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Abstract: Supersaturated designs (SSDs) are useful in investigating a large number

of factors with few experimental runs, particularly in screening experiments. The

goal is to identify sparse but dominant active factors with small cost. In this

paper, an analysis procedure called the Stepwise Response Refinement Screener

(SRRS) method is proposed to screen important effects. Unlike the traditional

approach that regresses factors with the response in every iteration, the response

in each iteration of the SRRS is refined from the previous iteration using a selected

potentially important factor. Analyses of two experiments using SSDs suggest

that the SRRS method is able to retrieve similar results as do existing methods.

Simulation studies show that, compared to existing methods in the literature, the

SRRS method performs well in terms of the true model identification rate and the

average model size.

Key words and phrases: Stepwise response refinement screener (SRRS), modified

Akaike information criterion (mAIC), screening experiment, supersaturated design

(SSD).

1. Introduction

As science and technology have advanced, investigators are becoming more

interested in and capable of studying large-scale systems. Typically the initial

stage of these systems contain a large number of potentially relevant factors, and

it is common that the probing and studying of a large-scale system is expensive.

To address these challenges, research in experimental design has lately focused on

the class of supersaturated designs (SSDs) for their run-size economy. Under the

condition of factor sparsity, or the principle of parsimony (Box and Meyer (1986)),

the purpose of such experiments is to correctly identify the subset of those active

factors that have significant impact on the response, so that the investigation

can proceed via discarding inactive factors prior to follow-up experiments.

The construction of SSDs dates back to Satterthwaite (1959) and Booth and

Cox (1962). The former suggested the use of random balanced designs and the

latter proposed an algorithm to systematically construct SSDs. Many methods

have been proposed for constructing them over the last 15 years. A comprehensive
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list of early works can be found in Liu and Liu (2011) and Sun, Lin, and Liu

(2011).

Traditionally, SSDs are employed primarily for screening main effects, dis-

carding the possibility of interactions. Even the analysis considers main effects

only, usual regression methods using all candidate factors cannot be used. More

refined analysis methods were developed in recent years. Lin (1993) used step-

wise regression for selecting active factors. Chipman, Hamada, and Wu (1997)

proposed a Bayesian variable-selection approach for analyzing experiments with

complex aliasing. Westfall, Young, and Lin (1998) proposed an error control

skill in forward selection. Beattie, Fong, and Lin (2002) proposed a two-stage

Bayesian model selection strategy for supersaturated experiments. Li and Lin

(2002, 2003) proposed a method based on penalized least squares. Holcomb,

Montgomery, and Carlyle (2003) proposed contrast-based methods. Lu and Wu

(2004) proposed a modified stepwise selection based on an idea of staged dimen-

sionality reduction. Zhang, Zhang, and Liu (2007) proposed a method based

on partial least squares. Georgiou (2008) proposed an SVD principal regression

method for SSDs.

Candes and Tao (2007) proposed the Dantzig selector (DS) and showed that

it has remarkable properties under some conditions. The DS had been suc-

cessfully used in biomedical imaging, analog to digital conversion, and sensor

networks. Phoa, Pan, and Xu (2009) implemented the DS in practice. They in-

troduced a graphical procedure using a profile plot in analyzing the results from

the DS. In addition, they suggested an automatic variable selection procedure

via a modified version of Akaike information criterion (AIC) to accompany the

DS method. Traditionally, AIC is used for model selection. For linear models,

AIC = n log
(RSS

n

)
+ 2p, (1.1)

where RSS =
∑n

i=1(yi − ŷi)
2 is the residual sum of squares, n is the number of

runs, and p is the number of parameters in the model. It is known that AIC

tends to overfit the model when the sample size is small. Phoa, Pan, and Xu

(2009) imposed a heavy penalty on the model complexity and proposed modified

AIC for the automatic variable selection procedure of the DS method,

mAIC = n log
(RSS

n

)
+ 2p2. (1.2)

The mAIC typically chooses a smaller model than AIC.

