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Abstract: We propose a new quantile regression model when data are subject to

censoring. Our model does not require any global linearity assumption, or inde-

pendence of the covariates and the censoring time. We develop a class of power-

transformed quantile regression models such that the transformed survival time can

be better characterized by linear regression quantiles. Consistency and asymptotic

normality of the resulting estimators are shown. A re-sampling based approach

is proposed for statistical inference. Empirically, the new estimator is shown to

outperform its competitors under conditional independence, and perform similarly

under unconditional independence. The proposed method is illustrated with a data

analysis.
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1. Introduction

Consider the accelerated failure time (AFT) model (Kalbfleisch and Prentice

(2002))

log(T ) = βT0 Z + ε,

where T is the survival time, Z is the covariate vector and the errors are i.i.d.

with mean zero. This model provides a direct interpretation of the (log) survival

time using the covariates and is a useful alternative to the Cox model (Kalbfleisch

and Prentice (2002)).

The usual AFT model excludes error heterogeneity, and cannot be used

to quantify the covariate effects in lower or higher quantiles of the survival

time if such heterogeneity exists (Koenker and Geling (2001)). Recent years

have seen quantile regression as a complement to the classical conditional

mean model (Koenker and Bassett (1978); Koenker (2005)). When data are

subject to censoring, quantile regression has emerged as a flexible method that

is able to assess the distributional information of the survival time based on co-

variates. Powell (1986) studied censored quantile regression for fixed censoring.

http://dx.doi.org/10.5705/ss.2012.089
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Ying, Jung, and Wei (1995) proposed a novel median regression model under ran-

dom censoring. Yang (1999) used an empirically covariate-weighted cumulative

hazard function to study median regression. Koenker and Geling (2001) explored

the usefulness of this model by analyzing a medfly longevity dataset. Portnoy

(2003) proposed an innovative redistribution-of-mass method that generalized

the classical Kaplan-Meier estimator. Peng and Huang (2008) proposed a cen-

sored quantile regression approach using martingale-based estimating equations,

though their model relies on a strong global linearity assumption. It is thus of

interest to develop censored quantile regression methods that are free of this as-

sumption. Wang and Wang (2009) proposed a locally weighted censored quantile

regression extending Portnoy’s method with less restrictive assumptions. More

recently, Huang (2010) proposed a censored quantile regression method based on

estimating integral equations.

The logarithmic transformation in the AFT model is often made for conve-

nience. Transformation quantile regression models are flexible and can accom-

modate a wide variety of models. To identify a proper scale of the survival time

that is linearly related to the covariates, the Box-Cox transformation (Box and

Cox (1964)) is an attractive option. This model has been studied by Cai, Tian,

and Wei (2005) for the conditional mean in survival analysis, by Mu and He

(2007) for the quantile regression with no censoring, and by Yin, Zeng, and Li

(2008) in censored quantile regression.

We propose a censored quantile regression estimator motivated by the mar-

tingale process associated with the counting process. The martingale process

provides a general framework for studying asymptotic properties and inferential

procedures. Our model does not require a global linearity assumption. We only

require the conditional independence of the survival and the censoring time given

the covariates.

Using a locally weighted Kaplan-Meier estimator, our approach can be easily

implemented with existing quantile regression code (Koenker (2005)). We use our

estimator in conjunction with the Box-Cox transformation to identify a proper

transformation of the survival time such that the conditional quantiles after this

transformation are linearly related to covariates. We study the estimator when

multiple continuous covariates are present, extending substantially the univariate

results in Wang and Wang (2009). In addition, we propose to use a power

transformation such that the conditional quantile of the transformed response is

linearly related to covariates.

The rest of the paper is organized as follows. In Section 2, we use a set of

mar tingale-based estimation equations to motivate our new quantile regression

estimator. We discuss an efficient non-iterative algorithm and study how the

Box-Cox transformation can be incorporated. We present the consistency and
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asymptotic results in Section 3, separately for the case where the transformation

parameter is unknown and for the case this parameter needs to be estimated.

Extensive numerical simulations reported in Section 4 show that the proposed

method works well and compare favorably with other methods. We illustrate the

usefulness of the method via analysis of an HMO dataset in Section 5. Concluding

remarks are given in Section 6. All proofs are relegated to the Appendix.

2. Martingale-based Estimation

Let T be the survival time and C the censoring time. The data are (Yi, δi, Zi),

i = 1, . . . , n, where Yi = min(Ti, Ci) is the observed failure time, δi = I(Ti ≤
Ci) is the censoring indicator; and Zi = (Zi0, Zi1, . . . , Zip)

′ ∈ Rp+1 is a (p +

1)-dimensional covariate with Zi0 as the intercept. We discuss the censored

quantile regression assuming the logarithm transformation. We then discuss

how the formulation can be extended to incorporate an unknown transformation

parameter.

2.1. Censored quantile regression

The quantile regression model (QR) linearly relates the τth quantile of the

survival time to the covariates Z as

Qlog Ti
(τ |Zi) = Z ′

iβ0(τ),

where QT (τ |Z) = inf{t : P (T ≤ t|Z) ≥ τ} and β0(τ) is the regression coefficient

at the τth quantile. The QR model states that, for a fixed τ ,

log(Ti) = Z ′
iβ0(τ) + ei(τ), (2.1)

where ei(τ) is a random error whose τth quantile given Zi is zero. This model is

clearly an extension of the AFT model where the errors are iid and independent

of the covariates.

Remark 1. In order to estimate β0(τ0) at the τ0th quantile, Peng and Huang

(2008) require that the quantile regression model hold for all τ ≤ τ0 simul-

taneously. Our model only assumes that it holds at a single quantile. Thus,

to estimate the conditional median for example, we only need (2.1) to hold at

τ = 0.5.

Let F0(·|Z) be the continuous conditional distribution function of T given

Z. Denote the counting process by N(t) = δI(Y ≤ t) and the martingale process

associated with N(t) as M(t) = N(t)− Λ0(t ∧ Y |Z), where Λ0(·|Z) = − log(1−
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F0(·|Z)) is the conditional cumulative hazards function of T . Since E{M(t)|Z} =

0 for t ≥ 0, we have that

E
1

n

n∑
i=1

Zi

{
Ni(exp(Z

′
iβ0(τ)))− Λ0(Yi ∧ exp(Z ′

iβ0(τ))|Zi)
}
= 0, (2.2)

where we have used the empirical version of E{ZM(exp(Z ′β0(τ)))|Z} = 0. Be-

cause the function Λ0 is unknown, we use the quantile property F0(exp(Z
′
iβ0(τ))

|Zi) = τ to obtain

Λ0(Yi ∧ exp(Z ′
iβ0(τ))|Zi) = Hτ (F0(Yi|Zi)), (2.3)

where Hτ (t) = H(τ) ∧ H(t), and H(t) = − log(1 − t) for t ∈ [0, 1) is a strictly

increasing function. Combining (2.2) and (2.3), we have the estimating function

Un(β) =
1

n

n∑
i=1

Zi

{
Ni(exp(Z

′
iβ))−Hτ (F0(Yi|Zi))

}
≈ 0 (2.4)

to estimate β, where we have written β = β(τ) for convenience. The approxi-

mation ≈ is used because an exact solution may not exist (Ying, Jung, and Wei

(1995)).

In principle, as long as we can form unbiased estimating functions, consistent

estimates for β(τ) can be obtained. Here we use Peng and Huang’s approach due

to its martingale structure that naturally accommodates the conditional indepen-

dence censoring mechanism (Kalbfleisch and Prentice (2002)). The underlying

counting process notion provides a unified framework for model checking and

diagnosis.

Equation (2.4) cannot be used as an estimating equation since the conditional

distribution F0(·|z) is unknown. Given the observed data {Yi, δi, Zi}, i = 1, . . . , n,

we propose to estimate the distribution function F0(·|z) non-parametrically using

the local Kaplan-Meier estimator F̂ (·|z) as

F̂ (t|z) = 1−
n∏

j=1

[
1− Wnj(z)∑n

k=1 I(Yk ≥ Yj)Wnk(z)

]I(Yj≤t,δj=1)

, (2.5)

whereWnj(z) is a sequence of weights adding up to 1. WhenWnj(z) = 1/n for all

j, F̂ (t|z) reduces to the classical Kaplan-Meier estimator. This estimator reduces

to the kernel estimator of the conditional cumulative distribution function when

no censoring occurs. Similar to Wang and Wang (2009), we use the kernel weights

Wnj(z) = K
(z − Zj

hn

)[ n∑
k=1

K
(z − Zk

hn

)]−1

,
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where K(·) is a kernel function and hn > 0 is the bandwidth converging to

zero when n goes to infinity. When there is only a single continuous covariate

in Z other than the intercept (p = 1), we use the bi-quadratic kernel k(x) =

(15/16)(1− x2)2I(|x| ≤ 1) for the covariate. When p ≥ 2 and there are multiple

continuous covariates in Z, we use a product kernel with a higher order kernel

for each covariate, as discussed in Müller (1988, Thm. 5.4). For example, when

p = 2, we use the kernel K(x) = (15/32)(3 − 10x2 + 7x4)I(|x| ≤ 1) for each

covariate and a product kernel for the two non-constant covariates. If p = 3, we

use K(x) = (35/256)(15 − 105x2 + 189x4 − 99x6)I(|x| ≤ 1). Since these higher

order kernels can give an estimate of F (·|z) outside [0, 1], we truncate the value

to [0, 1] as needed. The working estimating equation is then

Un(β) =
1

n

n∑
i=1

Zi

{
Ni(exp(Z

′
iβ))−Hτ (F̂ (Yi|Zi))

}
≈ 0. (2.6)

Remark 2. Peng and Huang (2008) observed that

Hτ (F0(Yi|Zi)) =

∫ τ

0
I[Yi ≥ exp(Z ′

iβ0(u))]dH(u), (2.7)

under a global linearity assumption, and proposed to approximate the integral by

a grid-based procedure similar to the Euler’s forward rule. This approximation

requires estimation of all β(τ)’s on a fine grid in order to estimate a single quantile

at τ . In contrast, we make the linearity assumption only at a particular quantile

and our model only needs to estimate β(τ) at the τth quantile.

