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Abstract: Nested Latin hypercube designs (LHDs) are proposed for conducting

multiple computer experiments with different levels of accuracy. Orthogonality is

shown to be an important feature. Little is known about the construction of nested

orthogonal LHDs. We present methods to construct them with two or more layers,

making use of orthogonal designs. The constructed designs possess the property

that the sum of the elementwise products of any three columns is zero, which is

shown to be desirable for factor screening.
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1. Introduction

Latin hypercube designs (LHDs), introduced by McKay, Beckman, and

Conover (1979), are widely used in computer experiments. An LHD with n runs

and m factors is denoted by a matrix L(n,m) = (l1, . . . , lm), where lj is the jth

factor, and each factor includes n uniformly spaced levels. An LHD is called

orthogonal if the correlation coefficient between any two columns of this LHD is

zero.

A recent trend in sciences and engineering is to use both accurate (but slow)

computer experiments and less accurate (but fast) computer experiments to study

complex physical systems (see, for example, Qian et al. (2006)). In some cases, a

large and expensive computer code can be executed at various degrees of fidelity,

and result in computer experiments with multiple levels of cost and accuracy.

Efficient data collection from these experiments is critical. Nested designs, pro-

posed by Qian and Wu (2008), are useful for designing such experiments. Qian,

Ai, and Wu (2009) and Qian, Tang, and Wu (2009) applied projections in Galois

fields to obtain nested space-filling designs, that only exist for certain param-

eter values. Haaland and Qian (2010) constructed nested space-filling designs

for multi-fidelity computer experiments based on (t, s)-sequences. Recently, Sun,

Yin, and Liu (2013) presented a general approach to constructing nested space-

filling designs using nested difference matrices. These nested space-filling designs
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can achieve uniformity in low dimensions, but they lack orthogonality. The uni-

formity in two-dimensional projection implies that in any two dimensions, each of

the k×k square bins contains the same number of points (the value of k depends

on the number of the design points). There is no one-to-one relationship between

uniformity and orthogonality, uniformity does not guarantee the orthogonality

between any two columns, and vise versa. Li and Qian (2013) proposed (nearly)

column-orthogonal LHDs for two-fidelity computer experiments.

In this paper, we propose a new class of nested orthogonal LHDs designated

for multi-fidelity. These are useful for sequential experimentation, model build-

ing, model calibration, and validation in computer experiments. They can also

be used for optimization under uncertainty methods, multi-level function estima-

tion, linking parameters, and sequential evaluations (see, for example, Haaland

and Qian (2010)). In addition, the resulting nested LHDs possess the property

that the sum of the elementwise products of any three columns is zero.

The paper is organized as follows. In Section 2, we propose the method to

construct nested orthogonal LHDs with two layers. The construction with three

or more layers is developed in Section 3. Further results on the design properties

and existence of these nested orthogonal LHDs are provided in Section 4. All

proofs of theorems are in the Appendix.

2. Construction of Nested Orthogonal LHDs with Two Layers

This section discusses the construction of nested orthogonal LHDs with two

layers. The construction is made possible by a special type of orthogonal design

(OD) proposed by Yang and Liu (2012), as defined below.

Definition 1. An m ×m matrix D is called an m-order OD with entries from

±(ia+ b) for i = 1, . . . ,m and a ̸= 0, denoted by OD(m), if it satisfies

(i) by changing −(ia + b) to ia + b (for i = 1, . . . ,m) in D, each column is a

permutation of {ia+ b, i = 1, . . . ,m}, and
(ii) the inner product of any two distinct columns is zero.

Note that OD(m)’s are available in Yang and Liu (2012) for m = 2r, where

r is any positive integer.