The idea of a two-step procedure has been proposed before. For example,

Fan and Lv (2008) proposed Sure Independence Screening (SIS) that essentially

screens hte variables first and then performs model selection. Hwang and Hu
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(2012) proposed Stepwise Paring down Variation (SPV) for identifying influential
multi-factor interactions related to continuous response variables. In this paper,
we introduce a variable selection approach via the Stepwise Response Refinement
Screener (SRRS). The SRRS chooses the best subset of variables or active factors
by two procedures: factor screening and model searching. Here “stepwise” only
refers to the refinement of responses in every step - it is a forward selection
procedure. Section 2 presents the procedural steps and Section 3 provides an
explanation of them. To demonstrate the value of the SRRS method and compare
it to other methods, the SSDs introduced by Lin (1993) and Rais et al. (2009)
are considered in our simulation studies in Section 4. The last section gives some
concluding remarks.

2. Analysis of SSDs via the Stepwise Response Refinement Screener
(SRRS) Method

Consider a linear regression model y = Xβ+ ϵ, where y is an n× 1 vector of
observations, X is an n×k model matrix, β is a k×1 vector of unknown param-
eters, and ϵ is an n× 1 vector of random errors. Assume that ϵ ∼ N(0, σ2In). In
addition, X is assumed to be supersaturated, n < k. We let m be the number of
potentially important effects (PIEs) and Sinf be the influential set of PIEs found
in the process.

The Stepwise Response Refinement Screener (SRRS) proceeds as follows.

I. SRRS–Factor Screening

Step 1. Standardize data so that y0 has mean 0 and the columns of X have
equal lengths.

Step 2. Compute the correlation ρ(Xi, y0) for all factors Xi, i = 1, . . . , k.
Step 3. Choose E0 such that |ρ(E0, y0)| = maxXi |ρ(Xi, y0)| and include E0

as the first PIE in Sinf .
Step 4. Obtain the estimate βE0 by regressing y0 on E0. Unless specified by

expert opinion, take the threshold of noise level γ to be approximately
5%− 10% of βE0 .

Step 5. For the next m PIEs Ej , j = 1, . . . ,m, m < n− 2,
(a) compute the refined response yj = yj−1 − Ej−1βEj−1 ;
(b) compute the marginal correlation ρ(Xi, yj) for all Xi, i = 1, . . . , k;
(c) choose Tj such that |ρ(Tj , yj)| = maxXi |ρ(Xi, yj)|;
(d) obtain the estimate βTj by regressing yj on E0, . . . , Ej−1, Tj ;
(e) if |βTj | ≥ γ and Tj has not been included in Sinf , put Ej = Tj

and include it in Sinf ;
(f) repeat (a) to (e) up to mth step, where Ej = Em is not included in

Sinf , m determined by either m < n−2 or the threshold condition
|βTj | ≥ γ, or both.
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II. SRRS–Model Searching

Step 6. Perform an all-subset search for all Ej , from models with one to m

factors, where m is minimum of n/3 and the number of Ej in Sinf .

Step 7. Compute mAIC for each model and choose the final model as the one

with smallest mAIC; all Ej included in the final model are considered

to be significant to the response y0.

3. Main Idea of the SRRS Method

Step 1 is a standard normalization on the response y0 and the factors X.

The factor with the highest marginal correlation to y0 is identified as the first

PIE and denoted as E0. Once E0 is included in Sinf , a model between y0 and

E0 is built and the slope estimate βE0 is obtained; it is used for defining the

threshold of noise level γ.

Here γ is a threshold between signal and noise and a relatively small γ

should be chosen. One can choose γ according to information on the magnitude

of effects or noise. For example, Phoa, Pan, and Xu (2009) suggested that γ

is approximately 10% of the maxmimum absolute estimates in their simulation

study. It is recommended that the procedure is repeated with a few choices of γ.

When the signal to noise ratio is large, the choice of γ is not crucial. Generally

speaking, we choose γ to be approximately 5% − 10% of |βE0 | in our examples

and simulation studies. Although |βE0 | may not be the maximum slope estimate

in some cases, it is conservative to set a slightly smaller γ so that one or two

more factors are considered as PIEs.