The working estimating equation in (2.6) is monotonic, and its solution is

the minimizer of the quantile regression objective function

1

n

n∑
i=1

{δiφτ (log Yi − Z ′
iβ) + φτ (Y

∗
i − (τ−1Hτ (F̂ (Yi|Zi))− δi)Z

′
iβ)}, (2.8)

where φτ (s) = s(τ−I(s ≤ 0)) is the check function (Koenker and Bassett (1978))

and Y ∗
i > maxj{(τ−1Hτ (F̂ (Yj |Zj)) − δj)Z

′
jβ}. We take Y ∗

i = maxj{log(Yj)} +
100, i = 1, . . . , n, for simulation and data analysis.

The formulation in (2.8) suggests use of the fast quantile regression code

developed by Portnoy and Koenker (1997) for computation. In particular, after

we have estimated the conditional distribution function F0, we can make use of

R function qr in the R package quantreg to fit a weighted quantile regression

model using the augmented data set {(Yi, Zi)}ni=1 and {Y ∗
i , (τ

−1Hτ (F̂ (Yi|Zi))−
δi)Zi}ni=1, with weights {δi}ni=1 for {(Yi, Zi)}ni=1. Thus, the extra effort needed

to implement our approach is minimal.
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2.2. Transformation quantile regression

We extend the log-transformed linear quantile regression to the power-trans-
formed linear quantile regression in which the unknown transformation parameter
needs to be estimated. This is a flexible family of monotone transformations and
gives many useful structures (Box and Cox (1964); Cai, Tian, and Wei (2005);
Mu and He (2007); Yin, Zeng, and Li (2008)).

The family of power transformations (Box and Cox (1964)) is given by

ργ(x) =

{
xγ−1
γ if γ ̸= 0,

log(x) if γ = 0.

A practical range of γ often used is [−2, 2] and can be extended if necessary. For
the power-transformed linear quantile regression model, we assume that the τth
quantile of ργ0(τ)(Ti) is linearly related to Zi

Qργ0(τ)(Ti)
(τ |Zi) = Z ′

iβ0(τ),

where γ0(τ) is the corresponding unknown transformation parameter and β0(τ)
is the quantile regression parameter. In the sequel, we suppress the τ in β(τ)
and γ(τ) to simplify the notation. We write the inverse power transformation
function as

ρ(−1)
γ (x) =

{
(γx+ 1)1/γ if γ ̸= 0,

exp(x) if γ = 0.

If the transformation parameter γ0 is known, the τth quantile of Ti given Zi is
ρ
(−1)
γ0 (Z ′

iβ0). Following (2.4), we propose to estimate β0 by solving

U∗
n(β; γ) =

1

n

n∑
i=1

Zi

{
Ni(ρ

(−1)
γ (Z ′

iβ))−Hτ (F̂ (Yi|Zi))
}
≈ 0. (2.9)

Similar to (2.8), we need to minimize

1

n

n∑
i=1

{δiφτ (ργ(Yi)− Z ′
iβ) + φτ (Y

∗∗
i − (τ−1Hτ (F̂ (Yi|Zi))− δi)Z

′
iβ)}

for large Y ∗∗
i . We denote the resulting estimator as β̂n(γ) to emphasize the

dependence on the power transformation parameter γ.
To estimate γ, a common approach in the quantile regression literature is to

use some discrepancy function based on a goodness-of-fit measure (Mu and He
(2007); Yin, Zeng, and Li (2008)). To this end, we define a cumsum process of
residuals indexed by z,

Rn(z, γ) =
1

n

n∑
i=1

I(Zi ≤ z)
{
Ni(ρ

(−1)
γ (Z ′

iβ̂n(γ)))−Hτ (F̂ (Yi|Zi))
}
,
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where Zi ≤ z means componentwise inequality. The cumsum process is used

widely, for example in Lin, Wei, and Ying (1993, 2002), He and Zhu (2003), Mu

and He (2007), and Yin, Zeng, and Li (2008). Following the proof of Theorem 3,

the process n1/2Rn(z, γ0) converges to a zero-mean Gaussian process in z, while

for any γ ̸= γ0, the process n1/2Rn(z, γ) diverges to infinity for all z ∈ Rp (Mu

and He (2007)). Because of this, the estimator γ̂n(τ) (or γ̂n) of γ0 is obtained by

minimizing

R∗
n(γ) =

1

n

n∑
i=1

∥Rn(Zi, γ)∥2, for γ ∈ Υ,

where Υ denotes the parameter space for γ. Subsequently, β0 is estimated as

β̂n(γ̂n). The objective function only involves a single parameter although it is

not differentiable with respect to γ. The standard grid search algorithm can be

used to obtain the estimator γ̂n. Typically, we would not use γ̂n as the final

estimate of the transformation parameter, but would use the nearest convenient

value in a sequence such as -1, 0, 1 for better interpretation, after checking that

such a value lies within a selected confidence interval (Box and Cox (1964)).

Remark 3. When the transformation parameter γ is fixed, the estimating equa-

tion approach adopted by Ying, Jung, and Wei (1995) and Yin, Zeng, and Li

(2008) takes the form

n−1
n∑

i=1

Zi

{I(ργ(Yi)− β(γ)′Zi ≥ 0)

Ĝ(ρ
(−1)
γ (β(γ)′Zi))

− τ
}
≈ 0, (2.10)

where Ĝ is the Kaplan-Meier estimator for the censoring times based on {(Yi, 1−
δi)}ni=1. Since β(γ) in Ĝ is unknown, Yin, Zeng, and Li (2008) used an iterative

algorithm. Our estimating equation approach requires estimating the conditional

cumulative density function of the failure time just once.

3. Theory

Let G0(t|z) be the conditional distribution function of C given Z = z, and

fZ(z) be the marginal density function of Z. We focus on the situation where

there is one continuous covariate, deferring the discussion of the multiple covari-

ate case to Appendix D. To derive the asymptotic properties of the proposed

estimator, we make some regularity assumptions.

C1. T and C are conditionally independent given the covariate Z.

C2. The true value β0 of β is in the interior of a bounded convex region B. The
support Z of Z is bounded and compact.

C3. infz∈Z P (Y ≥ T |z) ≥ 1− η0 > 0, where T = supz∈Z,β∈B exp(z′β).
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C4. The marginal density function fZ(z), the conditional density functions

f0(t|z) and g0(t|z) of the failure time T and C are uniformly bounded away

from infinity and have bounded (uniformly in t) first and second order partial

derivatives with respect to z.

C5. The bandwidth hn satisfies hn = O(n−v) with 1/4 < v < 1/2.

C6. The kernel function K(·) has a compact support [−1, 1], and satisfies the

Lipschitz condition of order 1,
∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
K2(u)du <

∞ and
∫
u2K(u)du <∞.

C7. For β in the neighborhood of β0, E[ZZ ′ exp(Z ′β)f0(exp(Z
′β)|Z)(1 − G0

(exp(Z ′β)|Z))] is positive definite.

Condition C1 is standard in survival analysis. Condition C2, C3, and C4 are

standard in analyzing failure time data. Condition C5 specifies the bandwidth

choice needed for establishing the rate of convergence of the local Kaplan-Meier

estimator and subsequently the consistency of β̂n. For asymptotic normality, the

rate in Condition C5 needs to be strengthened to 1/4 < v < 1/3. Condition C6

is usually made for kernel smoothing and it holds for the bi-quadratic kernel we

use in this paper. Condition C7 ensures that the quantile regression estimator is

unique and it is used to establish the asymptotic normality of the estimator.

Theorem 1 (Consistency). Under C1−C7, the solution β̂n to (2.6) satisfies

β̂n → β0 in probability as n→ ∞.