Consider a computer experiment involving u levels of accuracy: Y1(·), . . .,
Yu(·), where Yu(·) is the most accurate, Yu−1(·) is the second most accurate,

and so on. For each i = 1, . . . , u, let Li be the design associated with Yi(·)
consisting of ni points. If the ith layer Li is an L(ni,m) for i = 1, . . . , u with

Lu ⊂ · · · ⊂ L1 and nu < · · · < n1, then (L1; . . . ;Lu) is called a nested LHD

with u layers. Furthermore, if each Li is an orthogonal LHD, then (L1; . . . ;Lu)

is called a nested orthogonal LHD, denoted NOL((n1, . . . , nu),m).
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Theorem 1. Suppose D is an OD(m) with entries from ±(ia + b) for i =
1, . . . ,m, where a ≥ 2 is an even integer. Let Dj be the corresponding design
with b = j − a for j = 1, . . . , a,

L1 = (DT
1 , . . . , D

T
a , 0m,−DT

1 , . . . ,−DT
a )

T ,

L2α = (DT
a/2,−DT

a/2)
T , L2β = (DT

a , 0m,−DT
a )

T ,

L∗
2α = (DT

1 ,−DT
1 , D

T
3 ,−DT

3 , . . . , D
T
a−1,−DT

a−1)
T ,

L∗
2β = (DT

2 ,−DT
2 , D

T
4 ,−DT

4 , . . . , D
T
a , 0m,−DT

a )
T ,

(2.1)

where 0m denotes the m× 1 column vector with all elements zero. Then

(i) (L1;L2α) is an NOL((2am+ 1, 2m),m);

(ii) (L1;L2β) is an NOL((2am+ 1, 2m+ 1),m);

(iii) (L1;L
∗
2α) is an NOL((2am+ 1, am),m), for a > 2;

(iv) (L1;L
∗
2β) is an NOL((2am+ 1, am+ 1),m), for a > 2.

Example 1. Consider the OD(4) matrix

D =


a+ b 2a+ b −4a− b 3a+ b

2a+ b −a− b −3a− b −4a− b

3a+ b 4a+ b 2a+ b −a− b

4a+ b −3a− b a+ b 2a+ b

 .

With a = 4, we get D1, D2, D3, and D4 with b = −3,−2,−1, and 0, respectively.
Let

L1 = (DT
2 ,−DT

2 , D
T
4 , 04,−DT

4 , D
T
1 ,−DT

1 , D
T
3 ,−DT

3 )
T ,

L2α = (DT
2 ,−DT

2 )
T , L2β = (DT

4 , 04,−DT
4 )

T ,

L∗
2α = (DT

1 ,−DT
1 , D

T
3 ,−DT

3 )
T , L∗

2β = (DT
2 ,−DT

2 , D
T
4 , 04,−DT

4 )
T .

It can be easily verified that (L1;L2α) is an NOL((33, 8), 4), (L1;L2β)
is an NOL((33, 9), 4), (L1;L

∗
2α) is an NOL((33, 16), 4) and (L1;L

∗
2β) is

an NOL((33, 17), 4), as given in Table 1. Such nested orthogonal LHDs are
apparently new and not available through any existing method. The design in
Theorem 1 (ii) also works for odd a. As a special case of Theorem 1, if b only
takes the values of 0 and −a/2, a special nested orthogonal LHD can be obtained,
with two subarrays both orthogonal LHDs.

3. Construction of Nested Orthogonal LHDs with Three or More
Layers

A method for constructing nested orthogonal LHDs with three layers is
proposed here, followed by the construction of nested orthogonal LHDs with
k (k > 3) layers.
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Table 1. An NOL((33, 8), 4), NOL((33, 9), 4), NOL((33, 16), 4) or
NOL((33, 17), 4) from Example 1.

Run # x1 x2 x3 x4 Run # x1 x2 x3 x4

1 2 6 −14 10 18 1 5 −13 9
2 6 −2 −10 −14 19 5 −1 −9 −13
3 10 14 6 −2 20 9 13 5 −1
4 14 −10 2 6 21 13 −9 1 5
5 −2 −6 14 −10 22 −1 −5 13 −9
6 −6 2 10 14 23 −5 1 9 13
7 −10 −14 −6 2 24 −9 −13 −5 1
8 −14 10 −2 −6 25 −13 9 −1 −5
9 4 8 −16 12 26 3 7 −15 11
10 8 −4 −12 −16 27 7 −3 −11 −15
11 12 16 8 −4 28 11 15 7 −3
12 16 −12 4 8 29 15 −11 3 7
13 0 0 0 0 30 −3 −7 15 −11
14 −4 −8 16 −12 31 −7 3 11 15
15 −8 4 12 16 32 −11 −15 −7 3
16 −12 −16 −8 4 33 −15 11 −3 −7
17 −16 12 −4 −8

Note: The entire array is an L(33, 4), L1; the subarray above the dashed line is an

L(8, 4), L2α; the subarray from Run 9 to Run 17 is an L(9, 4), L2β ; the subarray

from Run 1 to Run 17 is an L(17, 4), L∗
2β ; and the subarray from Run 18 to Run

33 is an L(16, 4), L∗
2α.