Before starting to search for the next PIE, the response has to be refined so

that the correlation between the newly refined response and E0 is close to 0. This

is what Step 5(a) does. The first refined response, y1, is the difference between

the original response y0 and the portion of magnitude of the first PIE E0βE0 .

The search repeats the same procedure for the next m PIEs, and E1, . . . , Em−1

are included in Sinf . The marginal correlation between yj and Tj−1 is zero,

and the marginal correlations between yj and all other factors, including those

that have been included in Sinf , are compared in Step 5(b). The magnitudes

of these marginal correlations consist of: (i) some middle to high values that

indicate these factors still have possibilities to be PIEs after j refinements, and

(ii) some close-to-zero values that indicate these factors do not have impact on

the response.

There are two criteria that can stop the search. The first is the number of

PIEs in Sinf ; It has to be at most the number of runs minus two so that one

can estimate all PIEs, the intercept, and the residual of the model. The second

criterion is related to the magnitude of the slope estimate, magnitudes lower than
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Table 1. A Two-level SSD (Lin (1993)).

Run
Factors Response

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Y
1 + + + − − − + + + + + − − − + + − − + − − − + 133
2 + − − − − − + + + − − − + + + − + − − + + − − 62
3 + + − + + − − − − + − + + + + + − − − − + + − 45
4 + + − + − + − − − + + − − + + − + + + − − − − 52
5 − − + + + + − + + − − − − + + + − − + − + + + 56
6 − − + + + + + − + + + − + + − + + + + + + − − 47
7 − − − − + − − + − + − + + − + + + + + + − − + 88
8 − + + − − + − + − + − − − − − − − + − + + + − 193
9 − − − − − + + − − − + + − + − + + − − − − + + 32
10 + + + + − + + + − − − + + + − + − + − + − − + 53
11 − + − + + − − + + − + − + − − − + + − − − + + 276
12 + − − − + + + − + + + + − − + − − + − + + + + 145
13 + + + + + − + − + − − + − − − − + − + + − + − 130
14 − − + − − − − − − − + + + − − − − − + − + − − 127

γ are considered as noise. If Ej is chosen in Step 5(c) but |βEj | is found to be

smaller than γ, the search stops and all remaining factors are considered as noise.

Step 6 constructs reduced models with all possible combinations of factors -

m one-factor models, Cm
2 two-factor models, and so on. Instead of building all

possible reduced models, Marley and Woods (2010) suggested that the number of

runs is at least three times the number of active factors. We follow their guideline

so the maximum number of active factors in the reduced models is less than or

equal to n/3, unless the number of PIEs is smaller.

Instead of using the traditional AIC, mAIC (Phoa, Pan, and Xu (2009))

is the criterion for the best among all reduced models. Phoa, Pan, and Xu

(2009) showed that mAIC performed better than both the traditional AIC and

another modified version cAIC (Hurvich and Tsai (1989)) when the model is

supersaturated. We suggest that all PIEs included in the reduced model with

the smallest mAIC be considered to have significant impact even if some PIEs

are not significant based on their p-values.

4. Two Illustrative Examples

We illustrate the analysis of SSDs via the SRRS method.

Example 1. Consider the SSD of Lin (1993). The original dataset has 24 factors

but factors 13 and 16 are identical. As Beattie, Fong, and Lin (2002) and Phoa,

Pan, and Xu (2009) did, we delete factor 13 and rename factors 14–24 as 13–23.

The design matrix and response data are given in Table 1.
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Table 2. Factor Screening of Two-Level SSD of Lin (1993) via SRRS.

Marginal Continue
m PIE Correlation |β| or Stop
0 X14 −0.7948 53.21 Continue
1 X12 −0.5370 22.27 Continue
2 X19 −0.6751 24.78 Continue
3 X4 −0.5730 22.12 Continue

X14 −0.7326 17.26 Continue
4 X10 −0.5904 9.40 Continue
5 X11 0.6569 8.16 Continue
6 X7 −0.6989 7.78 Continue

X19 −0.7337 4.68 Stop
PIEs in Sinf after Factor Screening: X4, X7, X10, X11, X12, X14, X19.

