
Statistica Sinica 24 (2014), 1-23

doi:http://dx.doi.org/10.5705/ss.2011.205

ON LEAST FAVORABLE CONFIGURATIONS

FOR STEP-UP-DOWN TESTS

Gilles Blanchard1, Thorsten Dickhaus2, Étienne Roquain3 and Fanny Villers3

1Potsdam University, 2Humboldt University and 3UPMC University

Abstract: This paper investigates an open issue related to false discovery rate (FDR)

control of step-up-down (SUD) multiple testing procedures. It has been established

that for this type of procedure, under some broad conditions and in an asymptotic

sense, the FDR is maximum when the signal strength under the alternative is

maximum. In other words, so-called “Dirac uniform configurations” are asymptot-

ically least favorable in this setting. It is known that this property also holds in

a nonasymptotic sense (for any finite number of hypotheses) for the two extreme

versions of SUD procedures, namely step-up and step-down (under additional con-

ditions for the step-down case). It is therefore natural to conjecture that this

nonasymptotic least favorable configuration property could more generally be true

for “intermediate” forms of SUD procedures. We prove that this is not the case.

The argument is based on the exact calculations proposed earlier by Roquain and

Villers (2011a); we extend them by generalizing Steck’s recursion to the case of

two populations. Furthermore, we quantify the magnitude of this phenomenon by

providing a nonasymptotic upper bound and explicit vanishing rates as a function

of the total number of hypotheses.

Key words and phrases: False discovery rate, least favorable configuration, multiple

testing, Steck’s recursions, step-up-down.

1. Introduction

1.1. Least favorable configurations for multiple testing

In mathematical statistics, so-called least favorable parameter configurations

(LFCs) play a pivotal role. For a statistical decision problem over a parameter

space Θ with risk R(·, ·) and a decision rule δ, an LFC is any element θ∗(δ) of Θ

that maximizes the risk of δ over Θ. When available, the knowledge of an LFC

allows one to obtain a bound on the risk over a possibly large parameter space,

including non- or semi-parametric cases where Θ has infinite dimensionality. In

practice, LFCs are of interest during the planning phase of an experiment when

the aim is to design a procedure δ with an a priori guaranteed maximum risk

max
θ∈Θ

R(θ, δ) = R(θ∗(δ), δ) = α. (1.1)
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In particular, if there is a one-parameter family (δβ)β of candidate decision rules,

(1.1) can be used for adequate calibration of β ∈ I ⊂ R. If the right-hand side

(RHS) of (1.1) is invertible w.r.t. β, we can derive a closed form for β(α); if

not, we can still approximate β by using Monte-Carlo methods simulating the

distribution corresponding to the LFC.

While LFC considerations naturally occur in hypothesis testing problems,

they are particularly delicate for multiple hypothesis testing. The latter issue has

been investigated by many authors, see Finner and Roters (2001); Benjamini and

Yekutieli (2001); Lehmann and Romano (2005); Finner, Dickhaus, and Roters

(2007); Romano and Wolf (2007); Guo and Rao (2008); Somerville and Hem-

melmann (2008); Finner, Dickhaus, and Roters (2009); Finner and Gontscharuk

(2009); Gontscharuk (2010). In that setting, a family of m ≥ 2 null hypothe-

ses H1, . . . , Hm is to be tested simultaneously under a common statistical model

with parameter space Θ, and some type I error criterion is used to account for

multiplicity. In applications, it is relevant to determine LFCs over the restricted

parameter spaces Θm,m0 where exactly m0 out of m of the null hypotheses are

true, for a given number m0 that is fixed when maximizing over θ ∈ Θm,m0 . In

the present work, we restrict our attention to multiple testing procedures that

depend on the observed data only through a collection of marginal p-values,

each associated with an individual null hypothesis. This is a common setting for

multiple testing problems in high dimension. Moreover, we consider procedures

that reject exactly those null hypotheses having their p-value less than a cer-

tain common threshold t∗, which can possibly be data-dependent. We call such

procedures threshold-based for short.