Theorem 2. For the design L1, L
∗
2α, and L∗

2β of Theorem 1, let

L2 = (DT
a/2, D

T
a , 0m,−DT

a/2,−DT
a )

T ,

L3α = (DT
a/2,−DT

a/2)
T , and L3β = (DT

a , 0m,−DT
a )

T .

If a ≥ 2 is an integer, then

(i) (L2;L3α) is an NOL((4m+ 1, 2m),m);

(ii) (L2;L3β) is an NOL((4m+ 1, 2m+ 1),m).

If a ≥ 4 and a is even, then

(i) (L1;L2;L3α) is an NOL((2am+ 1, 4m+ 1, 2m),m);

(ii) (L1;L2;L3β) is an NOL((2am+ 1, 4m+ 1, 2m+ 1),m);

(iii) (L1;L
∗
2β;L3β) is an NOL((2am+ 1, am+ 1, 2m+ 1),m);

(iv) if a/2 is even, (L1;L
∗
2β;L3α) is an NOL((2am+1, am+1, 2m),m); otherwise,

(v) (L1;L
∗
2α;L3α) is an NOL((2am+ 1, am, 2m),m).
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Example 2. Consider the L1 of Example 1, and let

L3α =

(
D2

−D2

)
=



2 6 −14 10

6 −2 −10 −14

10 14 6 −2

14 −10 2 6

−2 −6 14 −10

−6 2 10 14

−10 −14 −6 2

−14 10 −2 −6


,

L3β =

 D4

0T4
−D4

 =



4 8 −16 12

8 −4 −12 −16

12 16 8 −4

16 −12 4 8

0 0 0 0

−4 −8 16 −12

−8 4 12 16

−12 −16 −8 4

−16 12 −4 −8


,

and L2 = (LT
3α, L

T
3β)

T , for a = 4, L2 = L∗
2β. Then it can be shown that

(L1;L2;L3α) is anNOL((33, 17, 8), 4), and (L1;L2;L3β) is anNOL((33, 17, 9), 4).

The next theorem provides a general method for constructing nested orthog-

onal LHDs with more than three layers.

Theorem 3. Let a1, a2, . . . , ap(= a) be positive integers such that ai < ai+1 and

ai|ai+1 for i = 1, . . . , p− 1, and let

Li = (DT
ai , D

T
2ai , . . . , D

T
a , 0m,−DT

ai ,−DT
2ai , . . . ,−DT

a )
T , i = 1, . . . , p.

Then

(i) (L1;L2; . . . ;Lp) is a p-layer NOL((2m(a/a1) + 1, 2m(a/a2) + 1, . . . , 2m +

1),m);

(ii) if a/ap−1 is even, and L∗
p = (DT

a/2,−DT
a/2)

T , (L1;L2; . . . ;L
∗
p) is a p-layer

NOL((2m(a/a1) + 1, 2m(a/a2) + 1, . . . , 2m),m).

Example 3. Return to the OD(4) in Example 1 for illustration. Take a1 =

1, a2 = 2, a3 = 4, a4 = a = 8, to obtain eight ODs with b = −7,−6, . . . , 0,
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Table 2. The nested orthogonal LHD with 4 layers in Example 3.

