, 1, . . . , k, for all w,
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where xiu and xju are the levels of the ith and jth variables in the uth run of

the wth block with x0u = 1 for all u.

2. The fraction of the total sum of squares for each variable contributed by every

block is equal to the fraction of the total observations that occur in the block,

so,
nw∑
u=1

x2iu

N∑
u=1

x2iu

=
nw

N
, i = 1, 2, . . . , k, for all w.

These conditions can be used to orthogonally block an OACD. For simplicity,

we consider arranging an OACD in two blocks. The first block consists of a two-

level fractional factorial design (with nc runs) plus nc0 center points, and the

second block consists of a three-level orthogonal array (with na runs) plus na0

center points. The first condition is always valid because the fractional factorial

and additional points are orthogonal. The second condition is equivalent to

α =

√
3nc(na + na0)

2na(nc + nc0)
. (5.1)

We obtain orthogonal blocking if we choose α according to (5.1), and, in partic-

ular, when na0 = nc0 = 0, the choice of α =
√
3/2 yields an orthogonal blocking.

6. Analysis of the Antiviral Drug Experiment

Here we illustrate the analysis strategy for the OACD with the antiviral drug

experiment in Table 1. Following Ding et al. (2013), in the analysis we use the

square root of the readout as the response so that the usual assumptions on the

error are reasonable. We include a blocking variable (replicate) in the model to

assess possible effects from the two researchers. It is coded as −1 for replicate 1

and 1 for replicate 2.

We began the analysis by fitting a standard second-order model plus the

blocking variable using all of the data to estimate the linear, bilinear, and

quadratic effects. The model fit the data very well with R2 = 0.96. To ver-

ify that this is a reasonable model, we broke the data into the first 16 and the

last 18 runs. For the two-level 16-run design we fit a model containing all lin-

ear and bilinear effects. For the 18-run orthogonal array we fit a model with

all linear and pure quadratic terms. To distinguish the three models, we use

the run sizes and refer to them as 34-run, 16-run, 18-run models, respectively.

Table 4 shows the estimates of the parameters for the three models. Each linear

effect is estimated three times and each bilinear and quadratic effect is estimated
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Table 4. Estimates of parameters for the HSV-1 data.

34-Run 16-Run 18-Run
Intercept 3.99 *** 4.61*** 3.62***

A -0.13 -0.27** 0.18
B -0.23** -0.28 ** -0.42*
C -0.20* -0.14 -0.39*
D -2.07*** -2.15*** -1.97***
E -1.22*** -1.11*** -1.31***
AB 0.12 0.14 -
AC 0.26** 0.16 -
AD 0.08 0.18 -
AE -0.13 -0.11 -
BC 0.14 0.27** -
BD -0.09 -0.07 -
BE 0.13 0.13 -
CD -0.11 -0.13 -
CE 0.05 0.07 -
DE 0.54*** 0.51*** -
A2 0.26 - 0.38
B2 0.09 - 0.22
C2 -0.01 - 0.11
D2 -1.17*** - -1.07***
E2 1.41*** - 1.47***

replicate -0.03 -0.05 -0.01
σ̂ 0.55 0.48 0.78
R2 0.96 0.98 0.92
df 46 15 24

NOTE: Significance levels are coded as 0 (***) 0.001 (**) 0.01 (*) 0.05.

twice. Among the three models, the 16-run model fits the 16-run data the best

with R2 = 0.98 while the 18-run model fits the worst with R2 = 0.92. Figure 3

compares the absolute values of the t statistics for these three models, where the

dashed and dotted lines correspond to a t value of 2 and 3, respectively.

Figure 3 clearly shows that the linear effects D and E, the bilinear effect

DE, and the quadratic terms D2 and E2 are consistently the most significant (p

value < 0.001) terms. With D, E, DE, D2, and E2 having estimates over the

three models of approximately, −2, −1.2, 0.5, −1.1, and 1.4, respectively; see

Table 4. The blocking variable (replicate) is not significant among all models,

indicating that there was no significant difference between the two researchers.

We also observed some discrepancy among the estimates from different mod-

els. Among the bilinear effects, AC was significant (p value < 0.01) in the 34-run

model only and BC was significant (p value < 0.01) in the 16-run model only.