Theorem 2 (Asymptotic normality). Under Assumptions C1−C7 and 1/4 <

v < 1/3, we have

n1/2(β̂n − β0)
d→ N(0,Γ−1

1 V1Γ
−1
1 ),

where Γ1 = E{ZZ ′ exp(Z ′β0)f0(exp(Z
′β0)|Z)(1 − G0(exp(Z

′β0)|Z))} and V1 is

defined in Lemma A.3 in Appendix B.

The matrices Γ1 and V1 in the limiting covariance matrix depend on the

unknown conditional density functions f0(·|z) and g0(·|z) and may be difficult to

estimate nonparametrically from finite samples. We propose to use the bootstrap

re-sampling procedure for inference following Chen, Linton, and van Keilegom

(2003). Operationally, we draw with replacement {(Y ∗
i , δ

∗
i , Z

∗
i )}ni=1 from the orig-

inal data set {(Yi, δi, Zi)}ni=1 and re-estimate β as β̃n. This process is repeated

many times. Denote the estimates as β̃
(j)
n , j = 1, . . . , B for a large B. The sam-

pling distribution of β̃
(j)
n can be used to approximate the sampling distribution

of β̂n. The bootstrap variance of the estimates computed from the bootstrap

sample {(Y ∗
i , δ

∗
i , Z

∗
i )}ni=1 is a consistent estimate of the asymptotic variance of

β̂n (See Hall (1992, p.159)). A sketch of the justification is provided in the

Supplementary File.
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Next we study the large-sample properties of the power-transformed estima-
tor. To establish these results, we need more regularity conditions.

C3′. Assumption C3 holds with T = supz∈Z,γ∈Υ,β∈B ρ
(−1)
γ (z′β).

C7′. E[ZZ ′ρ̇
(−1)
γ (Z ′β)f0(ρ

(−1)
γ (Z ′β)|Z)(1−G0(ρ

(−1)
γ (Z ′β)|Z))] is positive definite

for β in the neighborhood of β0 and γ in the neighborhood of γ0, where
ρ̇
(−1)
γ (x) = ∂ρ

(−1)
γ (x)/∂x.

C8. γ0 is an interior point of a compact set Υ.

These assumptions are discussed in Yin, Zeng, and Li (2008).

Theorem 3. Under Assumptions C1, C2, C3′, C4-C6, C7′, and C8, we have
β̂n(γ̂n) → β0 and γ̂n → γ0 in probability. Furthermore if 1/4 < v < 1/3, we have

n1/2
{(

β̂n(γ̂n)

γ̂n

)
−
(
β0
γ0

)}
d→ N(0,Γ−1

2 V2(Γ
′
2)

−1),

with Γ2 and V2 defined in Appendix C.

The proofs outlined in the Appendix depend heavily on empirical process
theory (van der Vaart and Wellner (1996)). In Appendix D, we outline the

results for p > 1. For statistical inference of γ̂n and β̂n(γ̂n), we again resort to
the bootstrap re-sampling method as discussed before.

We briefly discuss the problem of choosing the bandwidth hn. In practice,

we can use the K-fold cross validation by dividing the dataset into K parts
D1, . . . , DK which are roughly equally-sized. For Dj , we fit the model by using
the data from the other K−1 parts, and calculate a loss from predicting the τth

conditional quantile of T for the uncensored data in Dj ,

Lj(h) =
1

#{i : i ∈ Dj}
∑
k∈Dj

∥Rn(Zk, γ̂
(−j))∥2,

where γ̂(−j) is the estimated parameter using data inD1, . . . , Dj−1, Dj+1, . . . , DK .
This procedure is repeated for j = 1, . . . ,K and the average loss L(h) =

∑K
j=1

Lj(h)/K is computed for bandwidth h. We take hn = argmin h L(h).

4. Numerical Study

We present three simulations examples to illustrate the finite sample perfor-
mance of the approach. In Example 1, we compared our method with that of

Yin, Zeng, and Li (2008) when T and C are unconditionally independent. In
Example 2, we compared them when T are C are conditionally independent. In
Example 3, we considered multiple covariates. For these approaches, we used R

function optimize to locate the optimal γ in the interval [−2, 2]. We fixed γ first
and then estimated βn(γ). The optimal γ minimized R∗

n(γ).
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Example 1. The main purposes of the simulation were to compare our approach

with that in Yin, Zeng, and Li (2008), YZL, when the unconditional independence

of T and C is satisfied, and to evaluate the validity of the bootstrap method for

statistical inference.

We followed Yin, Zeng, and Li (2008) in generating data from the Box-Cox

transformation linear quantile regression model

ργ(T ) =
T γ − 1

γ
= β0 + β1Z + ε, (4.1)

where β0 = 0.2, β1 = 1, and γ was taken to be 0, 0.5, 1 respectively. The

covariate Z was Unif[0, 2] and the error was N(0, 0.25). Besides this simple

example, we also considered the skewed error model and the heteroscedastic

models with β0 = −0.5, β1 = 1, and γ = 0.5, as in Yin, Zeng, and Li (2008).

Here we took ε from a shifted chi-squared distribution with one degree of freedom

and median zero. For the heteroscedastic model, we took a heteroscedastic error

Zε, where Z ∼ Unif[0, 2] and ε ∼ N(0, 0.25). The censoring times were generated

independently from the uniform distribution to yield censoring rate of 20% or

40%. We took n = 300 and assessed the median quantile regression at τ = 0.5.

For each configuration, we generated 1,000 datasets. To assess the performance

of the bootstrap re-sampling method for statistical inference, we generated 2,000

bootstrap samples for each simulated dataset.

In Table 1, we compare our proposed approach with YZL in terms of average

estimates over 1,000 simulations, together with the sample standard deviations

of the estimates (SD). Note that the results for YZL are taken from Yin, Zeng,

and Li (2008). For simplicity, we take the bandwidth as n−1/3+0.01. This par-

ticular choice of the bandwidth is motivated by the asymptotic result and is by

no means optimal. Additional simulations showed that the results were not very

sensitive to the bandwidth and the kernel. From Table 1, we see that the pro-

posed estimator generally gives estimates with small bias. As the censoring (c%)

increases, the bias and the sample standard deviation increase. This agrees with

the asymptotic results. The proposed method performs similarly to YZL when

no censoring occurs; when censoring is high (c% = 40%), the proposed method

gives estimates with smaller SD. These observations suggest that estimation of

the conditional distribution function F (T |Z) has little effect on the estimation of

the transformation parameter and the linear quantile regression parameter. We

also compared the SDs with the average of the estimated standard errors based

on the bootstrap method (SE). As seen in Table 1, they are very close. For

models where unconditional independence is appropriate, our methods performs

competitively compared to Yin et al.’s approach.
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Table 1. Estimation of the unknown transformation parameter and the

linear quantile regression coefficients. SD: the sampling standard deviation;

SE: the average of the standard errors using bootstrap.

γ β0 β1

Proposed YZL Proposed YZL Proposed YZL

γ c% γ̂ SDSE γ̂ SD β̂0 SDSE β̂0 SD β̂1 SDSE β̂1 SD

Simple

0 0 -0.012 0.2730.289 0.010 0.261 0.210 0.1120.105 0.182 0.114 1.032 0.3510.363 1.057 0.328

20 -0.027 0.2890.291 0.027 0.315 0.213 0.1100.110 0.181 0.130 1.023 0.3510.367 1.092 0.409

40 -0.097 0.4090.425 0.183 0.417 0.213 0.1160.119 0.148 0.158 1.001 0.4530.477 1.295 0.601

0.5 0 .477 0.4390.443 0.503 0.440 0.203 0.1110.119 0.181 0.119 1.051 0.4230.433 1.078 0.427

20 0.469 0.4400.469 0.528 0.513 0.200 0.1080.117 0.177 0.128 1.045 0.4230.431 1.123 0.497

40 .423 0.5230.548 0.560 0.621 0.210 0.1150.121 0.151 0.171 1.020 0.4430.462 1.202 0.640

1 0 1.053 0.6210.632 0.979 0.555 0.188 0.1380.142 0.193 0.116 1.076 0.5430.555 1.057 0.432

20 1.037 0.6810.691 0.975 0.692 0.181 0.1590.167 0.185 0.132 1.117 0.5540.562 1.103 0.583

40 0.974 0.7050.712 0.982 0.873 0.177 0.1540.167 0.158 0.167 1.141 0.5370.545 1.189 0.751

Skewed

0.5 0 0.444 0.5540.578 0.402 0.554 -0.488 0.1590.173 -0.478 0.155 1.004 0.2690.273 0.984 0.243

20 0.403 0.5970.612 0.422 0.614 -0.467 0.1590.177 -0.475 0.149 0.993 0.2600.270 0.993 0.257

40 0.400 0.6430.656 0.508 0.704 -0.456 0.1840.191 -0.469 0.158 0.983 0.2900.302 1.009 0.299