LFCs for multiple testing depend crucially on the type I error criterion con-

sidered. We first discuss criteria defined through loss functions that only depend

on the number of type I errors,

R(θ, δ) := Eθ[ϕ(Vm)] , (1.2)

where Vm is the number of type I errors of multiple testing procedure δ:

Vm = Vm(θ, δ) := |{1 ≤ i ≤ m : Hi is true for θ and gets rejected by δ}|. (1.3)

Assume that ϕ is a nondecreasing function and that, for threshold-based pro-

cedures, t∗ is a nonincreasing function in each p-value. When the p-values are

jointly independent, it is known that the LFC over Θm,m0 is a Dirac-uniform

(DU) distribution, with p-values corresponding to the m0 true nulls independent

uniform variables and the m−m0 p-values under alternatives with point mass 1

at zero. This result is formally recalled in Section S1.2 of the supplement Blan-

chard et al. (2013). For example, this holds under the above assumptions for
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the family-wise error rate (FWER), which is the usual type I error concept in

traditional multiple hypothesis testing theory.

Over the last two decades, alternative type I error criteria, introduced in

applications to genomics, proteomics, neuroimaging, and astronomy, have led to

massive multiple testing problems with large systems of hypotheses, see Dudoit

and van der Laan (2008); Pantazis et al. (2005); Miller et al. (2001). Here, a less

stringent notion of type I error control is needed in order to ensure reasonable

power of the corresponding multiple tests. In particular, the false discovery rate

(FDR) introduced by Benjamini and Hochberg (1995) has become a standard

criterion for type I error control in large-scale multiple testing problems. It does

not fall into the class of type I error measures defined by (1.2), and the LFC

problem for the FDR criterion turns out to be a challenging issue – even for

simple classes of multiple tests and under independence assumptions.

A possible approach to LFCs under the FDR criterion is in an asymptotic

sense, when the number m of hypotheses tends to infinity, see Finner, Dickhaus,

and Roters (2009) and Gontscharuk (2010). In practice, however, it is desirable

to have precise information about LFCs for a fixed number m of hypotheses,

in particular for design, planning, and calibration purposes. LFCs for the FDR

criterion under arbitrary dependencies have also been studied by Lehmann and

Romano (2005); Guo and Rao (2008).

1.2. Contributions

We focus on the nonasymptotic theory of LFCs under the FDR criterion

for so-called step-up-down multiple tests (SUD procedures, for short). These

procedures constitute a subclass of threshold-based multiple testing procedures

wherein the threshold t∗ is obtained by comparing the ordered p-values to a fixed

set of critical values, see Tamhane, Liu and Dunnett (1998); Sarkar (2002).

We provide a survey of known LFC results for SUD procedures in specific

model classes, in Section 3. New results for LFCs of SUD procedures are de-

rived in Section 4. We establish that the DU configuration is not, generally, a

nonasymptotic LFC. Then, since it is known that the DU configuration is the

least favorable in an asymptotic sense, we derive precise, nonasymptotic, upper

bounds on the difference between the FDR under an arbitrary alternative and

under the DU configuration. In particular we analyze, for some specific situa-

tions, the rate at which these bounds decay to zero as the number of hypotheses

m grows. In Section 5, we give exact formulas for computing the FDR under the

so-called two-group fixed and random mixture models for the p-values. This is a

toolbox section for the rest of the paper; the formulas are used to disprove nu-

merically the conjecture studied in Section 4. This section builds on the previous

work of Roquain and Villers (2011a,b), which is summarized. A novel addition
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is an extension of Steck’s recursion to compute the joint cumulative distribution

function (c.d.f.) of order statistics of two mixed populations, that is used to

handle the case of the fixed mixture model. This point had been left open by

Roquain and Villers (2011a,b) and is of intrinsic interest, because the compu-

tational complexity of existing methods for this kind of function is exponential

with k (Glueck et al. (2008)) while Steck’s recursion is polynomial. Finally, the

exact formulas derived in Section 5 are used to discuss the appropriateness of the

FDR criterion in Section 6.2.

2. Mathematical Setting

2.1. Models

Let F be the set of continuous c.d.f.s from [0, 1] into [0, 1]. We consider a set

of m ≥ 2 null hypotheses H1, . . . , Hm, and assume the existence of a correspond-

ing collection of tests with associated p-value family p := (pi, i ∈ {1, . . . ,m}),
that constitutes the only observed information. Two closely related models for

the joint distribution of p-values are common in the literature. The first is the

(two group) fixed mixture model, denoted FM(m,m0, F ), with parameters m ≥ 2,

1 ≤ m0 ≤ m, F ∈ F . It models p = (pi, i ∈ {1, . . . ,m}) as a family of mutually

independent variables, with, for all i,

pi ∼

{
U(0, 1) if 1 ≤ i ≤ m0,

F if m0 + 1 ≤ i ≤ m,

where U(0, 1) denotes the uniform distribution on (0, 1).

