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Abstract: The Dantzig variable selector has recently emerged as a powerful tool

for fitting regularized regression models. To our knowledge, most work involving

the Dantzig selector has been performed with fully-observed response variables.

This paper proposes a new class of adaptive Dantzig variable selectors for linear

regression models when the response variable is subject to right censoring. This is

motivated by a clinical study to identify genes predictive of event-free survival in

newly diagnosed multiple myeloma patients. Under some mild conditions, we es-

tablish the theoretical properties of our procedures, including consistency in model

selection and the optimal efficiency of estimation. The practical utility of the pro-

posed adaptive Dantzig selectors is verified via extensive simulations. We apply our

new methods to the aforementioned myeloma clinical trial and identify important

predictive genes.
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dantzig selector, oracle property.

1. Introduction

Technical advances in biomedicine have produced an abundance of high-

throughput data. This has resulted in major statistical challenges and brought

attention to the variable selection and estimation problem, where the goal is to

discover relevant variables among many potential candidates and obtain high

prediction accuracy. For example, variable selection is essential when performing

gene expression profiling for cancer patients in order to better understand cancer

genomics and design effective gene therapy (Anderson et al. (2006); Pawitan et

al. (2005)).

Penalized likelihood methods, represented by the LASSO, have been ex-

tensively studied as a means of simultaneous estimation and variable selection

(Tibshirani (1996)). It is known that the LASSO estimator can discover the right

sparse representation of the model (Zhao and Yu (2006)), but the LASSO esti-

mator is in general biased (Zou (2006)), especially when the true coefficients are

relatively large. Several remedies, including the smoothly clipped absolute devi-

ation (SCAD) (Fan and Li (2001)), and the adaptive LASSO (ALASSO) (Zou

(2006)), have been proposed to discover the sparsity of the true models, while
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producing consistent estimates for nonzero regression coefficients. Though these

methods differ to a great extent, they are all cast in the framework of penalized

likelihoods or penalized objective functions.

More recently the Dantzig selector (Candés and Tao (2007)), has emerged

to enrich the class of regularization techniques. The Dantzig selector can be im-

plemented as a linear programming problem, making the computational burden

manageable. Though under some general conditions the LASSO and Dantzig

may produce the same solution path (James, Radchenko, and Lv (2008)), they

differ conceptually in that the Dantzig stems directly from an estimating equa-

tion, whereas the LASSO stems from a likelihood or an objective function.

The Dantzig selector has been most thoroughly studied with fully observed

outcome variables. But in many clinical studies, the outcome variable, e.g. the

CD4 counts in an AIDS trial or patients’ survival times, may not be fully ob-

served. In a myeloma clinical trial that motivates this research, the goal was to

identify genes predictive of a patient’s event-free survival.

While the vast majority of work in variable selection for censored outcome

data has focused on the Cox proportional hazards model (e.g., Tibshirani (1997);

Li and Luan (2003); Li and Gui (2004); Gui and Li (2005a,b); Antoniadis, Fry-

zlewicz, and Letue (2010)), a linear regression model offers a viable alternative as

it directly links the outcome to the covariates. Hence, its regression coefficients

have an easier interpretation than those of the Cox model, especially when the

response does not pertain to a survival time. Some recent work on regularized

linear regression models for censored data can be found in Ma, Kosorok, and

Fine (2006), Johnson, Lin, and Zeng (2008), Wang et al. (2008), Cai, Huang,

and Tian (2009), Engler and Li (2009), and Johnson (2009).

Most of these methods operate under the penalization framework. Given that

a censored linear regression does not pertain to a likelihood function, the Dantzig

selector may be a natural choice. Johnson, Long, and Chung (2011) approached

the problem using a penalized estimation equation approach, but Johnson (2009)

noted that their procedure gives only an approximate root-n consistent estimator.

To our knowledge, it remains unclear whether the Dantzig selector can also be

used to estimate linear regression models with censored outcome data. Johnson,

Long, and Chung (2011) studied such a procedure but did not provide theoretical

support. It is therefore of interest to (i) explore the utility of the Dantzig selector

in censored linear regression models, (ii) rigorously evaluate its theoretical prop-

erties, and (iii) compare its numerical properties to similar methods developed

under the lasso/penalization-based framework.

We propose a new class of Dantzig variable selectors for linear regression

models when the response variable is subject to right censoring. Dicker (2011)

proposed the adaptive Dantzig selector for the linear model, and here we develop

a similar procedure for use with censored outcomes. First, our method carries
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out simultaneous variable selection and estimation, and is motivated from the es-

timating equation perspective, which may be important for some semiparametric

models whose likelihood functions are difficult to specify. Second, the proposed

selectors possess the oracle property when the tuning parameters follow some

appropriate rates, providing the theoretical justification for the proposed proce-

dures. Third, the complex regularization problem has been reduced to a linear

programming problem, resulting in computationally efficient algorithms.