Heteroscedastic

0 0 0.041 0.2000.204 0.040 0.205 -0.498 0.0160.017 -0.499 0.017 1.030 0.0620.065 1.007 0.059

20 0.033 0.2130.220 0.059 0.242 -0.498 0.0170.019 -0.497 0.019 1.033 0.0630.068 1.007 0.066

40 0.005 0.3010.313 0.010 0.328 -0.500 0.0250.027 -0.499 0.019 1.029 0.0670.070 1.003 0.096

0.5 0 0.508 0.1990.209 0.520 0.272 -0.500 0.0170.021 -0.498 0.023 1.019 0.0510.053 1.000 0.057

20 0.517 0.2200.239 0.526 0.305 -0.499 0.0200.022 -0.499 0.026 1.034 0.0550.061 1.002 0.066

40 0.522 0.2710.291 0.660 0.361 -0.499 0.0230.024 -0.488 0.028 1.034 0.0600.064 0.998 0.080

1 0 1.026 0.2200.229 1.019 0.220 -0.498 0.0220.024 -0.499 0.023 1.025 0.0500.054 1.002 0.049

20 1.008 0.2370.241 1.008 0.279 -0.499 0.0230.024 -0.500 0.027 1.027 0.0540.055 0.999 0.057

40 1.010 0.2670.270 1.012 0.351 -0.500 0.0290.031 -0.499 0.033 1.035 0.0620.064 0.996 0.073

We also compared the proposed method with YZL when the transforma-

tion parameter γ is known. This is termed conditional inference in Mu and He

(2007) and Yin, Zeng, and Li (2008). The results are in Table 2. We can see

that the biases are very small and that the biases and the sample standard de-

viations increase with the censoring rate. Furthermore, the proposed method

performs competitively compared to YZL, indicating again that estimating the

conditional distribution of the failure time does not affect the estimation of the

parameters. Comparing Tables 1 and 2 indicates that conditional inference for

β is more efficient than that for which γ needs to be estimated. We also note

that in some cases, our method has larger biases here compared to Yin et al’s.

The bias problem becomes less severe if the bandwidth is decreased (results not

shown). Furthermore, The bootstrap method for estimating the standard errors

is satisfactory, as all the SEs are close to the SDs in Table 2, and all the coverage
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Table 2. Estimation under the transformation model when γ is known.

β0 β1

Proposed YZL Proposed YZL

γ c% β̂0 SDSE β̂0 SD β̂1 SDSE β̂1 SD

Simple

0 0 0.206 0.0740.079 0.200 0.073 1.002 0.0580.064 1.000 0.066

20 0.205 0.0770.080 0.200 0.080 1.006 0.0700.077 0.997 0.071

40 0.211 0.0810.088 0.229 0.087 1.012 0.0800.088 0.948 0.078

0.5 0 0.208 0.0710.079 0.200 0.073 1.003 0.0650.069 1.000 0.062

20 0.203 0.0790.088 0.199 0.081 1.008 0.0710.075 1.000 0.073

40 0.208 0.0860.092 0.203 0.094 1.011 0.0790.085 0.997 0.089

1 0 0.205 0.0690.070 0.202 0.069 1.001 0.0600.066 1.001 0.060

20 0.209 0.0800.084 0.204 0.080 1.003 0.0710.078 1.000 0.074

40 0.210 0.0850.091 0.203 0.094 1.013 0.0750.083 0.997 0.089

Skewed

0.5 0 -0.471 0.1210.131 -0.487 0.127 1.001 0.1030.102 0.994 0.113

20 -0.475 0.1330.138 -0.488 0.138 1.012 0.1110.109 0.993 0.124

40 -0.480 0.1540.167 -0.486 0.140 1.020 0.1390.133 0.967 0.124

Heteroscedastic

0 0 -0.499 0.0140.014 -0.500 0.014 1.020 0.0500.052 0.999 0.049

20 -0.500 0.0140.015 -0.499 0.017 1.026 0.0520.051 0.996 0.058

40 -0.498 0.0150.015 -0.498 0.022 1.024 0.0590.057 0.974 0.067

0.5 0 -0.500 0.0120.013 -0.501 0.016 1.016 0.0490.047 1.000 0.050

20 -0.500 0.0170.018 -0.499 0.019 1.024 0.0570.055 0.998 0.059

40 -0.499 0.0150.016 -0.492 0.024 1.003 0.0570.057 0.967 0.068

1 0 -0.499 0.0140.014 -0.499 0.014 1.022 0.0510.052 1.000 0.051

20 -0.500 0.0150.016 -0.501 0.018 1.028 0.0560.047 1.000 0.062

40 -0.501 0.0150.016 -0.499 0.025 1.036 0.0640.067 0.994 0.080

probabilities are close to the nominal 95% level in Table 3.

We note that the proposed method requires an estimation of the local Kaplan-

Meier survival function and is computationally more intensive than that in Yin,

Zeng, and Li (2008). However, the computational overhead is minimal, as esti-

mating F (t|z) using local smoothing can be efficiently implemented (Wang and

Wang (2009)). Moreover, the fact that we only need to estimate F (t|z) once im-

plies that the extra computational demand is worth the trade-off with a relaxed

and more natural conditional independence assumption.

Example 2. To compare the performance of our approach with that in Yin,

Zeng, and Li (2008). under conditional independence, we simulated data from

log T = β0 + β1Z + 0.2(Z − 1)2ε,

where β0 = 2, β1 = 1, Z ∼ Unif[0, 1], and ε = χ2
1−Φ−1(τ) is a centered chi-square

random variable with one degree of freedom with Φ the cumulative distribution
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Table 3. The coverage probability (in percentage) of the 95% confidence

interval.

c% = 0% c% = 20% c% = 40%

γ γ̂ β̂0 β̂1 γ̂ β̂0 β̂1 γ̂ β̂0 β̂1

Simple, fixed γ

0 - 93.2 95.2 - 92.8 93.8 - 94.6 95.8

0.5 - 94.2 94.2 - 94.4 95.2 - 93.4 94.4

1 - 93.4 94.4 - 93.8 95.4 - 94.6 94.4

Simple, estimated γ

0 96.2 92.2 95.0 97.4 92.6 95.4 97.0 93.8 98.0

0.5 97.6 92.8 96.2 97.8 93.2 95.6 97.2 92.4 97.4

1 97.4 92.8 94.7 98.2 91.6 95.8 97.0 92.0 96.8

Skewed, fixed γ

0.5 - 97.4 93.0 - 97.6 92.2 - 97.2 92.8

Skewed, estimated γ

0.5 97.0 97.2 97.6 98.0 96.8 98.0 97.8 98.0 96.6

Heteroscedastic, fixed γ

0 - 96.0 95.2 - 96.6 94.1 - 96.9 93.9

0.5 - 97.5 92.4 - 97.7 92.3 - 97.9 93.2

1 - 92.5 96.8 - 94.1 96.4 - 97.7 94.0

Heteroscedastic, estimated γ

0 94.2 96.0 95.5 96.9 93.7 97.1 97.0 96.8 95.9

0.5 96.5 94.9 97.4 97.9 95.8 97.5 97.8 98.0 97.9

1 97.0 93.3 93.0 94.1 93.5 94.1 96.9 97.1 96.8

function of χ2
1. We looked at the parameter estimates at τ = 0.5. The global

linearity assumption needed by Peng and Huang (2008) is not satisfied. The

censoring time was generated as C = b−1 log(2 + Z + e) where e is a standard

normal variate and the constant b was taken to have about 0%, 20%, 40% and

60% observations censored. This censoring time entails that the failure time

and the censoring time are conditionally independent given Z, and the marginal

independence assumption needed by Yin, Zeng, and Li (2008) is not satisfied.