The second model is the (two group) random mixture model, denoted by

RM(m,π0, F ), with parameters m ≥ 2, π0 ∈ [0, 1], F ∈ F . Under this model,

m0 is an (unobserved) binomial random variable B(m,π0), and p follows the

FM(m,m0, F ) model conditionally on m0.

Here, the true nulls are assigned to the m0 (random or not) first coordinates.

This is assumed without loss of generality by independence, and because we

consider procedures that only depend on the order statistics of the p-values.

Common additional assumptions are that F (x) ≥ x, for all x, and that F is

concave. These are satisfied in the Gaussian location model: F (t) = Φ(Φ
−1

(t)−
µ), for a given alternative mean µ > 0, where Φ(z) = P(Z ≥ z) for Z ∼ N (0, 1).

This is the alternative distribution of p-values when testing for µ ≤ 0 under

a Gaussian location shift model with unit variance. The assumptions are also

satisfied for the Dirac δ0 distribution, as introduced by Finner and Roters (2001).

The corresponding distribution in the FM model is called Dirac-uniform (DU)

configuration and denoted by FM(m,m0, F ≡ 1), or simply DU(m,m0). We

define similarly RM(m,π0, F ≡ 1). The DU configuration can be seen as a
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limit of the Gaussian location model for an alternative mean µ = ∞. It is often

considered a natural candidate for an LFC of several global type I error rates, see,

e.g., Finner, Dickhaus, and Roters (2007); Romano and Wolf (2007); Somerville

and Hemmelmann (2008).

2.2. Procedures

We consider step-up-down (SUD) procedures introduced by Tamhane, Liu

and Dunnett (1998), see also Sarkar (2002). Let a threshold or critical value

collection be any nondecreasing sequence t = (tk)1≤k≤m ∈ [0, 1]m, with t0 = 0.

Definition 1. The step-up-down procedure SUDλ(t) of order λ ∈ {1, . . . ,m}
with threshold collection t, given a sequence of reordered p-values p(1) ≤ p(2) ≤
· · · ≤ p(m), with p(0) = 0, rejects the ith hypothesis if pi ≤ t∗ = tk̂, with

k̂ =

{
max{k ∈ {λ, . . . ,m} : ∀k′ ∈ {λ, . . . , k}, p(k′) ≤ tk′} if p(λ) ≤ tλ;

max{k ∈ {0, . . . , λ} : p(k) ≤ tk} if p(λ) > tλ.
(2.1)

For convenience, we identify procedures with their rejection sets, e.g., SUDλ(t) =

{1 ≤ i ≤ m : pi ≤ tk̂}. Here λ = 1 and λ = m correspond to the traditional

step-down (SD) and step-up (SU) procedures, respectively. An illustration is

provided in Figure 1.

A standard choice for t is Simes’ (1986) linear critical values tk = αk/m

for a pre-specified level α ∈ (0, 1). The corresponding step-up-down procedure

is called the linear step-up-down procedure and denoted by LSUDλ. For λ = 1

and λ = m, LSUDλ is simply written as LSD and LSU, respectively. LSU is the

procedure of Benjamini and Hochberg (1995).

More generally, threshold collections are commonly of the form tk = ρ(k/m)

for a function ρ : [0, 1] → [0, 1] assumed to satisfy

ρ : [0, 1] → [0, 1] is continuous and nondecreasing; (2.2)

x ∈ (0, 1] 7→ ρ(x)/x is nondecreasing. (2.3)

The function ρ is called the critical value function (and its inverse, the rejection

curve, see, e.g., Finner, Dickhaus, and Roters (2009)). Assumptions (2.2) and

(2.3) are meaningful in particular for analyzing asymptotics m → ∞, wherein ρ is

independent of m. For a fixed m, (2.3) is equivalent to “k 7→ tk/k is nondecreas-

ing”; Finner, Gontscharuk, and Dickhaus (2012) call such threshold collections

feasible critical values.