The rest of the paper is structured as follows. Section 2 reviews the Dantzig

selector for noncensored linear regression models, as well as its connection with

penalized likelihood methods. Section 3 considers its extension to linear regres-

sion models when the response variable is subject to censoring. In Section 4, we

discuss the large sample properties and prove the consistency of variable selec-

tion and the optimal efficiency of the estimators. We discuss the choice of tuning

parameters for the finite sample situations in Section 5. We report on numerical

simulations in Section 6, and apply the proposal to a myeloma study in Section

7. We conclude the paper with a discussion in Section 8. Proofs are relegated to

a web supplement.

2. Penalized Likelihood Methods and the Dantzig Selector

We begin by considering a linear regression model with p predictors

Yi =

p∑
j=1

Xijβj + ϵi, (2.1)

where ϵi are iid mean zero residuals for i = 1, . . . , n. Denote the truth by β0 =

(β01, . . . , β0p) and set A = {j : β0j ̸= 0}. The goal of the model selection in this

context is to identify A, often referred to as the “true model.”

A variable selector β̂ for β0 is considered to have reasonable large sample

behavior if (i) P ({j : β̂j ̸= 0} = A) → 1 as the sample size n → ∞, and (ii)√
n(β̂A−βA) → N(0,Σ∗) where βA is the subvector of β extracted by the subset

A of {1, . . . , p} and Σ∗ is some |A| × |A| covariance matrix (here, |A| denotes the
cardinality of the set A). Property (i) is often considered to be the consistency

property, while property (ii) involves the efficiency of the estimator. If properties

(i) and (ii) hold and Σ∗ is optimal (by some criterion), the variable selection

procedure is said to have the oracle property.

Concise notation is to be used for referring to sub-vectors and sub-matrices.

For a subset T ⊂ {1, . . . , p} and β ∈ Rp, let βT = (βj)j∈T be the |T | × 1

vector whose entries are those of β indexed by T . For an n × p matrix, X,

XT is the n × |T | matrix whose columns are those of X that are indexed by T .

Additionally, let Xi and X·j denote the i
th row and jth column of X, respectively,

for i = 1, . . . , n and j = 1, . . . , p. Denote the complement of T in {1, . . . , p} by T̄ .
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Let ∥β∥r = (
∑p

i=1 |βi|r)1/r for 0 < r < ∞, ∥β∥0 = #{j : βj ̸= 0} and ∥β∥∞ =
max1≤j≤p |βj |, and also let sgn(β) have sgn(β)j = sgn(βj) with sgn(0) = 0. For
a diagonal matrix W = diag(w1, . . . , wp), we take WT,T = diag(wj ; j ∈ T ).

2.1. Penalized likelihood methods

The LASSO is a benchmark penalized likelihood procedure. It works by
minimizing an L2 loss function ∥Y −Xβ∥22 subject to an L1 constraint: ∥β∥1 =∑

j |βj | ≤ s, where Y = (Y1, . . . , Yn) is the response vector, X is the n×p design
matrix, β = (β1, . . . , βp)

′ is the p × 1 vector of coefficients and s is a nonneg-
ative tuning parameter. Equivalently, the LASSO estimate can be obtained by
minimizing

∥Y −Xβ∥22 + λ

p∑
j=1

|βj |, (2.2)

where λ is a nonnegative tuning parameter. The LASSO performs variable selec-
tion, but in general does not possess the oracle property. A remedy is to utilize
an adaptive LASSO that minimizes

∥Y −Xβ∥22 + λ

p∑
j=1

wj |βj |, (2.3)

where wj is a data-driven weight.

2.2. Adaptive Dantzig selector

The Dantzig selector also belongs to the class of regularization methods in
regression. The estimator is the solution to

minimize ∥β∥1
subject to ∥X′(Y −Xβ)∥∞ ≤ λ.

Thus it strikes a balance between nearly solving the score equation,X′(Y−Xβ) =
0 and minimizing the L1 norm of β. Connections between the Dantzig selector
and the LASSO have been discussed in James, Radchenko, and Lv (2008), where
it is shown that under some general conditions the Dantzig selector and the
LASSO produce the same solution path. In general the Dantzig selector does
not have the oracle property.

As a remedy, a modified Dantzig selector, analogous to the adaptive LASSO,
was proposed by Dicker (2011):

minimize
∑

j wj |βj |
subject to |X′

·j(Y −Xβ̂)| ≤ λwj , j = 1, . . . , p.

The adaptive Dantzig selector and adaptive LASSO are also related: the adaptive
Dantzig selector and adaptive LASSO are equivalent to instances of the Dantzig
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selector and LASSO, respectively, where X is replaced with XW−1, β is replaced
with Wβ, and W = diag(w1, . . . , wp). The key to the adaptive Dantzig selector
is to strike a balance between minimizing the weighted L1 norm, which promotes
sparsity, and approximately solving the weighted normal equations. Weights wj

in the adaptive Dantzig selector need to be chosen according to the principles
that determine weights in the adaptive LASSO. When the response vector Y
is fully observed, Dicker (2011) established the oracle property of the adaptive
Dantzig selector for an appropriately chosen tuning parameter λ. It is unclear,
however, whether this property hold when the response Y is subject to censoring.