For every simulation setup, we generated 1,000 datasets. We took n = 300

and used the bandwidth hn = n−1/3+0.01. Table 4 summarizes the averages of

the parameter estimates, as well as their sample standard deviations. With no

censoring, YZL outperformed our method in terms of standard deviation, since we

needed to estimate the conditional distribution function. However, our method

outperformed YZL whenever censoring was present. YZL gived biased estimates
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Table 4. The mean of the estimated parameters of our method (Proposed),

Yin et al.’s method (YZL), Peng and Huang’s method (PH) and Wang and

Wang’s method (WW).
c% = 0% c% = 20% c% = 40% c% = 60%

n Method γ̂ β̂0 β̂1 γ̂ β̂0 β̂1 γ̂ β̂0 β̂1 γ̂ β̂0 β̂1

100 Proposed Mean -0.020 2.015 1.002 -0.072 1.953 1.071 -0.124 1.910 1.090 -0.232 1.835 1.198

SD 0.229 0.381 0.584 0.296 0.492 0.844 0.379 0.610 1.057 0.507 0.859 2.196

YZL Mean -0.014 2.008 1.078 0.009 2.072 1.255 0.143 2.182 1.588 0.147 2.431 2.755

SD 0.195 0.325 0.509 0.274 0.442 0.736 0.368 0.610 1.218 0.458 0.900 4.009

Fixed γ

Proposed Mean - 2.002 0.995 - 2.003 0.995 - 2.005 0.995 - 2.008 0.993

SD - 0.020 0.020 - 0.018 0.021 - 0.023 0.030 - 0.032 0.038

YZL Mean - 2.001 0.999 - 1.994 1.007 - 1.987 1.017 - 1.977 1.031

SD - 0.017 0.020 - 0.017 0.020 - 0.021 0.025 - 0.026 0.035

PH Mean - 2.002 0.998 - 2.003 0.997 - 2.003 0.997 - 2.007 0.992

SD - 0.018 0.020 - 0.019 0.021 - 0.025 0.028 - 0.032 0.037

WW Mean - 2.002 0.998 - 2.002 0.998 - 2.003 0.998 - 2.005 0.995

SD - 0.018 0.020 - 0.018 0.021 - 0.024 0.027 - 0.030 0.035

300 Proposed Mean 0.035 2.076 1.088 0.025 2.060 1.068 0.006 2.030 1.075 -0.049 1.952 0.992

SD 0.086 0.150 0.234 0.109 0.185 0.281 0.139 0.232 0.342 0.205 0.328 0.461

YZL Mean 0.002 2.008 1.021 0.055 2.101 1.190 0.102 2.193 1.396 0.147 2.293 1.671

SD 0.063 0.109 0.179 0.077 0.138 0.242 0.136 0.224 0.394 0.203 0.337 0.667

Fixed γ

Proposed Mean - 2.000 0.998 - 2.001 0.998 - 2.002 0.998 - 2.003 0.997

SD - 0.010 0.011 - 0.011 0.012 - 0.013 0.014 - 0.014 0.016

YZL Mean - 2.001 0.999 - 1.994 1.007 - 1.987 1.016 - 1.978 1.028

SD - 0.009 0.010 - 0.010 0.012 - 0.011 0.014 - 0.015 0.019

PH Mean - 2.002 0.998 - 2.002 0.998 - 2.002 0.998 - 2.005 0.995

SD - 0.009 0.010 - 0.011 0.012 - 0.012 0.013 - 0.016 0.018

WW Mean - 2.001 0.999 - 2.002 0.999 - 2.003 0.997 - 2.005 0.997

SD - 0.009 0.010 - 0.010 0.011 - 0.012 0.013 - 0.015 0.016

whenever censoring occurs. This agrees with the argument that YZL works

only when the independence assumption holds. For different sample sizes and

censoring rates, our method was unbiased, and the sampling standard deviation

decreased with the increasing sample size and the decreasing censoring rate.

When γ was known in advance, YZL performed competitively with our method

and two other approaches including Wang and Wang’s and Peng and Huang’s,

although usually with a larger bias in the high censoring scenarios (c% = 40% or

60%).

Taking the results in Example 1 and 2 together, the simulations suggest

that our method is preferred over YZL when T and C are conditionally inde-

pendent given, and that our method performs similarly with YZL when they are

unconditionally independent.

Example 3. The proposed method depends on estimation of a nonparametric
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Table 5. The effect of dimensionality when γ is estimated. Here p is the

number of the continuous non-intercept covariates in the model.

c% = 0% c% = 20% c% = 40% c% = 60%

p γ̂ β̂0 β̂1 γ̂ β̂0 β̂1 γ̂ β̂0 β̂1 γ̂ β̂0 β̂1

2 Mean -0.000 2.042 1.047 -0.008 2.037 1.054 -0.077 1.948 0.976 -0.169 1.841 0.933

SD 0.145 0.262 0.388 0.173 0.316 0.486 0.250 0.442 0.609 0.341 0.572 0.997

3 Mean -0.059 1.997 1.021 -0.115 1.941 1.006 -0.197 1.876 1.015 -0.263 1.870 1.165

SD 0.260 0.472 0.730 0.328 0.602 0.962 0.428 0.771 1.448 0.539 0.978 1.946

4 Mean -0.085 2.042 1.278 -0.115 2.058 1.421 -0.139 2.173 1.942 -0.219 2.221 2.471

SD 0.378 0.827 1.950 0.446 0.980 2.550 0.568 1.423 4.725 0.690 1.837 7.173

Kaplan-Meier curve. A practical difficulty arises when there are multiple contin-

uous covariates in Z. To assess the dimensionality, we set n = 300 and added

p − 1 additional independent covariates Z2, . . . , Zp, each standard uniform, to

the model. Thus, the true coefficients associated with the added covariates were

zero at the median. For simplicity, we took the bandwidth hn = 0.3, 0.6, 0.8 for

p = 2, 3, and 4 respectively. The results are summarized in Table 5 when γ is

estimated. Overall, the proposed method performs satisfactorily when either the

dimension is small or the censoring rate is not high. We also see that the biases

and the sample standard deviations both increased when either dimensionality

p or the censoring increased. We also see that the coverage probabilities are not

satisfactory,when estimating a multi-dimensional smooth function.

5. Data Analysis

We illustrate the proposed method by analyzing the HMO data in Hosmer

and Lemeshow (1999). Information was available for 100 HIV positive subjects

who were followed until death from AIDS or AIDS-related complications, to the

end of the study or until the subject was lost to follow-up. The primary outcome

was survival time after a confirmed diagnosis of HIV. Covariates information was

available on Age (in years) and Drug indicating prior drug use (1=yes, 0=no).

There were 20 censored subjects. The scatter plot of the data is shown in Figure

1, for which the majority of the survival times are small. We dichotomized the

data according to Drug and applied the local Kaplan-Meier estimator separately

for each drug category. In order to choose the optimal bandwidth, we used 10

fold cross validation. We limited the range of γ from −2 to 2.

By fitting a simple Cox model treating the censoring time as survival time,

we note that censoring time is highly dependent on Drug (p-value=0.007) and

may depend on Age (p-value=0.10) based on a twenty observed censoring times.

In addition, motivated by Figure 1, we created a 2 by 2 table using the censoring

indicator and whether the observed time was above 40 as the classification vari-

ables. Appling Fisher’s exact test for testing independence, we found the p-value
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Figure 1. The scatter plot of the HMO study.

0.032, suggesting that C and T may not be independent. To explore the effects of

the covariates on different quantiles of the survival time, we considered a series

of quantiles ranging from 0.2 to 0.5 with an increment of 0.05. This quantile

region is of interest since lower quantiles of the survival time pose an immediate

concern to HIV subjects, and have significant biomedical implications in the near

term. We used the bootstrap method to re-sample 300 times for any approach

we use. We also tried larger quantiles, for example τ as large as 0.9. We found

that sometimes the estimate with a bootstrap sample deviated from that of the

original sample by a large magnitude, thus giving huge standard errors.

The top two plots in Figure 2 suggest that a log transformation of the survival

time is reasonable to analyze this data set. We also see that the confidence

intervals for our approach in estimating the transformation parameter are much

smaller than those of Yin, Zeng, and Li (2008). Using γ = 0 as the transformation

parameter, we plot in Figure 2 the estimated quantile regression coefficients β in

the middle and the bottom panels, together with Peng and Huang’s estimates.

All three approaches indicate that both Drug and Age are significant across the

quantiles we examine. Our results agree with the usual Cox model, for which

both covariates are highly significant.

We plot the estimated quantile function Z ′β(τ) of the survival time in Figure

3 given Drug (=1) and Age (=35), when the transformation parameter γ is esti-

mated (Mu and He (2007)). The pointwise confidence intervals were computed

via bootstrap. We find considerable difference between the two approaches.

When the transformation parameter γ is estimated, we assessed the effects of

the covariates by examining their marginal effects. We follow Mu and He (2007)
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Figure 2. The HMO study: The top panels give the estimated transforma-

tion parameters with 95% confidence intervals; the middle and the bottom

panels are the estimated linear quantile regression coefficients when γ = 0.

Proposed: the proposed method; YZL: the method in Yin, Zeng, and Li

(2008); PH: Peng and Huang’s method.

and Yin, Zeng, and Li (2008) to take the marginal effects of the jth covariate at

Z0 as

∂ργτ (T |Z)
∂Z0,j

∣∣∣∣
Z0

=

{
βτ,j(γτβ

T
τ Z0 + 1)1/γτ−1 γτ ̸= 0,

βτ,j exp(β
T
τ Z0) γτ = 0.

Applying the bootstrap re-sampling method to assess these effects, we plot the

marginal effects of Drug (=1) and Age (=35) in Figure 4. We see that our

proposed method gives tighter confidence intervals, and generally finds more

significant quantiles.

6. Conclusion

We have proposed a new approach for linear quantile regression and stud-

ied the Box-Cox transformation approach to relate the survival time and the

covariates via a linear quantile regression model. Our methodology is based on
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Figure 3. The estimated quantile function of the survival time given Drug

(=1) and Age (=35).