This was due to different data being used to fit different models with quite dis-
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Figure 3. Analysis of the antiviral drug experiment.

tinct aliasing or correlation structure. Here AC and BC were highly correlated

with the five extremely significant effects (D, E, DE, D2, and E2) in the full

second-order model, whereas all estimates in the 16-run model were uncorrelated.

Among the linear effects, A, B, and C were identified as significant at the 0.05

or 0.01 levels in one or more models. The estimates of A were negative in the

34-run and 16-run models, but the estimate was positive in the 18-run model.

This discrepancy was caused by the significant bilinear terms not included in the

18-run model. When we fit a new model by adding the interaction DE in the

18-run model, the estimates of D and E remained unchanged and the estimates

of A, B, and C were −0.01, −0.23 and −0.20, respectively, closer in value to the

estimates in the 34-run and 16-run models. Further, the R2 value in the 18-run

design with DE included increased from 0.92 to 0.95 and the residual standard

error (σ̂) decreased from 0.78 to 0.60.

We performed residual analysis and found that replicate 1 of run 14 was

an outlier. We refit the 34-run and 16-run models without it and found similar

results with the addition that AB was significant in the 34-run model at the 0.05

level and AB and AC were significant in the 16-run model at the 0.05 level.

Overall, the data analysis identifies D and E as effective drugs, each having

nonlinear (quadratic) effects on HSV-1. Drugs A, B, and C have some, but

much smaller effects, than D and E. We further saw strong interaction between

D and E, and some mild significant interactions among A, B and C. This can

be explained by the fact that D and E are chemical drugs, while A, B, and C

are Interferon protein drugs. The data suggest that the interactions within the

Interferon and chemical drug groups are significant, which agrees with published
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reports from clinical trials (Sainz and Halford (2002); Terzano, Petroianni, and

Ricci (2004)). The data further suggest that the interactions between the two

groups are small, implying possible distinct antiviral pathways between these two

drug categories.

7. Summary

We propose a class of new composite designs, OACDs, and study the con-

struction and properties. The OACDs provide a good trade-off between estima-

tion efficiency and run size economy, and can be used as an alternative to the

popular CCD and other existing composite designs.

We provide a general guideline in the construction of OACDs and present

a collection of OACDs based on popular 2-level and 3-level designs. Our use

of regular designs can be done with suitable nonregular designs. Nonregular

designs are flexible in terms of run sizes and have many appealing properties

(Xu, Phoa, and Wong (2009)), so we can construct a wide range of OACDs

based on available nonregular designs. We will further explore the properties

and use of these OACDs in the future.
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Appendix

PB(12)

Run 1 2 3 4 5 6 7 8 9 10 11

1 + + − + + + − − − + −
2 − + + − + + + − − − +

3 + − + + − + + + − − −
4 − + − + + − + + + − −
5 − − + − + + − + + + −
6 − − − + − + + − + + +

7 + − − − + − + + − + +

8 + + − − − + − + + − +

9 + + + − − − + − + + −
10 − + + + − − − + − + +

11 + − + + + − − − + − +

12 − − − − − − − − − − −
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PB(20)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 + + − − + + + + − + − + − − − − + + −
2 − + + − − + + + + − + − + − − − − + +

3 + − + + − − + + + + − + − + − − − − +

4 + + − + + − − + + + + − + − + − − − −
5 − + + − + + − − + + + + − + − + − − −
6 − − + + − + + − − + + + + − + − + − −
7 − − − + + − + + − − + + + + − + − + −
8 − − − − + + − + + − − + + + + − + − +

9 + − − − − + + − + + − − + + + + − + −
10 − + − − − − + + − + + − − + + + + − +

11 + − + − − − − + + − + + − − + + + + −
12 − + − + − − − − + + − + + − − + + + +

13 + − + − + − − − − + + − + + − − + + +

14 + + − + − + − − − − + + − + + − − + +

15 + + + − + − + − − − − + + − + + − − +

16 + + + + − + − + − − − − + + − + + − −
17 − + + + + − + − + − − − − + + − + + −
18 − − + + + + − + − + − − − − + + − + +

19 + − − + + + + − + − + − − − − + + − +

20 − − − − − − − − − − − − − − − − − − −

OA(9)
Run 1 2 3 4

1 − − − −
2 − 0 0 +
3 − + + 0
4 0 − 0 0
5 0 0 + −
6 0 + − +
7 + − + +
8 + 0 − 0
9 + + 0 −