3. Adaptive Dantzig Selector for Censored Linear Regression

Consider a slightly modified version of (2.1),

Yi = X′
iβ + ϵi,

where Xi = (Xi1, . . . , Xip)
′ is the covariate vector for the ith subject and ϵi

are iid with an unspecified distribution denoted by F (·), with survival function
S(·) = 1 − F (·). The mean of ϵi, denoted by α, is not necessarily 0. Here β0

denotes the true β and A = {j; β0j ̸= 0} is the true model. Suppose that Yi may
be right censored by a competing observation Ci and that only Y ∗

i = Yi ∧Ci and
δi = I(Y ∗

i = Yi) are observed for each subject. We assume that Yi is independent
of Ci conditional on Xi. When the response variable pertains to survival time,
both Yi and Ci are commonly measured on the log scale and the model is called
the accelerated failure time model (Kalbfleisch and Prentice (2002)).

Let ei(β) = Y ∗
i − β′Xi, and consider

Ỹi(β) = E(Yi | Y ∗
i , δi,Xi,β) = Y ∗

i + (1− δi)

∫∞
ei(β)

S(s,β)ds

S(ei(β),β)
.

Clearly,

E
{
Ỹi(β) | Xi,β

}
= α+X′

iβ.

The Buckley-James estimating equation is

n∑
i=1

(Xij − X̄j)
{
Ŷi(β)−X′

iβ
}
= 0, j = 1, . . . , p, (3.1)

where X̄j =
1
n

∑n
i=1Xij for j = 1, . . . , p and

Ŷi(β) = Y ∗
i + (1− δi)

∫∞
ei(β)

Ŝ(s,β)ds

Ŝ{ei(β),β}
(3.2)

is the empirical version of Ỹi(β). Here, Ŝ(·,β) is the one-sample Nelson-Aalen
estimator based on (ei(β), δi),
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Ŝ(t,β) = exp
{
−

n∑
i=1

∫ t

−∞

dNi(u,β)

Ȳ (u,β)

}
, (3.3)

where Ni(u,β) = I{ei(β) ≤ u, δi = 1} and Ȳ (u,β) =
∑

i I{ei(β) ≥ u}. Under
mild conditions, Lai and Ying (1991) have shown that the Buckley-James esti-
mator that solves (3.1) is

√
n-consistent. To facilitate the ensuing development,

note that (3.1) can be written as

X′Pn{Ŷ(β)−Xβ} = 0, (3.4)

where Pn = In − 11′/n, In is an n× n identity matrix, 1 is an n× 1 vector with
all elements 1, and Ŷ(β) = (Ŷ1(β), . . . , Ŷn(β))

′.
Solving (3.4) does not directly render an automatic variable selection pro-

cedure, but the adaptive Dantzig selector presents an appealing solution to the
problem. Applying it to (3.4) gives

minimize
∑

j wj |βj |
subject to |X′

·jPn{Ŷ(β)−Xβ}| ≤ λwj , j = 1, . . . , p.

This is no longer a simple linear programming problem and one strategy is to
use an iterative algorithm, as in Wang et al. (2008), though such methods have
numerical and theoretical difficulties (Johnson (2009)).

3.1. Low-dimensional setting

We propose the use of a
√
n-consistent initial estimator β̂(0) to construct an

imputed version of the true response Y, Ŷ(β̂(0)), then to employ a version of
the adaptive Dantzig selector replacing (3.4) with X′Pn{Ŷ(β̂(0)) − Xβ} = 0.
If p < n, we can obtain β0 using unpenalized Buckley-James estimation, or
rank-based procedures with Gehan or logrank weights (Jin, Lin, Wei, and Ying
(2003)). A similar one-step imputation strategy was used by Johnson (2009),
though the imputed Ŷ(β̂(0)) was used to construct a loss function with a LASSO
penalty.

Our version of the adaptive Dantzig selector is to

minimize
∑

j wj |βj |
subject to |X′

·jPn{Ŷ(β̂(0))−Xβ}| ≤ λwj , j = 1, . . . , p.
(3.5)

The wj are data driven weights and should be chosen to vary inversely with the

magnitude of β0j . For instance, we can take wj = |β̂(0)
j |−γ for some γ > 0. Then

when |β̂(0)
j | is large, (3.5) requires us to nearly solve the jth score equation, where

Ŷ(β̂(0)) is treated as a fully observed outcome vector, that heavily penalizes non-

zero estimates of β0j when |β̂(0)
j | is small. When δi ≡ 1 for all i, (3.5) reduces
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to the adaptive Dantzig selector for linear regression models and the result is an

effective variable selection procedure. Still, censoring presents difficulties that

need investigation.

3.2. High-dimensional setting

In the high-throughput datasets that now characterize modern medicine,

typically p > n, so it is difficult to obtain an initial
√
n-consistent estimate β̂(0).

Our strategy is to first reduce the number of the covariates to be smaller than n

using a sure screening procedure. We then calculate the β̂(0) using the retained

covariates and proceed as in Section 3.1.

We employ the screening procedure of Zhu et al. (2011) that can provide sure

screening for any single-index model, including the AFT model. To choose the

number of covariates to retain after screening, we follow the combined soft- and

hard-thresholding rule of Zhu et al. (2011) that chooses up to n/ log(n) covariates

using a procedure involving randomly generated auxiliary variables.