Figure 4. The estimated marginal effects given Drug (=1) and Age (=35).
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formulating unbiased estimating equations using martingale residuals. We re-

quire no global linearity assumption and the failure and the censoring time only

to be conditionally independent given the covariates. In addition, the estimation

approach requires no iteration. The price to be paid is the need to estimate

a distribution function nonparametrically, which we treat via using local kernel

smoothing. Our method performs competitively compared to existing methods.

When the dimensionality of the covariates is high, we note that the esti-

mates can have large biases and sampling standard errors due to the curse of

dimensionality. In this case, it is worthwhile to consider model-based dimension

reduction on F (·|Z) by, for example, modeling it as a single-index model (Lopez

(2009); Wang, Zhou, and Li (2011)), or more simply by using Cox’s model to

relate the censoring time and the covariates. As an alternative, it is also inter-

esting to develop model selection methods that can choose appropriate variables

for the conditional CDF and the quantile regression function. In the data anal-

ysis, occassionally a bootstrap sample gave an unstable estimate. While this is

not surprising for this small data set, a more promising method is to incorporate

suitable random variables in the bootstrap inference (Jin, Ying, and Wei (2001)).

We have focused on continuous covariates mainly in this paper. An imme-

diate extension to multiple discrete covariates is possible, but the estimation of

the conditional CDF may suffer from small sample sizes due to an ANOVA-type

splitting of the samples. It may be possible to simplify a full ANOVA-type de-

composition of the samples by imposing some structural assumption similar to a

main effect model for example.
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Appendix

We write ∥β∥ for the Euclidean norm of a finite-dimensional vector β and

∥G(·)∥∞ as the supreme of the absolute value of a function G(·). First, we state a
lemma following Theorem 2.1 in Gonzalez-Manteiga and Cadarso-Suarez (1994),

see also van Keilegom (1998). Here we focus on the univariate covariate case,

p = 1, and defer the discussion for p > 1 to Appendix D.

Lemma A.1. If (C4)−(C6) hold and p = 1, then

∥F̂ − F0∥∞ = sup
t

sup
z

|F̂ (t|z)− F0(t|z)| = Op((log n)
1/2n−1/2+v/2 + n−2v).
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Appendix A: Proof of Theorem 1.

Let Ũn(β) = (1/n)
∑n

i=1{Λ0(exp(Z
′
iβ) ∧ Yi|Zi) − Λ0(exp(Z

′
iβ0) ∧ Yi|Zi)}Zi.

We have

Un(β)− Ũn(β) =
1

n

n∑
i=1

Zi{Ni(exp(Z
′
iβ))− E[Ni(exp(Z

′
iβ))|Zi]}

− 1

n

n∑
i=1

Zi{Hτ (F̂ (Yi|Zi))−Hτ (F0(Yi|Zi))}.

By Lemma A.1, Assumptions C2 and C3,

1

n

n∑
i=1

Zi{Hτ (F̂ (Yi|Zi))−Hτ (F0(Yi|Zi))} = o(1), (A.1)

when 0 < v < 1/2. We show that

sup
β∈B

|Un1(β)| = sup
β∈B

1

n
|

n∑
i=1

Zi{Ni(exp(Z
′
iβ))− E[Ni(exp(Z

′
iβ))|Zi]}| = o(1).

(A.2)

For any sufficiently small η > 0, we divide the parameter space B into K =

K(η) = O(η−p) disjoint balls with each radius proportional to η such that

P (supβ∈B |Un1(β)| > η) ≤
∑K

j=1 P (|Un1(βj)| > η/2), where βj is the center of

the jth ball. By the Bernstein inequality,
∑∞

n=1

∑K
j=1 P (|Un1(βj)| > η/2) < ∞.

An application of the Borel-Cantelli Theorem gives supβ∈B |Un1(β)| = o(1) and

thus

sup
β∈B

|Un(β)− Ũn(β)| = o(1), a.s.. (A.3)

From Assumption C7, the first derivative function An(β) of Ũn(β) with re-

spect to β is

An(β) =
1

n

n∑
i=1

I(Y ≥ exp(Z ′
iβ))ZiZ

′
i exp(Z

′
iβ)λ0(exp(Z

′
iβ)|Zi)

→ EZZ ′ exp(Z ′β)f0(Z
′β|Z)(1−G0(exp(Z

′β)|Z))

which is positive definite with probability one for β in the neighborhood of β0.

In addition, Ũn(β0) = 0. Therefore, Ũn(β) is bounded away from zero. This,

together with (A.3), yields β̂n → β0 in probability as n→ ∞.

Appendix B: Proof of Theorem 2.

We exploit Theorem 2 of Chen, Linton, and van Keilegom (2003) by veri-

fying their conditions (2.1)−(2.4), (2.5′) and (2.6′). For this, write Un(β, F ) =
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(1/n)
∑n

i=1 ui(β, F ) where ui(β, F ) = Zi{Ni(exp(Z
′
iβ))−Hτ (F (Yi|Zi))} and the

function class F that involves the true F0 as

F = {F : F has a density function f , supz∈Z F (T |z) ≤ η0, f satisfies C4}.

Then U(β, F ) = Eui(β, F ) = EZi{Λ0(exp(Z
′
iβ) ∧ Yi|Zi) −Hτ (F (Yi|Zi))}. This,

together with (2.3), implies that U(β0, F0) = 0. Write Γ1(β0, F0) as the first

derivative function of U(β, F0) with respect to β evaluated at β = β0, and for all

β ∈ B, define the functional derivative of U(β, F ) at F0 in the direction [F −F0]

as Γ2(β, F0)[F − F0] = limη→0(1/η)[U(β, F0 + η(F − F0))− U(β, F0)].

Proof of Theorem 2. Condition (2.1) of Chen, Linton, and van Keilegom

(2003) can be easily verified by the subgradient condition of quantile regression

(Koenker (2005)). Conditions (2.4), (2.5′), and (2.6) hold directly by Lemma

A.1, A.2, and A.3, respectively. From the definition of Γ1,

Γ1 =
∂U(β, F0)

∂β

∣∣∣∣
β=β0

= EZZ ′ exp(Z ′β0)f0(exp(Z
′β0)|Z)(1−G0(exp(Z

′β0)|Z)),

which is positive definite by C7. This means that (2.2) in Chen, Linton, and van

Keilegom (2003) holds. By routine Taylor expansions, we can verify their (2.3).

Therefore, n1/2(β̂n − β0)
d→ N(0,Γ−1

1 V1Γ
−1
1 ).

Lemma A.2. For all positive sequences ξn = o(1), we have

sup
∥β−β0∥≤ξn,∥F−F0∥∞≤ξn

∥Un(β, F )− U(β, F )− Un(β0, F0)∥ = op(n
−1/2).

Proof. Let η1 = supz∈Z ∥z∥2 and η2 = supF∈F ,z∈Z,t≤T (f(t|z)+g0(t|z)). For any
(β, F ) ∈ B×F and (β∗, F ∗) ∈ B×F , we have ∥u(β, F )−u(β∗, F ∗)∥2 ≤ 2(B1+B2),

where

B1 = ∥Zδ{I(Y ≥ exp(Z ′β))− I(Y ≥ exp(Z ′β∗))}∥2

≤ η1|I(Y ≥ exp(Z ′β))− I(Y ≥ exp(Z ′β∗))|,

B2 = ∥Z(H(τ ∧ F (Y |Z))−H(τ ∧ F ∗(Y |Z))∥2

≤ η1
(1− τ)2

∥(τ ∧ F (Y |Z))− (τ ∧ F ∗(Y |Z))∥2∞ ≤ η1
(1− τ)2

∥F − F ∗∥2∞.

Direct calculation yields that E(sup∥β−β∗∥≤ξn B1) ≤ η3ξn and

sup∥β−β∗∥≤ξn,∥F−F ∗∥∞≤ξn ∥U(β, F )−U(β∗, F ∗)∥2 ≤ η4ξn for some positive con-

stants, η3, η4, when n is sufficiently large. Therefore, (3.2) in Chen, Linton,

and van Keilegom (2003) holds with r = 2 and sj = 1/2. Condition (3.1) in
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Chen, Linton, and van Keilegom (2003) follows clearly if we set the term in their

(3.1) to 0.

Now we verify their (3.3). Let N(η,F , ∥ · ∥∞) be the covering numbers (van

der Vaart and Wellner (1996, p.83)) for the function class F under the metrics

∥ · ∥∞. An application of Theorem 2.7.1 in van der Vaart and Wellner (1996,

p.159) and the compactness of Z give that the logarithm of the covering number

is bounded by O(η−1/2) for η ≤ 1 and = 0 for η > 1, which yields that∫ ∞

0
{logN(η2,F , ∥ · ∥∞)}1/2dη ≤ O(1)

∫ 1

0
η−1/2dη <∞.

It then follows easily from Theorem 3 of Chen, Linton, and van Keilegom (2003)

that Lemma A.2 holds.