Run# x1 x2 x3 x4 Run# x1 x2 x3 x4 Run# x1 x2 x3 x4

1 4 12 −28 20 23 −10 2 18 26 45 27 −19 3 11
2 12 −4 −20 −28 24 −18 −26 −10 2 46 −3 −11 27 −19
3 20 28 12 −4 25 −26 18 −2 −10 47 −11 3 19 27
4 28 −20 4 12 26 6 14 −30 22 48 −19 −27 −11 3
5 −4 −12 28 −20 27 14 −6 −22 −30 49 −27 19 −3 −11
6 −12 4 20 28 28 22 30 14 −6 50 5 13 −29 21
7 −20 −28 −12 4 29 30 −22 6 14 51 13 −5 −21 −29
8 −28 20 −4 −12 30 −6 −14 30 −22 52 21 29 13 −5
9 8 16 −32 24 31 −14 6 22 30 53 29 −21 5 13
10 16 −8 −24 −32 32 −22 −30 −14 6 54 −5 −13 29 −21
11 24 32 16 −8 33 −30 22 −6 −14 55 −13 5 21 29
12 32 −24 8 16 34 1 9 −25 17 56 −21 −29 −13 5
13 0 0 0 0 35 9 −1 −17 −25 57 −29 21 −5 −13
14 −8 −16 32 −24 36 17 25 9 −1 58 7 15 −31 23
15 −16 8 24 32 37 25 −17 1 9 59 15 −7 −23 −31
16 −24 −32 −16 8 38 −1 −9 25 −17 60 23 31 15 −7
17 −32 24 −8 −16 39 −9 1 17 25 61 31 −23 7 15
18 2 10 −26 18 40 −17 −25 −9 1 62 −7 −15 31 −23
19 10 −2 −18 −26 41 −25 17 −1 −9 63 −15 7 23 31
20 18 26 10 −2 42 3 11 −27 19 64 −23 −31 −15 7
21 26 −18 2 10 43 11 −3 −19 −27 65 −31 23 −7 −15
22 −2 −10 26 −18 44 19 27 11 −3

Note: The subarray from Run 1 to Run 8 is an L(8, 4), L∗
4; the subarray from Run 9 to Run

17 is an L(9, 4), L4; the subarray from Run 1 to Run 17 is an L(17, 4), L3; the subarray from

Run 1 to Run 33 is an L(33, 4), L2; the entire array from Run 1 to Run 65 is an L(65, 4), L1,

a 4-layer nested orthogonal LHD.

respectively. Then

L1 = (DT
1 , . . . , D

T
8 , 04,−DT

1 , . . . ,−DT
8 )

T is an L(65, 4), as given in Table 2;

L2 = (DT
4 ,−DT

4 , D
T
8 , 04,−DT

8 , D
T
2 ,−DT

2 , D
T
6 ,−DT

6 )
T is an L(33, 4);

L3 = (DT
4 ,−DT

4 , D
T
8 , 04,−DT

8 )
T is an L(17, 4);

L∗
4 = (DT

4 ,−DT
4 )

T is an L(8, 4), and L4 = (DT
8 , 04,−DT

8 )
T is an L(9, 4).

Obviously, all these Li’s are orthogonal and satisfy

L∗
4 ⊂ L3 ⊂ L2 ⊂ L1 and L4 ⊂ L3 ⊂ L2 ⊂ L1.

Thus (L1;L2;L3;L
∗
4) is a 4-layer NOL((65, 33, 17, 8), 4), and (L1;L2;L3;L4) is a

4-layer NOL((65, 33, 17, 9), 4).
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Table 3. Existence of NOL((n1, . . . , nu),m)’s with m = 2r.

u (n1, . . . , nu) a Method
2 (2am+ 1, 2m+ 1) ≥ 2 Theorem 1
2 (2am+ 1, 2m) ≥ 2, even Theorem 1
2 (2am+ 1, am), (2am+ 1, am+ 1) > 2, even Theorem 1
2 (4m+ 1, 2m), (4m+ 1, 2m+ 1) ≥ 2 Theorem 2
3 (2am+ 1, 4m+ 1, 2m) ≥ 4, even Theorem 2
3 (2am+ 1, 4m+ 1, 2m+ 1) ≥ 4, even Theorem 2
3 (2am+ 1, am+ 1, 2m+ 1) ≥ 4, even Theorem 2
3 (2am+ 1, am+ 1, 2m) ≥ 4, a/2 is even Theorem 2
3 (2am+ 1, am, 2m) ≥ 4, a/2 is odd Theorem 2
p (2m(a/a1) + 1, 2m(a/a2) + 1, . . . , 2m+ 1) ai < ai+1, ai|ai+1, ap = a Theorem 3
p (2m(a/a1) + 1, 2m(a/a2) + 1, . . . , 2m) ai < ai+1, ai|ai+1, Theorem 3

ap = a, a/ap−1 is even

4. Further Results and Discussion

Combining fold-over structures and the nested LHDs above, we have the

following.