Recently, Johnson, Long, and Chung (2011) studied Buckley-James estima-

tion using the Dantzig selector with an initial
√
n-consistent estimator for the

high-dimensional problem. It is similar to our proposal, but our work has several

advantages. We propose an adaptive Dantzig selector that has practical and the-

oretical advantages over the nonadaptive version. By using the procedure of Zhu

et al. (2011) to select the subset of important covariates, we can take advantage

of their sure screening property that states that, under certain conditions on

the design matrix, the probability that the selected covariates contains the truly

important covariates approaches 1.

4. Theoretical Results

A difficulty in extending the Dantzig selector to the censored regression set-

ting is that Ŷi(β̂
(0)) is a surrogate for the unobserved outcome Yi. In the ensuing

development, we first quantify the “distance” between the surrogate and the true

outcome, then show that their average difference is bounded by a random vari-

able of order n−1/2. Given this random bound, we show that the existing Dantzig

selector results for the non-censored case can be extended to the censored case,

leading to the oracle property.

4.1. Quantify the “Distance” between the imputed and “True” re-

sponses

Before stating the main result of the section, we need a lemma useful for

bounding the difference between the surrogate and the true outcomes.
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Lemma 1. Assume conditions 1–4 of Ying (1993, p.80), and suppose the deriva-

tive of the hazard function λ(s) with respect to s is continuous for −∞ < s < ∞.

Then,

Ŝ(s1,β1)− S(s0) = S(s0){(β1 − β0)
TA(s0,β0)− λ(s0,β0)(s1 − s0)

+n−1/2Z(s0)}+ o{max(n−1/2, |s1 − s0|+ ∥β1 − β0∥)},

with probability 1 uniformly for any (s1,β1) ∈ B = {(s,β) : |s− s0|+ ∥β−β0∥ <

Cn−1/2}, where C > 0 is any arbitrary constant, A is a p×1 nonrandom function,

λ(s) is the hazard function for S(s) and the stochastic process Z(s) is a version

of W (v(s)), and where W (·) is the Wiener process and v(·) is defined at (S1.2)

in the web supplement.

Proposition 1. Under the regularity conditions of Lemma 1, (1/n)
∑n

i=1

Xi{Ŷi(β̂(0))− Yi} = Op(n
−1/2) if β̂(0) = β0 +Op(n

−1/2).

The result implies (PnX)′(Ŷ − Y) = Op(n
1/2), where X is replaced by its

centralized version; this facilitates the proof of consistency of model selection.

As the validity of Proposition 1 requires β̂(0) to be
√
n-consistent, taking β̂(0) to

be the Buckley-James estimate, which is
√
n-consistent suffices.

4.2. Selection-consistent adaptive Dantzig selector

We use Ŷ to denote Ŷ(β̂(0)). Observe that the adaptive Dantzig selector for

data with a censored response, (3.5), can be rewritten as

minimize ∥Wβ∥1
subject to ∥Z′(Ŷ − ZWβ)∥∞ ≤ λ,

(4.1)

where W = diag(w1, . . . , wp) and Z = PnXW−1. We refer to the solution β̂

as the selection-consistent adaptive Dantzig selector (SADS). The optimization

problem (SADS) is a linear programming problem that, with its dual problem,

allows β̂ to be characterized in terms of primal and dual feasibility and comple-

mentary slackness conditions.

Lemma 2. If there is µ̂ ∈ Rp such that,

∥Z′(Ŷ − ZWβ̂)∥∞ ≤ λ, (4.2)

∥Z′Zµ̂∥∞ ≤ 1, (4.3)

µ̂′Z′ZWβ̂ = ∥Wβ̂∥1, (4.4)

µ̂′Z′(Ŷ − ZWβ̂) = λ∥µ̂∥1, (4.5)

then β̂ ∈ Rp solves (SADS).
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Proposition 2. Suppose β0 is the true parameter value, A = {j; β0j ̸= 0}, and
(1/n)X′PnX converges in probability to some positive definite matrix. If

λ√
n
wj

P→ ∞ if j /∈ A and λwj = OP (
√
n) if j ∈ A,

then, with probability tending to 1, a solution to (SADS), β̂, and the correspond-

ing µ̂ are given by

µ̂A = (Z′
AZA)

−1sgn(β0)A, (4.6)

µ̂Ā = 0, (4.7)

β̂A =W−1
A,A

{
(Z′

AZA)
−1Z′

AŶ − λ(Z′
AZA)

−1sgn(µ̂)A

}
= (X′

APnXA)
−1X′

APnŶ − λ(X′
APnXA)

−1WA,Asgn(µ̂)A, (4.8)

β̂Ā = 0. (4.9)

Corollary 1 (Consistency of model selection). If the conditions of Proposition 2

hold and β̂ is any sequence of solutions to (SADS), then P ({j; β̂j ̸= 0} = A) → 1.

To ensure that the conditions in Proposition 2 hold, one selects data-driven

weights wj and an appropriate λ. Examples of weights and λ such that these

conditions hold include wj = |β̂(0)|−γ , where β̂(0) is
√
n-consistent for β0 and

γ > 0, and λ such that n−1/2λ = O(1) and n(γ−1)/2λ → ∞. Proposition 2 makes

no uniqueness claims about solutions to (SADS), but it can be shown that in

“most” cases (SADS) has a unique solution (Dicker (2011)).