Lemma A.3. Assume that the conditions in Theorem 2 hold, then

n1/2(Un(β0, F0) + Γ2(β0, F0)[F̂ − F0])
d→ N(0, V1),

where V1 = Cov (vi) with

vi=ui(β0, F0)−ZifZ(Zi)

∫ exp(Z′
iβ0)

0
ψ(Yi, δi; t, Zi)

{1−G0(t|Zi)

1−F0(t|Zi)
f0(t|Zi)+g0(t|Zi)

}
dt,

ψ(Yi, δi; t, z) = {1− F0(t|z)}
[∫ Yi∧t

0

−f0(s|z)ds
{1− F0(s|z)}2{1−G0(s|z)}

+
δiI(Yi ≤ t)

{1− F0(Yi|z)}{1−G0(Yi|z)}

]
.

Proof. By the definition of Γ2, a direct calculation yields that

Γ2(β0, F0)[F − F0] = −EZI(F0(Y |Z) ≤ τ)
F (Y |Z)− F0(Y |Z)

1− F0(Y |Z)
. (A.4)

For any function ~, the conditional expectation of ~(Y ) given Z = z takes

the form

E{~(Y )|z} = E{~(T )I(T ≤ C) + ~(C)I(T ≥ C)|z}

=

∫
~(t){(1−G0(t|z))f0(t|z) + (1− F0(t|z))g0(t|z)}dt. (A.5)

From Theorem 2.3 of Gonzalez-Manteiga and Cadarso-Suarez (1994) and the

proof of Theorem 2 in Wang and Wang (2009), under Assumptions C3−C7, we

have that

F̂ (t|z)−F0(t|z) =
1

nhn

n∑
i=1

K
(z−Zi

hn

)
ψ(Yi, δi; t, z)+Op

({ log n
nhn

}3/4
+h2n

)
. (A.6)
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This result holds only when there is a single covariate. When 1/4 < v < 1/3,

the residual term on the right hand side of (A.6) is op(n
−1/2). Plugging (A.6)

into (A.4) through (A.5), and using standard change of variables and Taylor

expansion arguments, and the assumption that
∫
K(u)du = 1, one obtains

Γ2(β0, F0)[F̂ − F0]

= − 1

n

n∑
i=1

ZifZ(Zi)

∫ exp(Z′
iβ0)

0
ψ(Yi, δi; t, Zi)

{
1−G0(t|Zi)

1−F0(t|Zi)
f0(t|Zi)+g0(t|Zi)

}
dt

+op(n
−1/2).

Therefore, n1/2(Un(β0, F0)+Γ2(β0, F0)[F̂ −F0]) = n−1/2
∑n

i=1 vi+op(1). An

application of the Central Limit Theorem gives this lemma.

Appendix C: Proof of Theorem 3.

We introduce the following lemma from Mu and He (2007) that specifies the

identifiability condition.

Lemma A.4. The model parameter is identifiable in the sense that if ρ
(−1)
γ∗ (Z ′β∗)

= ρ
(−1)
γ0 (Z ′β0) almost surely, then β∗ = β0, γ

∗ = γ0.

To facilitate the proof, we set V (β; γ) = δI(ργ(Y )−Z ′β ≤ 0)−Hτ (F0(Y |Z)),
Vβ(Z) = ∂E{V (β; γ)|Z}/∂β|β=β0,γ=γ0 , and Vγ = ∂E{V (β; γ)|Z}/∂γ|β=β0,γ=γ0 .

Note that E{ZVβ(Z)′} = E[ZZ ′ρ̇
(−1)
γ0 (Z ′β0)f0(ρ

(−1)
γ0 (Z ′β0)|Z)(1−G0(ρ

(−1)
γ0 (Z ′β0)

|Z))] is positive definite from assumption (C7′). Let R̃n(β; γ) = (1/n)
∑n

i=1

Z ′
iβ{δiI(ργ(Yi)−Z ′

iβ ≤ 0)−Hτ (F̂ (Yi|Zi))} and R̃(β; γ) be the limit of R̃n(β; γ)

as n tends to infinity.

Proof of consistency. Since the minimization of R∗
n(γ) is taken over Υ and Υ

is compact, there exists a subsequence indexed by n, such that γ̂n → γ∗.

Step 1. We prove that supn ∥β̂n(γ̂n)∥ < ∞. Otherwise, for a subsequence, still

indexed by n, ∥β̂n(γ̂n)∥ → ∞. Let

β̂∗n = (1− 1

∥β̂n(γ̂n)− β(γ∗)∥
)β(γ∗) +

1

∥β̂n(γ̂n)− β(γ∗)∥
β̂n(γ̂n).

Then one can easily verify that ∥β̂∗n − β(γ∗)∥ = 1 and ∥β̂∗n∥ ≤ ∥β̂∗n − β(γ∗)∥ +

∥β(γ∗)∥ = 1 + ∥β(γ∗)∥ is bounded. Therefore, there exists a subsequence, still
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indexed by n, such that β̂∗n → β∗. By convexity,

R̃n(β̂
∗
n, γ̂n) ≤ (1− 1

∥β̂n(γ̂n)− β(γ∗)∥
)R̃n(β(γ

∗), γ̂n)

+
1

∥β̂n(γ̂n)− β(γ∗)∥
R̃n(β̂n(γ̂n), γ̂n)

= R̃n(β(γ
∗), γ̂n)−

1

∥β̂n(γ̂n)−β(γ∗)∥
(R̃n(β(γ

∗), γ̂n)−R̃n(β̂n(γ̂n), γ̂n))

≤ R̃n(β(γ
∗), γ̂n),

since β̂n(γ̂n) minimizes R̃n(β, γ̂n). Note that the class of function {Z ′β(δI(ργ(Y )

−Z ′β ≤ 0) − Hτ (F0(Y |Z))) : γ ∈ Υ, ∥β − β(γ∗)∥ = 1, z ∈ Z} is a Glivenko-

Cantelli class. This, together with Lemma A.1, yields that R̃(β∗, γ∗) ≤ R̃(β(γ∗),

γ∗). This contradicts with the fact that β(γ∗) is the unique maximizer of R̃(β, γ)

for γ = γ∗, since ∥β∗−β(γ∗)∥ = 1 and thus β∗ ̸= β(γ∗), so β̂n must be bounded.

Therefore, there exists a subsequence, indexed by n, for which β̂n → β∗.

Step 2. We prove that γ∗ = γ0 and β∗ = β0. Note that the class of function

{I(Z ≤ z)(δI(ργ(Y )− Z ′β ≤ 0)−Hτ (F0(Y |Z))) : γ ∈ Υ, z ∈ Z, β ∈ B}

is a Glivenko-Cantelli class. An application of Glivenko-Cantelli Theorem gives

R∗
n(γ̂n) → E(∥E[I(Zi ≤ z)(δiI(ργ∗(Yi)− Z ′

iβ(γ
∗) ≤ 0)−Hτ (F0(Yi|Zi)))]∥2|z=Z)

and R∗
n(γ0) → 0. Since γ̂n minimizes R∗

n(γ), we have R∗
n(γ0) ≥ R∗

n(γ̂n). Letting

n→ ∞, one obtains

E[I(Zi ≤ z)(δiI(ργ∗(Yi)−Z ′
iβ(γ

∗) ≤ 0)−Hτ (F0(Yi|Zi)))]|z=Z = 0, a.s. for all Z.

This yields that ρ
(−1)
γ∗ (Z ′β(γ∗)) = ρ

(−1)
γ0 (Z ′β(γ0)) almost surely and thus γ∗ = γ0

and β(γ∗) = β0 derived from Lemma A.4. The consistency of γ̂n and β̂n(γ̂n)

follows by an application of Helly’s selection theorem.

Proof of asymptotic normality. Using the inverse mapping theorem, one has

β(γ) = β0 − {E(ZVβ(Z))}−1E{ZVγ(Z)}(γ − γ0) + o(|γ − γ0|). (A.7)

Note that

{I(Z ≤ z){δI(ργ(Y ) ≤ Z ′β)−Hτ (F (Y |Z))} :

γ ∈ neighborhood of γ0, F ∈ F , z ∈ Z, β ∈ B}
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is a Donsker class. Therefore

sup
z,γ∈Υ

|Rn(z; γ)− E[I(Z ≤ z){δI(ργ(Y ) ≤ Z ′β̂n(γ))−Hτ (F̂ (Y |Z))}]

−(Pn − P)[I(Z ≤ z){δI(ργ(Y ) ≤ Z ′β(γ))−Hτ (F0(Y |Z))}]| = op(n
−1/2),

where P is the expectation operator, Pn is the empirical measure. Applying

(A.6), after some basic calculations, one has

Rn(z; γ) = E{I(Z ≤ z)(δI(ργ(Y ) ≤ Z ′β(γ))−Hτ (F0(Y |Z)))}
+E{I(Z ≤ z)V ′

β(Z)}(β̂n(γ)−β(γ))+(Pn−P)V ∗
1 (Y, δ, Z; γ, z)

+op(∥β̂n(γ)− β(γ)∥+ |γ − γ0|+ n−1/2),

where

V ∗
1 (Y, δ, Z; γ, z) = I(Z ≤ z){δI(ργ(Y ) ≤ Z ′β(γ))−Hτ (F0(Y |Z))}

−Ẽ
{fZ(Z)I(Z ≤ z)I(F0(Ỹ |Z) ≤ τ)ψ(Y, δ, Z; Ỹ , Z)

1− F0(Ỹ |Z)

}
,

(Ỹ , δ̃, Z̃) is an i.i.d. copy of (Y, δ, Z) and Ẽ is the expectation with re-

spect to the joint distribution of (Ỹ , δ̃, Z̃). Let V ∗
2 (z) = E{I(Z ≤ z)Vγ(Z)} −

E{I(Z ≤ z)Vβ(Z)
′}{E(ZVβ(Z)

′)}−1E{ZVγ(Z)}, V ∗
3 (z) = E{I(Z ≤ z)Vβ(Z)

′},
V ∗
4 = Ẽ{V ∗

2 (Z̃)
′V ∗

1 (Y, δ, Z; γ0, Z̃)}, V ∗
5 = E{V ∗

2 (Z)
′V ∗

3 (Z)} and V ∗
6 = EV ∗

2 (Z)
′

V ∗
2 (Z) + V ∗

5 {E(ZVβ(Z)
′)}−1E{ZVγ(Z)}.