Theorem 4. For any of the nested orthogonal LHDs of Theorems 1, 2 or 3, each

layer possesses the property that the sum of the elementwise products of any three

columns is zero.

Let X denote the model matrix for the first-order model of a design with n

runs and m factors, including a column of ones for the intercept. Let Xint denote

the n×m(m− 1)/2 matrix with all the possible bilinear interactions, and Xquad

denote the n ×m matrix with all the pure quadratic terms. The alias matrices

for the first-order model associated with all the pure quadratic terms and the

bilinear interactions are then given by (X ′X)−1X ′Xquad and (X ′X)−1X ′Xint,

respectively. A good design for estimating the main effects should guarantee

that these alias matrices are small—ideally 0. It is easy to see that if the sum of

the elementwise products of any three columns equals zero, then these two alias

matrices are both zero matrices.

The newly constructed LHDs in Sections 2 and 3 have the nesting property

as well as that orthogonality property, but with a flexible size of layers that is not

available through any existing approach. NOL((n1, . . . , nu),m)’s listed in Table

3 can be easily constructed by the corresponding method indicated in the last

column. Note that m is a power of 2 (2r) in this paper. For other m, OD(m)’s

can be possibly constructed by using Latin squares and Hadamard matrices, or

by rotating orthogonal arrays. This deserves further study.

Besides the orthogonality, our nested orthogonal LHD has the property that

the sum of the elementwise products of any three columns is zero; this is desirable
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when fitting the first-order model with second-order effects (the quadratic effects

and bilinear interactions) present (cf., Sun, Liu, and Lin (2009, 2010)). Yang

and Liu (2012)). Such an orthogonal LHD guarantees that the estimates of all

linear effects are uncorrelated with each other and with that of all second-order

effects.
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Appendix: Proofs of Theorems

A.1. Proof of Theorem 1

From the definitions of L1, L2α, L2β, L
∗
2α, and L∗

2β in (2.1), it is obvious that

the nested structures L2α ⊂ L1, L2β ⊂ L1, L
∗
2α ⊂ L1, and L∗

2β ⊂ L1 hold.

We show the one-dimensional uniformity of these designs. From the

definition of Dj , the elements in each column of (DT
j ,−DT

j )
T are {±j,±(a +

j), . . . ,±((m− 1)a+ j)}, j = 1, . . . , a. Namely,

{0,±1,±2, . . . ,±ma} in each column of L1,

{±a/2,±3a/2, . . . ,±(2m− 1)a/2} in each column of L2α,

{0,±a,±2a, . . . ,±ma} in each column of L2β,

{±1,±3, . . . ,±(ma− 1)} in each column of L∗
2α, and

{0,±2,±4, . . . ,±ma} in each column of L∗
2β.

Obviously, these elements are equally spaced. Thus, (L1;L2α), (L1;L2β),

(L1;L
∗
2α), and (L1;L

∗
2β) are nested LHDs.

We show the orthogonality of the LHDs. From the orthogonality of OD(m)

and the definition of Dj , j = 1, . . . , a,

LT
2αL2α =

ma2(2m+ 1)(2m− 1)

6
Im, LT

2βL2β =
ma2(m+ 1)(2m+ 1)

3
Im,

L∗T
2αL

∗
2α =

m2a2(ma+ 1)

2
Im, L∗T

2βL
∗
2β =

ma(ma+ 1)(ma+ 2)

6
Im, and

LT
1 L1 =

ma(ma+ 1)(2ma+ 1)

3
Im,

where Im is the identity matrix of order m. Thus we complete the proof.
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A.2. Proofs of Theorems 2 and 3

From the definitions of L1, L
∗
2α, L

∗
2β in Theorem 1, L2, L3α, L3β in Theorem

2, and L1, . . . , Lp, L
∗
p in Theorem 3, the nested structures can be easily observed.

And from the elements in each column of (DT
j ,−DT

j )
T , for j = 1, . . . , a, the

elements in each column of these designs can be listed, which are equally spaced,
thus these designs are LHDs. The orthogonality of the LHDs can be deduced
from the orthogonality of Dj ’s, similarly as we do in the proof of Theorem 1.
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