4.3. Oracle adaptive Dantzig selector

The estimator at (4.8) and (4.9) solves (SADS) in probability. This expres-

sion may be leveraged to obtain the large-sample distribution of
√
n-standardized

(SADS) estimates. However, though the solution to (SADS) is selection consis-

tent, it may not achieve optimal efficiency. To remedy this, we propose the oracle

adaptive Dantzig selector (OADS).

Let T = {j; β̂j ̸= 0} be the index set of non-zero estimated coefficients from

the SADS estimator β̂. Take OADS estimator β̂(0,T ) so that β̂
(0,T )

T̄
= 0 and

β̂
(0,T )
T is the Buckley-James estimate obtained by solving (3.4) with X replaced

by XT . This is similar to the Gauss-Dantzig selector of Candés and Tao (2007),

in which ordinary linear regression is performed on the covariates selected by the

Dantzig selector.

Proposition 3 (Oracle property). Assume the conditions of Proposition 2. Let

T = {j; β̂j ̸= 0}, where β̂ is the SADS estimator for β0, and let β0,A be the
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non-zero subvector of β0. If β̂(0,A) so that β̂
(0,A)

Ā
= 0 and β̂

(0,A)
A is the Buckley-

James estimate obtained by solving (3.4) with X replaced by XA, then the OADS

estimator β̂(0,T ) satisfies

P
(
β̂(0,T ) = β̂(0,A)

)
→ 1,

√
n
(
β̂
(0,T )
A − β0,A

)
→ N(0,Σ),

where Σ = Ω−1ΛΩ−1 with

Ω =

∫ −∞

−∞

[
Γ(2)(t,β0)−

{Γ(1)(t,β0)}⊗2

Γ(0)(t,β0)

]∫∞
t (1− F (s))ds

1− F (t)

{d log f(t)

dt

+
f(t)

1− F (t)

}
dF (t),

Λ =

∫ −∞

−∞

[
Γ(2)(t,β0)−

{Γ(1)(t,β0)}⊗2

Γ(0)(t,β0)

]{∫∞
t (1− F (s))ds

1− F (t)

}2
dF (t),

and Γ(r)(t,β0) for r = 0, 1 defined in (S1.1) in the web supplement.

The Σ in Proposition 3 is the asymptotic variance of the Buckley-James

estimator given the true subset of covariates; see Lai and Ying (1991)).

In practice we propose using the covariance matrix estimated from the second-

stage Buckley-James fit to estimate the covariance of the nonzero components

of β̂(0,T ), while we set the zero components to have zero variance. This ad-hoc

estimator ignores the variability coming from the imputation of Ŷ (β̂(0)) as well

as the variability from the first-stage SADS model selection, and so in general

underestimates the true variance of the OADS estimator. However, as the prob-

ability of selecting the true model increases, this variance estimator approaches

Σ, the variance of the oracle estimator.

5. Tuning Parameter Selection

One needs to select an appropriate tuning parameter λ in order to obtain

good performance. For the uncensored linear regression (2.1), Tibshirani (1996)

and Fan and Li (2001) proposed the generalized cross-validation (GCV) statistic

GCV ∗(λ) =
AR(λ)

{1− d(λ)/n}2

where AR(λ) is the average residual sum of squares (1/n)∥Y−Xβ̂(λ)∥22, β̂(λ) is
the estimate of β under λ and d(λ) is the effective number of parameters (Zou,

Hastie, and Tibshirani (2007)).

When the data are censored, we adopt an inverse reweighting scheme to

account for it. Assume the censoring Ci are iid and have a common survival
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function Gi, a reasonable assumption for clinical trials where most censoring is

administrative. As suggested by Johnson, Lin, and Zeng (2008), we approximate

the unobserved AR(λ) by

ÂR(λ) =

∑n
i=1 δi{Y ∗

i − α̂(0) −X′
iβ̂(λ)}2/Ĝ(Y ∗

i )∑n
i=1 δi/Ĝ(Y ∗

i )
,

where Ĝ(·) is the Kaplan-Meier estimator forG(·), and α̂(0) = (1/n)
∑n

i=1{Yi(β̂0))

−X′
iβ̂

(0)}. Conditional on (Yi, Ci,Xi), the expected value of δi/G(Y ∗
i ) is one, and

hence, the expected values of the numerator and the denominator of ÂR(λ) are

the expected values of
∑n

i=1{Yi−α̂(0)−X′
iβ̂(λ)}2 and n, respectively. This implies

that ÂR(λ) and AR(λ) have the same limit, justifying the utility of the inverse

reweighting scheme. To obtain an estimate of the effective number of parameters

for the SADS estimator, we follow Zou, Hastie, and Tibshirani (2007). The ex-

pressions (4.8) and (4.9) suggest that d̂(λ) = trace{XT (X
′
TPnXT )

−1X′
TPn} =

∥T∥0, where T = {j; β̂j ̸= 0}, is a consistent estimator for d(λ). In our data

analysis and simulation studies, we select λ to yield the smallest

GCV (λ) =
ÂR(λ)

{1− d̂(λ)/n}2
. (5.1)

Similar GCV schemes have been proposed by Wang et al. (2008) and Johnson,

Lin, and Zeng (2008).