In the factor screening procedure, the first PIE identified isX14. A regression

model between y0 and X14 is built and one finds |βX14 | = 53.21. We set the

threshold γ = 5, about 10% of |βX14 |.
The second PIE is X12. A regression model between y1 and X12, X14 is built

and here |βX12 | = 22.27 > γ; X12 is included in the influential set Sinf together

with X14.

Table 2 shows all steps of the process of factor screening. The first two

columns are the number and the name of PIEs identified, the third column shows

the marginal correlations between the PIEs and the refined responses, and the

fourth column shows the absolute magnitude of slope estimates in the models

between the PIEs and the refined responses.

After the fourth PIE X4 is identified, the factor that has the highest ab-

solute marginal correlation to the refined response is X14 again. This situation

happens due to the collinearity among factors. A similar situation happens after

the seventh PIE X7 is identified, where X19 has the highest absolute marginal

correlation to the refined response. Here, since |βX19 | = 4.68 < γ, the search

stops and the influential set Sinf that consists of seven PIEs is fixed.

Since there are 14 observations, the maximum number of active factors is

5 if the guideline of Marley and Woods (2010) is followed. Then there are 119

reduced models built in Step 6, including 7 one-factor models, 21 two-factor

models, 35 three-factor models, 35 four-factor models and 21 five-factor models.

Comparing mAIC, the one-factor model with X14 has the lowest mAIC. Thus

the SRRS method suggests that only X14 has significant impact to the response

y0.

The same data were previously analyzed by several authors. Beattie, Fong,

and Lin (2002) compared several model selection methods and identified X14

as the only important effect in every method. By using the Dantzig selector,
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Phoa, Pan, and Xu (2009) also suggested that all other effects except X14 are

noisy and the magnitudes are small in the profile plot. Both Li and Lin (2003)

and Zhang, Zhang, and Liu (2007) suggested X14, X12, X19, and X4 as active

factors. Westfall, Young, and Lin (1998) added an extra active factor X11 to the

previous list, among which X14 is the only significant variable at 5% significance

level. A regression model between the original response and X14 shows that the

p-value of X14 is 0.000681, X14 is highly significant to the response.

The analysis via SRRS matches the conclusion in Beattie, Fong, and Lin

(2002). Although all other PIEs except X14 in either our work or any previous

works are barely significant to the response, we agree with Abraham, Chipman,

and Vijayan (1999) that it is still not clear what the active factors are.

Example 2. Consider the SSD of Rais et al. (2009). The dataset has 31 factors

and 18 runs. The design matrix and response data are given in Table 3.

In the factor screening procedure, the first PIE identified is U28. A regression

model between y0 and U28 is built and one finds |βU28 | = 8.66. We set the

threshold γ = 0.85, about 10% of βU28 .

Table 4 shows every step of the factor screening that results in thirteen PIEs.

With 18 observations, the maximum number of active factors is suggested to be 6,

and 4095 reduced models are built and their mAIC compared. The two-factors

model with U24 and U27 has the lowest mAIC = 90.36. A regression model

between the original response and U24 and U27 shows that the p-values of U24

and U27 are 0.00305 and 0.00731, respectively, U24 and U27 are highly significant.

Rais et al. (2009) suggested nine significant factors, U13, U18, U19, U20, U24,

U27, U28, U29 and U30. Their model had R2 = 0.9879, compared to the SRRS

R2 = 0.5124. Traditional wisdom suggests that AIC is a better measure on the

goodness of fit because it penalizes the number of parameters, but Phoa, Pan,

and Xu (2009) showed that AIC may still overfit under the condition of a SSD.

The mAIC of Rais et al. (2009) model is 180.09, which is almost double of the

mAIC of the model suggested by the SRRS.

It is difficult to say whether Rais et al. (2009) model or the model suggested

by SRRS is better in general, but both analyses have U24 and U27 significant.