OA(18)
Run 1 2 3 4 5 6 7

1 − − − − − − −
2 − 0 0 0 0 0 0
3 − + + + + + +
4 0 − − 0 0 + +
5 0 0 0 + + − −
6 0 + + − − 0 0
7 + − 0 − + 0 +
8 + 0 + 0 − + −
9 + + − + 0 − 0

10 − − + + 0 0 −
11 − 0 − − + + 0
12 − + 0 0 − − +
13 0 − 0 + − + 0
14 0 0 + − 0 − +
15 0 + − 0 + 0 −
16 + − + 0 + − 0
17 + 0 − + − 0 +
18 + + 0 − 0 + −
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OA(27)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13

1 − − − − − − − − − − − − −
2 − − 0 0 − + 0 + + − 0 0 +

3 − − + + − 0 + 0 0 − + + 0

4 − 0 − 0 + 0 − 0 + 0 0 + −
5 − 0 0 + + − 0 − 0 0 + − +

6 − 0 + − + + + + − 0 − 0 0

7 − + − + 0 + − + 0 + + 0 −
8 − + 0 − 0 0 0 0 − + − + +

9 − + + 0 0 − + − + + 0 − 0

10 0 − − 0 0 0 0 − 0 0 − 0 0

11 0 − 0 + 0 − + + − 0 0 + −
12 0 − + − 0 + − 0 + 0 + − +

13 0 0 − + − + 0 0 − + 0 − 0

14 0 0 0 − − 0 + − + + + 0 −
15 0 0 + 0 − − − + 0 + − + +

16 0 + − − + − 0 + + − + + 0

17 0 + 0 0 + + + 0 0 − − − −
18 0 + + + + 0 − − − − 0 0 +

19 + − − + + + + − + + − + +

20 + − 0 − + 0 − + 0 + 0 − 0

21 + − + 0 + − 0 0 − + + 0 −
22 + 0 − − 0 − + 0 0 − 0 0 +

23 + 0 0 0 0 + − − − − + + 0

24 + 0 + + 0 0 0 + + − − − −
25 + + − 0 − 0 + + − 0 + − +

26 + + 0 + − − − 0 + 0 − 0 0

27 + + + − − + 0 − 0 0 0 + −

OA(36)

Run 1 2 3 4 5 6 7 8 9 10 11 12

1 − − − 0 0 − − 0 − + + −
2 − − − − + − + − + − − 0

3 − − 0 − − + 0 + − − 0 −
4 − − + + − 0 − − 0 0 − −
5 − 0 + + − − 0 0 + − + +

6 − 0 + 0 + 0 + + + + 0 −
7 − 0 − − + + − + 0 0 + +

8 − 0 0 + 0 + + − − + − +

9 − + 0 + 0 − − + + 0 0 0

10 − + 0 − − 0 + 0 0 + + 0

11 − + + 0 + + 0 0 − 0 − 0

12 − + − 0 0 0 0 − 0 − 0 +

13 0 0 0 + + 0 0 + 0 − − 0

14 0 0 0 0 − 0 − 0 − 0 0 +
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Run 1 2 3 4 5 6 7 8 9 10 11 12

15 0 0 + 0 0 − + − 0 0 + 0

16 0 0 − − 0 + 0 0 + + 0 0

17 0 + − − 0 0 + + − 0 − −
18 0 + − + − + − − − − + 0

19 0 + 0 0 − − 0 − + + − −
20 0 + + − + − − 0 0 − 0 −
21 0 − + − + 0 0 − − + + +

22 0 − + 0 0 + − + + − − +

23 0 − − + − − + + 0 + 0 +

24 0 − 0 + + + + 0 + 0 + −
25 + + + − − + + − + 0 0 +

26 + + + + 0 + 0 + 0 + + −
27 + + − + + 0 − 0 + + − +

28 + + 0 0 + − + + − − + +

29 + − 0 0 + + − − 0 + 0 0

30 + − 0 − 0 − 0 0 0 0 − +

31 + − + + 0 0 + 0 − − 0 0

32 + − − 0 − 0 0 + + 0 + 0

33 + 0 − 0 − + + 0 0 − − −
34 + 0 − + + − 0 − − 0 0 −
35 + 0 0 − 0 0 − − + − + −
36 + 0 + − − − − + − + − 0
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