6. Simulations and Comparisons

6.1. Simulation set-up

We examined the finite sample performance of the proposed methods in

low- and high-dimensional settings. Mimicking the simulation setup of Tibshi-

rani (1997) and Cai, Huang, and Tian (2009), for i = 1, . . . , n we generated the

true response Yi (after the exponential transform) from the exponential distri-

bution with rate λi = exp(−β′
0Xi) , so Yi = β′

0Xi + ei. In the low-dimensional

setting, we let p = 9, and to model weak and moderate associations between

the predictors and the response we took β0 = (0.35, 0.35, 0, 0, 0, 0.35, 0, 0, 0)′

and β0 = (0.7, 0.7, 0, 0, 0, 0.7, 0, 0, 0)′. In the high-dimensional setting, we let

p = 10, 000 and considered β0 = (βlow
0 ,βlow

0 ,0), where βlow
0 are the 9 × 1-

dimensional true parameter vectors from the low-dimensional setting.

We generated covariates Xi = (Xi1, . . . , Xip)
′ from a multivariate normal

with mean zero and a compound symmetry covariance matrix Σ = (σjj′)p×p =

(ρ), and the ei with the standard extreme value distribution. In low dimen-

sions, we took ρ to be 0, 0.5, and 0.9, corresponding to zero, moderate, and
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strong collinearity among the predictors. In high dimensions, good performance

is difficult to achieve with a p as large as ours, so we took ρ equal to 0, 0.3, or

0.5.

The censoring variable Ci (after exponential transform) was generated from

a uniform[0, ξ], where ξ was chosen to achieve about 40% censoring. The initial

estimate β̂(0) was obtained via the Buckley-James procedure. We simulated

sample sizes of n = 50 or n = 200 and generated 200 independent datasets under

each setting.

6.2. Comparisons of competing methods

For each scenario, we evaluated the selection-consistent adaptive Dantzig

selector β̂ (SADS) and the oracle adaptive Dantzig selector β̂(0,T ). For the OADS

estimator, we tuned the SADS estimator and then fit a Buckley-James estimate

to the selected covariates. We used the unpenalized Buckley-James procedure to

obtain the initial
√
n-consistent estimates β̂(0).

We also evaluated the adaptive penalized Buckley-James estimator (APBJ)

of Johnson (2009) that uses β̂(0) to impute outcomes Ŷ(β̂(0)) and then applies

the adaptive LASSO penalty to the least-square loss function constructed using

the Ŷ(β̂(0)). Here we followed Johnson (2009) and used the Gehan estimator

(Gehan (1965)) to obtain the initial β̂(0). In the high-dimensional setting, we

used the screening procedure of Zhu et al. (2011) on the APBJ estimator and

our adaptive Dantzig selectors.

We evaluated the accuracy and precision of the parameter estimates based

on the mean squared errors MSE = E(∥β̂ − β0∥2). We recorded the zero regres-

sion coefficients incorrectly set to non-zero and non-zero regression coefficients

incorrectly set to zero, giving the average number of false positives (FP) and false

negatives (FN). We also recorded the probability, across the 200 simulations, of

selecting the correct model. Finally, we compared the predictive abilities of the

fitted models by estimating their C-statistics (Uno et al. (2011)) on independent

test datasets.

The results for the low-dimensional setting are summarized in Table 1. The

Dantzig selector-based estimators appeared to have better model selection perfor-

mances. When n = 50, all methods performed alike in terms of model selection,

and had a difficult time selecting the correct model. When n = 200 and β0j = 0.7,

the SADS and OADS estimators were able to select the correct model up to 74%

of the time. The APBJ method of Johnson (2009) performed worse than the

others except when ρ = 0.9.

The APBJ method of Johnson (2009) appeared to have the best estimation

accuracy in general, as its average mean squared errors were usually lower than

those of OADS and SADS. The OADS estimator could outperform the SADS
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Table 1. Comparisons of methods with different signal strengths in low
dimensions.

β0j = 0.7 β0j = 0.35

Method MSE FP FN % Correct C-stat MSE FP FN % Correct C-stat
n = 50, ρ = 0

SADS 0.46 1.36 0.24 0.24 0.72 0.42 1.58 1.36 0.04 0.59
OADS 0.54 1.36 0.24 0.24 0.72 0.55 1.58 1.36 0.04 0.59
APBJ 0.44 1.42 0.23 0.24 0.72 0.39 1.60 1.23 0.04 0.60

n = 200, ρ = 0
SADS 0.11 0.56 0.01 0.74 0.75 0.10 0.80 0.34 0.32 0.64
OADS 0.08 0.56 0.01 0.74 0.75 0.11 0.80 0.34 0.32 0.64
APBJ 0.11 0.87 0 0.64 0.75 0.10 0.82 0.34 0.30 0.64