Some follow-up experiments or analysis should be done for further investigation.

5. Simulation Studies

To judge the value of the SRRS method, we compared its performance with

that of five different approaches: SSVS, the Bayesian variable selection procedure

proposed by George and McMulloch (1993) and extended for SSDs by Chipman,

Hamada, and Wu (1997); SSVS/IBF, the two stage Bayesian procedure of Beat-

tie, Fong, and Lin (2002); SCAD, the penalized least squares approach proposed
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Table 3. A Two-level SSD (Rais et al. (2009)).

Run
Factors

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16

1 − + − + + + − − − + + + + + − +
2 + − − + − + + + − − − + + + + +
3 − + − − + − + + + − − − + + + +
4 + + − − + − − + − + + + − − − +
5 + − + + − − + − − + − + + + − −
6 + − + − + + − − + − − + − + + +
7 − + − + − + + − − + − − + − + +
8 − − + − + − + + − − + − − + − +
9 − − − + − + − + + − − + − − + −

10 + − − − − + − + − + + − − + − −
11 − + − − − − + − + − + + − − + −
12 + + + − − + − − − − + − + − + +
13 + + + + + − + + + − − + − − − −
14 − + + + + + − + + + − − + − − −
15 − − + + + + + − + + + − − + − −
16 + + + − − − + + + + + − + + + −
17 + − + + + − − − + + + + + − + +
18 − − − − − − − − − − − − − − − −

Run
Factors

U17 U18 U19 U20 U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 Y
1 + + − − + − − − − + − + − + + 76.2
2 − + + + − − + − − − − + − + − 82.6
3 + − + + + − − + − − − − + − + 99.4
4 + + + + − + + + − − + − − − − 80.5
5 − + + + + + − + + + − − + − − 103.5
6 − − − + + + + + − + + + − − + 52.1
7 + − − − + + + + + − + + + − − 73.8
8 + + − − − + + + + + − + + + − 89.8
9 + + + − − − + + + + + − + + + 100.7

10 + − + + + − − − + + + + + − + 59.8
11 − + − + + + − − − + + + + + − 62.8
12 − − + − − + − + + + − − − + + 95.0
13 + − + − + + − − + − − + − + + 74.9
14 − + − + − + + − − + − − + − + 84.4
15 − − + − + − + + − − + − − + − 86.7
16 − + − − − − + − + − + + − − + 58.3
17 + − − + − − − − + − + − + + − 71.1
18 − − − − − − − − − − − − − − − 64.8

by Li and Lin (2003); PLSVS, the partial least square regression technique of

Zhang, Zhang, and Liu (2007); SVDPR, the singular value decomposition prin-

cipal regression of Georgiou (2008). We also consider DS, the l1-regularization
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Table 4. Factor Screening of Two-Level SSD of Rais et al. (2009) via SRRS.

Marginal Continue
m PIE Correlation |β| or Stop
0 U28 −0.5763 8.66 Continue
1 U27 −0.4864 6.05 Continue
2 U24 0.5530 7.10 Continue
3 U30 0.5093 4.25 Continue
4 U8 0.5176 3.89 Continue
5 U4 0.4888 3.99 Continue
6 U5 −0.5141 2.94 Continue
7 U7 0.4732 1.65 Continue
8 U29 0.4762 2.44 Continue
9 U14 0.5016 1.45 Continue
10 U2 0.6197 3.23 Continue

U14 0.5486 2.03 Continue
11 U12 0.4884 1.01 Continue
12 U11 0.5273 1.81 Continue

U3 −0.5660 0.85 Stop
PIEs in Sinf after Factor Screening: U4, U7, U10, U11, U12, U14, U19.

of Phoa, Pan, and Xu (2009).

Example 3. We consider the simulation used in Li and Lin (2003), Zhang,

Zhang, and Liu (2007), and Phoa, Pan, and Xu (2009). The design is a 14-

run SSD with 23 factors used by Lin (1993) to analyze the popular dataset first

reported in Williams (1968). Three regression models are considered:

Model I: y = 10x1 + ϵ;

Model II: y = −15x1 + 8x5 − 2x9 + ϵ; and

Model III: y = −15x1 + 12x5 − 8x9 + 6x13 − 2x16 + ϵ.