2.3. False discovery rate and LFCs

Introduced by Benjamini and Hochberg (1995), the FDR of a multiple testing

procedure is the averaged ratio of the number of erroneous rejections to the total
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Figure 1. Value of k̂ (vertical solid line), defined by (2.1), for several proce-
dures of the SUD type. The rejection set of the bottom-right SUD procedure
(using λ = 2m/3) coincides with that of the SU procedure for this realization
of the p-value family.

number of rejections. In our setting, for P either FM(m,m0, F ) or RM(m,π0, F ),

the FDR of a step-up-down procedure can be written as

FDR(SUDλ(t), P ) = Ep∼P [FDP(SUDλ(t),m0,p)] , (2.4)

where the false discovery proportion (FDP) is

FDP(SUDλ(t),m0,p) =
|{1 ≤ i ≤ m0 : pi ≤ tk̂}|

|{1 ≤ i ≤ m : pi ≤ tk̂}| ∨ 1
; (2.5)

here | · | denotes cardinality and m0 is fixed or random according as P is FM(m,

m0, F ) or RM(m,π0, F ). We use the short notation FDR(SUDλ(t),m0, F ) for

the quantity FDR(SUDλ(t),FM(m,m0, F )), resp. FDR(SUDλ(t), π0, F ) for the

quantity FDR(SUDλ(t),RM(m,π0, F )), or simply FDR(SUDλ(t), F ) when the

model is unambiguous.

Definition 2. A c.d.f. F ′ ∈ F is a least favorable configuration (LFC) for the

FDR of SUDλ(t) in the fixed mixture model with m0 true hypotheses out of m

if ∀F ∈ F , FDR(SUDλ(t),m0, F ) ≤ FDR(SUDλ(t),m0, F
′).

A similar definition holds for the random mixture model with m hypotheses

and proportion π0 of true hypotheses.
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This definition can be restricted to a subclass G ⊂ F (typically, the class of

concave c.d.f.s). Finally, if F ′ is an LFC that is common to all values of m0 for

the FM(m,m0, F ) model, then F ′ is also an LFC in the RM(m,π0, F ) model for

any value of π0 (by integrating over m0 ∼ B(m,π0)).

3. Survey of FDR Comparison Results for SUD Procedures

We briefly survey (and summarize in Figure 2) existing comparison results

concerning the FDR of step-up-down procedures under the FM and RM models.

They concern inequalities between the FDR of different procedures under the

same model, or of the same procedure under different alternatives.

Consider first the problem of the monotonicity of FDR(SUDλ(t)) in λ (verti-

cal arrows). Provided F is concave, it was established by Theorem 4.1 of Zeisel,

Zuk and Domany (2011) that the FDR grows as the rejection set grows. In

particular, since SUDλ(t) ⊆ SUDλ+1(t) for any λ ∈ {1, . . . ,m− 1}, we have

FDR(SUDλ(t)) ≤ FDR(SUDλ+1(t)), (3.1)

both for the FM(m,m0, F ) and RM(m,π0, F ) models. This implies in particular

that FDR(SD(t)) ≤ FDR(SU(t)) for a concave F . Similar inequalities have

been obtained under a condition on the threshold collection t, rather than on

F : Theorem 4.3 of Finner, Dickhaus, and Roters (2009) and Theorem 3.10 of

Gontscharuk (2010) establish that, when k 7→ tk/k is nondecreasing, for any

λ ∈ {1, . . . ,m− 1},

FDR(SUDλ(t)) ≤ FDR(SU(t)), (3.2)

both for the FM(m,m0, F ) and RM(m,π0, F ) models. Though (3.1) and (3.2)

suggest that FDR(SU(t)) is generally larger than FDR(SD(t)), we show by a

counterexample in Section S1.1 of Blanchard et al. (2013) that this is cannot

hold in the absence of any assumptions on F or t.