n = 50, ρ = 0.5
SADS 1.03 1.60 0.55 0.10 0.78 0.61 1.27 1.62 0 0.66
OADS 1.14 1.60 0.55 0.10 0.78 0.85 1.27 1.62 0 0.66
APBJ 0.94 1.77 0.48 0.10 0.78 0.54 1.29 1.51 0.02 0.67

n = 200, ρ = 0.5
SADS 0.18 0.88 0.06 0.57 0.81 0.18 0.93 0.74 0.12 0.69
OADS 0.17 0.88 0.06 0.57 0.81 0.21 0.93 0.74 0.12 0.69
APBJ 0.18 1.10 0.02 0.48 0.81 0.16 0.96 0.55 0.20 0.69

n = 50, ρ = 0.9
SADS 4.31 1.90 1.41 0 0.82 2.25 1.52 1.96 0 0.71
OADS 5.04 1.90 1.41 0 0.81 3.32 1.52 1.96 0 0.70
APBJ 3.68 2.12 1.26 0 0.82 1.85 1.52 1.88 0.01 0.71

n = 200, ρ = 0.9
SADS 1.20 1.55 0.78 0.04 0.83 0.59 0.65 1.98 0 0.72
OADS 1.35 1.55 0.78 0.04 0.83 0.86 0.65 1.98 0 0.72
APBJ 1.05 1.47 0.71 0.08 0.83 0.53 0.74 1.77 0.01 0.72

estimator, but apparently only when the probability of selecting the true model

was sufficiently high. In such situations the OADS outperformed the APBJ

estimator, but when this was not the case, such as in the simulation settings

with n = 50, it was detrimental to fit a Buckley-James estimator to the covariates

selected by SADS.

The methods did not exhibit appreciable differences in predictive abilities.

The selection performance and mean squared errors of all methods improved

with increasing sample size and degraded with increasing correlation between

the covariates. The predictive abilities were not affected much by the sample

size, and improved with increasing correlation.

The results for the high-dimensional setting are summarized in Table 2. All

methods performed poorly in variable selection. When n = 200 and β0j = 0.7,

they were able to achieve fairly good estimation accuracy, as the MSE’s of the

three methods were lower than ∥β0∥22 = 2.94 for ρ = 0 and ρ = 0.3. The APBJ

estimator gave the most accurate parameter estimates. We see that the different

methods gave fitted models with very similar predictive abilities. When n = 50
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Table 2. Comparisons of methods with different signal strengths in high
dimensions.

β0j = 0.7 β0j = 0.35

Method MSE FP FN % Correct C-stat MSE FP FN % Correct C-stat
n = 50, ρ = 0

SADS 4.81 7.66 5.50 0 0.55 1.87 7.78 5.91 0 0.54
OADS 4.97 7.66 5.50 0 0.55 2.00 7.78 5.91 0 0.54
APBJ 4.66 8.13 5.51 0 0.55 1.74 8.01 5.91 0 0.54

n = 200, ρ = 0
SADS 1.37 20.01 0.79 0 0.72 1.26 21.34 3.58 0 0.55
OADS 1.64 20.01 0.79 0 0.70 1.43 21.34 3.58 0 0.55
APBJ 1.34 19.31 0.79 0 0.72 1.18 22.02 3.51 0 0.55

n = 50, ρ = 0.3
SADS 5.92 7.18 5.79 0 0.73 2.08 5.96 5.92 0 0.67
OADS 6.01 7.18 5.79 0 0.73 2.21 5.96 5.92 0 0.67
APBJ 5.66 7.30 5.80 0 0.73 1.88 6.29 5.92 0 0.67

n = 200, ρ = 0.3
SADS 2.40 15.62 2.86 0 0.81 1.15 12.64 4.66 0 0.71
OADS 2.57 15.62 2.86 0 0.81 1.20 12.64 4.66 0 0.71
APBJ 2.30 13.45 2.87 0 0.81 1.03 10.57 4.69 0 0.71

n = 50, ρ = 0.5
SADS 6.90 7.23 5.87 0 0.80 2.52 5.98 5.94 0 0.72
OADS 6.97 7.23 5.87 0 0.80 2.71 5.98 5.94 0 0.72
APBJ 6.50 7.50 5.88 0 0.80 2.29 6.05 5.94 0 0.72

n = 200, ρ = 0.5
SADS 3.52 17.32 4.06 0 0.85 1.41 12.33 5.28 0 0.76
OADS 3.70 17.32 4.06 0 0.84 1.48 12.33 5.28 0 0.76
APBJ 3.34 15.70 4.07 0 0.84 1.25 9.54 5.35 0 0.76

and ρ = 0, the C-statistics were very low because of the noise involved in the

screening step, but with larger n and higher ρ the C-statistics were around 80%

even though few of the truly important covariates were selected.

We also studied the performance of our covariance estimator for the OADS

estimators. As the SADS stage does a better job of selecting the true model, our

variance estimator approaches the true variance of the oracle estimator. In Table

3 we compare a few average estimated covariance matrices to their corresponding

empirical oracle covariance matrices in low dimensions. When n = 200, β0j = 0.7,

and ρ = 0, the OADS estimator selected the correct model 74% of the time, so

the two covariance matrices were similar. With n = 50, β0j = 0.7, and ρ = 0.5,

even when the model was selected only 10% of the time, our covariance estimator

still performed fairly well. In the worst case setting of n = 50, β0j = 0.35, and

ρ = 0, however, when the OADS estimator never selected the correct model, our

estimator was very different from the truth. Thus while our ad-hoc proposal is

reasonable for easy or moderately difficult settings, a more appropriate variance

estimator is an interesting subject for further research.
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Table 3. Covariance estimators.