We generated data from the linear model where X is the SSDs of Lin (1993)

given in Table 1 and ϵ ∼ N(0, 1) is the random error. In our method, we chose

thresholds of noise level γ = 1 and γ = 0.75. The former is approximately 10%

(case I) or 6.7% (cases II and III) of max |βi| while the latter is approximately

equal to 7.5% (case I) or 5% (cases II and III) of max |βi|. Each simulations was

run 1000 times. Table 5 compares performances; in it, “TMIR” stands for True

Model Identified Rate, “SEIR” stands for Smallest Effect Identified Rate, and

“Median” and “Mean” are the median and mean sizes of the models.

The SRRS method identifies the true model with the highest probabilities

among the six methods. In case I, the SRRS method shares 100% perfect identifi-

cation rates with the SCAD, PLSVS, and DS methods in identifying the smallest

effect. In case II, the performance of the SRRS method is as good as that of the
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Table 5. Comparison of simulation results in Example 3.

Case Method TMIR SEIR Median Mean
I SSVS(1/10,500) 40.5% 99.0% 2 3.1

SSVS(1/10,500)/IBF 61.0% 98.0% 1 2.5
SCAD 75.6% 100.0% 1 1.7
PLSVS (m=1) 61.0% 100.0% 1 1.5
SVDPR (CV) 94.2% 100.0% 1 1.07
SVDPR (aopt = 0) 98.3% 100.0% 1 1.02
DS (γ = 1) 99.4% 100.0% 1 1.0
SRRS (γ = 1) 99.8% 100.0% 1 1.0
SRRS (γ = 0.75) 90.7% 100.0% 1 1.0

II SSVS(1/10,500) 8.6% 30.0% 3 4.7
SSVS(1/10,500)/IBF 8.0% 28.0% 3 4.2
SCAD 75.6% 98.5% 3 3.3
PLSVS (m=1) 76.4% 100.0% 3 3.3
DS (γ = 1) 84.4% 85.3% 3 2.9
SRRS (γ = 1) 84.2% 85.2% 3 2.9
SRRS (γ = 0.75) 89.8% 92.5% 3 3.0

III SSVS(1/10,500) 36.4% 84.0% 6 8.0
SSVS(1/10,500)/IBF 40.7% 75.0% 5 5.6
SCAD 69.7% 99.4% 5 5.4
PLSVS (m=1) 73.6% 95.0% 5 5.2
DS (γ = 1) 79.1% 91.2% 5 5.1
SRRS (γ = 1) 95.3% 95.3% 5 5.0
SRRS (γ = 0.75) 96.6% 96.6% 5 5.0

DS method in terms of the ability to identify the true model, the ability to

identify the smallest effects, and the average model sizes for γ = 1, and the per-

formance further improves for γ = 0.75. In case III, the performance between

the DS method and the SRRS is clearly distinguishable, and the SRRS method

performs the best among all six methods. In this sense the SRRS method seems

to be more efficient, no matter which γ is chosen. Notice that the results of

SVDPR are not good in cases II and III and thus we do not include them in the

table.

The SRRS method is excellent in identifying active factors in Cases I and III.

The performance is less effective in Case II mainly because the model consisting

of factors 1, 5 and 12 explains the response as well as the true model. The

randomly assigned error ϵ has a great effect. In fact, the missing 15% (when

γ = 1) and 10% (when γ = 0.75) in SEIR is mainly due to the mis-identification

of the significance of factor 12 instead of factor 9 in both the DS method and the

SRRS method.

This example lends insight on the choice of γ. When the signal-to-noise ratio

is large (case I), a relatively large γ helps in eliminating the potential falsely-
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Table 6. Summary of simulation results in Example 4.