Using the arguments in Yin, Zeng, and Li (2008), for any γ in neighborhood

of γ0, R
∗
n(γ) has a quadratic expansion around γ0 and

E{V ∗
2 (Z)

′V ∗
2 (Z)}(γ̂n − γ0) + E{V ∗

2 (Z)
′V ∗

3 (Z)}(β̂n(γ̂n)− β(γ̂n))

= −(Pn − P)V ∗
4 + op(∥β̂n(γ̂n)− β(γ̂n)∥+ |γ̂n − γ0|+ n−1/2),

since γ̂n minimizes R∗
n(γ). Therefore,

V ∗
5 (β̂n(γ̂n)−β0)+V ∗

6 (γ̂n−γ0) = −(Pn−P)V ∗
4 +op(∥β̂n(γ̂n)−β0∥+|γ̂n−γ0|+n−1/2).

(A.8)

Noting that {Z{δI(ργ(Y ) ≤ Z ′β) − Hτ (F (Y |Z))} : γ ∈ neighborhood of γ0,

F ∈ F , β ∈ B} is a Donsker class, one has

E{ZVβ(Z)′}(β̂n(γ̂n)− β0) + E{ZVγ(Z)}(γ̂n − γ0)

= −(Pn − P)V ∗
7 + op(∥β̂n(γ̂n)− β0∥+ |γ̂n − γ0|+ n−1/2) (A.9)

and V ∗
7 = Z{δI(ργ(Y ) ≤ Z ′β(γ)) − Hτ (F0(Y |Z))} − ZfZ(Z)Ẽ{I(F0(Ỹ |Z) ≤

τ)ψ(Y, δ, Z; Ỹ , Z)/(1−F0(Ỹ |Z))}. Combining (A.8) and (A.9), one obtains that

Γ2

√
n(θ̂n − θ0) =

√
n(Pn − P)V ∗(Y, δ, Z) + op(1),
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where

Γ2 =

(
E{ZVβ(Z)′} E{ZVγ(Z)}

V ∗
5 E{V ∗

2 (Z)
′V ∗

2 (Z)}+ V ∗
5 {E(ZVβ(Z))}−1E{ZVγ(Z)}

)
,

and θ̂n = (β̂n(γ̂n)
′, γ̂n)

′, θ0 = (β′0, γ0)
′, V ∗(Y, δ, Z) = −(V ∗′

7 , V
∗
4 )

′. Note that

Γ2 =

(
E{ZVβ(Z)′} 0

E{V ∗
2 (Z)

′V ∗
3 (Z)} EV ∗

2 (Z)
′EV ∗

2 (Z)

)(
Ip {E(ZVβ(Z)

′)}−1E{ZVγ(Z)}
0 1

)
and thus Γ2 is invertible. Using the Multivariate Central Limit Theorem, we

have proved Theorem 3 with V2 = Cov (V ∗).

Appendix D: Multiple covariates

We extend the asymptotic results to higher dimensional covariates. The

difficulty in deriving good properties of the proposed estimator for p > 1 lies in

the fact that the estimation of the distribution function F (·|z) may have larger

bias and slower convergence rate. Note that the results in Wang and Wang

(2009) only apply for one dimensional problems. To our knowledge, there are

few papers that study the properties of the local Kaplan-Meier estimates with

multiple covariates. Dabrowska (1989) considered this problem and obtained

uniform consistency. Lopez (2009) considered the nonparametric estimation of

the multivariate distribution and assumed a known function g : Rp → R, such

that T and C are conditionally independent given g(Z), and the dependence

of T and C on Z is only through g(Z). This method effectively reduces the

dimensionality at the expense of the need to determine g.

Consistency. In the proof of Theorem 1, (A.3) is needed to prove the consistency.

And (A.2) holds regardless of p. Thus, a sufficient condition for (A.1) is

sup
t,z

|F̂ (t|z)− F0(t|z)| = op(1). (A.10)

To prove the consistency of the proposed estimator for general p-dimensional

covariates, one only needs have (A.10).

Dabrowska (1989) considered the kernel conditional Kaplan-Meier estimate

of the distribution function in presence of right censoring and obtained uniform

consistency. We assume that the following regularity conditions:

C5′. The bandwidth hn = O(n−v), with 0 < v < 1/p.

C6′. (i) K is a kernel with bounded compact support and total variation. (ii)

The kernel K satisfies
∫
zjK(z)dz = 0, j = 1, . . . , p.
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By Corollary 2.1 in Dabrowska (1989), (A.10) holds. Therefore, the asymp-

totic consistency in Theorem 1 holds when the conditions C5 and C6 are replaced

by C5′ and C6′ for multi-dimensional problems.

Asymptotic Normality. From the proofs of Theorems 2 and 3, the key condition

for establishing the asymptotic normality is (A.6), which holds only for p = 1

with a single continuous covariate. For the multi-dimensional case, (A.6) does

not hold. However, a similar representation of F̂ (t|z) − F0(t|z) has (Liang, de

Uña-Álavarez, and Iglesias-Pérez (2010))

F̂ (t|z)− F0(t|z) =
1

nhpn

n∑
i=1

K

(
z − Zi

hn

)
ψ(Yi, δi; t, z) + rn(t, z) (A.11)

and, according to the proof of Theorem 2, we need to ensure that rn(t, z) satisfies

sup
t,z

|rn(t, z)| = op(n
−1/2). (A.12)

For the one dimensional case, under some regularity conditions, the remainder

term is rn(t, z) = Op((log n/nhn)
3/4 +h2n). The condition hn = O(n−v) with v ∈

(1/4, 1/3) ensures (A.12). However, this condition on hn is no longer sufficient.

To this end, we turn to higher order kernels (Müller (1988)).

C6′′. (i) K is a bounded kernel function with bounded compact support in Rp.

(ii) The kernel K has order q, which satisfies
∫
K(z)dz = 1 and∫

zu1
1 · · · zup

p K(z1, . . . , zp)dz

{
= 0, if 0 ̸=

∑p
j=1 uj < q,

̸= 0, if
∑p

j=1 uj = q.

C4′′. The first q partial derivatives with respect to z of the density function fZ(z)

are uniformly bounded for z ∈ Z, and f0(t|z) and g0(t|z) are uniformly

bounded away from infinity and have bounded (uniformly in t) first q order

partial derivatives with respect to z.

C5′′. The bandwidth satisfies hn = O(n−v) with 1/2q < v < 1/3p.

A kernel function K that satisfies C6′′ is a higher order kernel with order

q. If q = 2, the kernel K is the familiar second-order kernel (Silverman (1986);

Dabrowska (1997)). Liang, de Uña-Álavarez, and Iglesias-Pérez (2010) stud-

ied the asymptotic properties of the conditional distribution estimator under

truncated, censored, and dependent data for a general p. We can apply their

Theorem 2.
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Corollary 1. Under conditions C1, C2, C3 (or C3′), C4′′-C6′′, (A.11), and

(A.12) hold with

sup
t,z

|rn(t, z)| = Op

([
log n

nhpn

]3/4
+ hqn

)
= op(n

−1/2).

Theorem 4. Under C1, C2, C3, C4′′−C6′′, and C7, Theorem 2 holds; under

C1, C2, C3′, C4′′−C6′′, C7′, and C8, Theorem 3 holds.

Remark 4. From Theorem 4, one can see that: When p = 1 and q = 2, we

need 1/4 < v < 1/3 for Theorems 2 and 3; The order of the kernel needed for

asymptotic normality increases with the dimensionality of the covariates. In the

simulation, we have used higher order kernels with q = 4 for p = 2, q = 5 for

p = 3, and q = 7 for p = 4 (Müller (1988)).
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