Oracle cov. Ave. OADS cov.
β1 β2 β6 β1 β2 β6

n = 200, β0j = 0.7, ρ = 0, 74% correct
β1 0.014 0.004 0.004 0.016 0.002 0.002
β2 0.004 0.013 0.004 0.002 0.016 0.002
β6 0.004 0.004 0.016 0.002 0.002 0.016

n = 50, β0j = 0.7, ρ = 0.5, 10% correct
β1 0.127 -0.036 -0.031 0.100 -0.010 -0.011
β2 -0.036 0.098 -0.020 -0.010 0.108 -0.014
β6 -0.031 -0.020 0.094 -0.011 -0.014 0.098

n = 50, β0j = 0.35, ρ = 0.9, 0% correct
β1 0.457 -0.206 -0.224 0.144 -0.018 -0.017
β2 -0.206 0.406 -0.171 -0.018 0.132 -0.011
β6 -0.224 -0.171 0.416 -0.017 -0.011 0.158

Table 4. Validation C-statistics on TT3.

Method Model size C-statistic
SADS 4 0.6067
OADS 4 0.6160
APBJ 13 0.6255

7. Example of Myeloma Patients’ Survival Prediction

Multiple myeloma is a progressive hematologic (blood) disease, characterized
by excessive numbers of abnormal plasma cells in the bone marrow and overpro-
duction of intact monoclonal immunoglobulin. Myeloma patients are typically
characterized by wide clinical and pathophysiologic heterogeneities, with survival
ranging from a few months to more than 10 years. Gene expression profiling of
multiple myeloma patients has offered an effective way of understanding the can-
cer genomics and designing gene therapy. Identifying risk groups with a high
predictive power could contribute to selecting patients for personalized medicine.

We studied event-free survival from newly diagnosed multiple myeloma pa-
tients enrolled in trials UARK 98-026 and UARK 2003-33 (Zhan et al. (2006),
Shaughnessy et al. (2007)). The trials compared the results of two treatment
regimes, total therapy II (TT2) and total therapy III (TT3). There were 340
patients in TT2, with 191 events and an average follow-up of 47.1 months, and
214 patients in TT3, with 55 events and an average follow-up of 35.6 months.
Gene expression values for 54,675 probesets were measured for each subject using
Affymetrix U133Plus2.0 microarrays. We retrieved the data from the MicroArray
Quality Control Consortium II (Shi et al. (2010)) GEO entry (GSE24080).

We used our adaptive Dantzig selector methods to develop risk scores by
fitting AFT models to the TT2 patients. We then estimated the C-statistics
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Table 5. Parameter estimates by various selectors.

Probeset Gene name SADS OADS APBJ
205072 s at XRCC4 0.057 0.285 0.140
208966 x at IFI16 -0.836 -0.678 -0.485
225450 at AMOTL1 -0.042 -0.180 -0.082

233750 s at C1orf25 -0.207 -0.386 -0.191
204700 x at C1orf107 -0.055
1565951 s at CHML -0.135
1568907 at Unknown 0.080
201897 s at CKS1B 0.009
222437 s at VPS24 0.297
222443 s at RBM8A 0.255
209052 s at WHSC1 -0.040
228817 at ALG9 0.236
225834 at FAM72A /// FAM72B /// GCUD2 -0.046

(Uno et al. (2011)) of those models on the TT3 patients, and compared the
results to the APBJ estimator. Table 4 contains the results, and we see that the
SADS, OADS, and APBJ estimators have similar predictive performances, with
validation C-statistics of around 61%. Our adaptive Dantzig selectors achieved
this using 4 probesets, while the APBJ estimator used 13. Table 5 reports the
final models and the parameter estimates.

8. Discussion

Several issues merit further investigations. Our asymptotic setup in this
paper is that the number of predictors is fixed while the sample size approaches
infinity. We have appealed to the sure screening procedure of Zhu et al. (2011),
but an asymptotic theory with a diverging p seems to be more applicable to
problems involving a huge number of predictors, such as microarray analysis and
document/image classification.

More research is needed on the evaluation of the variation of the estimator
for small or moderate sample size. We proposed an ad-hoc variance estimator
that gives reasonable performance when the signal-to-noise ratio is not too weak.
Another possibility is to use a perturbation resampling technique, as in Minnier,
Tian, and Cai (2011), though this lacks theoretical justification when applied to
Dantzig selector-type regularization.

A potential advantage of the Dantzig selector over penalized likelihood meth-
ods such as LASSO is that it can be extended to settings in which no explicit
likelihoods or loss functions are available, and may be more computationally and
theoretically appealing than the penalized estimating equation method of John-
son, Lin, and Zeng (2008). We believe that our work can be extended to handle
Dantzig selectors in the framework of more general estimating equations.
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