Case Min 1st Quartile Median Mean 3rd Quartile Max

I
TMIR 97% 99% 100% 99.49% 100% 100%
Size 1.00 1.00 1.00 1.005 1.01 1.03

II
TMIR 96% 99% 100% 99.38% 100% 100%
Size 2.00 2.00 2.00 2.006 2.01 2.04

III
TMIR 5% 99% 100% 96.96% 100% 100%
Size 2.05 3.00 3.00 2.981 3.01 3.31

IV
TMIR 0% 93% 99% 84.33% 100% 100%
Size 1.00 3.92 4.00 3.741 4.00 4.84

V
TMIR 0% 20% 86% 64.22% 100% 100%
Size 1.00 3.39 4.77 4.145 5.00 5.00

identified PIEs in the factor screening procedure. On the other hands, when the

signal-to-noise ratio is small (cases II and III), a relatively small γ includes a

relatively larger number of PIEs in order to prevent the false elimination of the

true active factors with small magnitude. The proper balance likely comes from

experts or experience.

Example 4. We generated data from the SSD in Example 1. Since there are

only 14 observations, the maximum number of active factors is 5, and we consider

five cases for beta. There are i active factors for case i, 1 ≤ i ≤ 5. For each case,

we generated 500 models where the selection of active factors was random, the

signs of the active factors were randomly selected to be positive or negative,

and the magnitudes were randomly selected from 2 to 10. For each model, we

generated data 100 times and obtain the True Model Identified Rate (TMIR) and

the average model size. In the simulations we took γ = 1, it is approximately

equal to 10% of max |βi|. Table 6 gives the summary statistics.

The SRRS method is very effective in identifying one and two active factors;

the TMIR in both cases are at least 96% and only a few cases that have average

model sizes slightly higher than the true numbers of active factors. The perfor-

mance of the method slightly decreases in identifying three or four active factors.

In case III, more than 95% of the 500 TMIR are ≥ 80%, and in one specific case,

the TMIR is only 5%. In case IV, about 80% of the 500 TMIR are ≥ 80%. The

situation becomes worse for case V, although more than half of the 500 TMIR

are ≥ 80%.

We have rerun other simulations found in the literature. For example, the

simulations for ten models in Georgiou (2008). The performance of the SRRS

method was excellent, the true model identified rates above 99% in models 2, 3,

5, 6, 7 and 10 there.
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6. Concluding Remarks

SSDs are useful for investigating in a large number of factors with few exper-

imental runs, particularly in screening experiments. We introduce the Stepwise

Response Refinement Screener (SRRS) method for use with SSDs. Simulations

and the analysis of experiments suggested that the SRRS method performs bet-

ter than existing methods, though not in all situations. The R function of the

SRRS is available by email request from the author, and the standalone program

for the SRRS will be available soon.

Once a suggested set of significant factors is found, a follow-up experiment

is needed for validating the results. Then it is more economical and efficient to

use nonregular fractional factorial designs than full factorial designs. A detailed

review of nonregular fractional factorial designs is in Xu, Phoa, and Wong (2009),

and a systematic construction method for nonregular fractional factorial designs

of the required size is in Phoa and Xu (2009) and Phoa (2012).

The main contribution of the SRRS method is in its factor screening proce-

dure. For most of the experiments or data, all-subset search is not feasible, so

the factor screening procedure of SRRS aims at greatly reducing the number of

insignificant factors. After factor dimension reduction, all-subset search may be

feasible. If the dimension is still too large for the all-subset search to be feasi-

ble, there exists such efficient variable selection methods as the DS (Phoa, Pan,

and Xu (2009)) that can be used. However, these efficient methods have already

sacrificed accuracy when compared to all-subset search, in order to be efficient.

The choice of these approaches for the model searching procedure of SRRS is

unknown and needs further investigation.

The SRRS method can be easily modified and extended to the analysis of

experiments other than SSDs. For examples, it can be extended for analyzing

nonregular fractional factorial designs with interactions. Given factor sparsity

and effect heredity assumptions, the calculations needed to carry out the analysis

are easily performed with little computation time. It can also be extended for

analyzing experiments with multiple responses.
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