We turn to the monotonicity of FDR(SUDλ(t), F ) in F . For the step-up,

Theorem 5.3 of Benjamini and Yekutieli (2001) states that F ≤ F ′ implies

FDR(SU(t), F ) ≤ FDR(SU(t), F ′) if k 7→ tk/k is nondecreasing, with the in-

equality reversed if k 7→ tk/k is nonincreasing. For the step-down and under the

RM(m,π0, F ) model, Theorem 4.1 of Roquain and Villers (2011a) states that the

Dirac-uniform configuration is an LFC under a (complicated) condition on t, that

is fulfilled in particular by the linear threshold collection tk = αk/m, α ∈ (0, 1)

over the class of concave c.d.f.s. These results thus establish the LFC prop-

erty of the DU(m,m0) distribution for SU and SD procedures under appropriate

assumptions (F concave and linear threshold family being sufficient).
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For SUD procedures that are neither step-up nor step-down (i.e. λ /∈ {1,m}),
the only comparison result we know of is asymptotic in m. Precisely, combin-

ing Theorem 4.3 of Finner, Dickhaus, and Roters (2009) and Lemma 3.7 of

Gontscharuk (2010), we obtain the following:

Theorem 1 (Gontscharuk (2010)). Let t be a threshold collection of the form

tk = ρ(k/m), where ρ satisfies (2.2) and (2.3). Let λm be a sequence such that

λm/m → κ ∈ [0, 1], and m0(m) a sequence such that m0(m)/m → ζ ∈ [0, 1].If

|SUDλm(t)|/m converges in probability as m → ∞ under the DU(m,m0(m))

distribution, then we have under the model FM(m,m0(m), F ), for any F ∈ F :

lim sup
m

{
FDR(SUDλm(t), F )− FDR(SUDλm(t), F ≡ 1)

}
≤ 0, (3.3)

for all ζ ∈ [0, 1] if κ > 0 or for all ζ ∈ [0, 1) if κ = 0.

These results leave open the question of (nonasymptotic) LFCs for SUD

procedures. Still, as a whole they seem to point towards DU(m,m0) as an LFC –

at least for a linear threshold family and concave F , thus prompting the following

conjecture that motivates the contributions of this paper:

Conjecture 1. For any m ≥ 2, the Dirac-uniform configuration is an LFC

for the FDR of any linear step-up-down procedure in the RM(m,π0, F ) and

FM(m,m0, F ) models, at least over the class of concave F .

4. Analysis of Conjecture 1

4.1. Disproving the conjecture with a numerical counterexample

The exact calculations described in Section 5 allow us the numerical compu-

tation of FDR(LSUDλ(t)), which leads to the following:

Numerical result. Put m = 10, α = 0.5, and take F0(x) = x. Then, for any

λ ∈ {4, 5, 6, 7} we have

FDR(LSUDλ, F ) > FDR(LSUDλ, F ≡ 1), (4.1)

under the FM(m,m0, F ) model with m0 = 7 and F = F0, and under the FM(m,

m0, F ) model with π0 = 7/10 and F = F0.

We display the corresponding values graphically in Figure 3 (top), along with

other FDR values computed for the Gaussian alternative c.d.f. F = Φ(Φ
−1

(·)−
µ), providing additional configurations for which (4.1) holds (e.g., µ = 1 and

λ = 5). The case F (x) = x corresponds to µ = 0, while F ≡ 1 corresponds to

µ = +∞. The results for the FM(m,m0, F ) (top left panel) and RM(m,π0, F )

(top right panel) models are qualitatively the same.
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Figure 2. An arrow “A → B” means “FDR(A) ≤ FDR(B)”. These results
hold for the fixed mixture (FM) model except when “RM” is written. The
brackets are a shortened reference to the corresponding literature, see main
text for more details.

While this disproves Conjecture 1, as expected from the asymptotic analysis

of Theorem 1, as m becomes larger, the amplitude of the phenomenon vanishes,

see Figure 3 (bottom).The next question is therefore a more precise quantification

of the difference of the two sides of (4.1).

Remark 1. The results were double-checked via extensive and independent

Monte-Carlo simulations in order to exclude the possibility that the reported

phenomenon could be an artifact produced by accumulated rounding errors in

the numerical computation.

Remark 2. For counterexample 4.1, we used the identity c.d.f. F0. By continuity

of the exact formulas obtained in Section 5 as a function of the values F (ti), we

conclude that the LFC conjecture is also false over any restricted subclass F ′ ⊂ F
as soon as F0 is an adherent point of F ′ (in the sense of weak convergence of

probability measures). Many standard classes have this property, such as the
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Fixed mixture m0/m = 0.7 Random mixture π0 = 0.7

Figure 3. The LFC of LSUD is not always DU. FDR(LSUDλ) as a function
of the order λ ∈ {1, . . . ,m}. Left: fixed mixture; right: random mixture.
The graphs were obtained under a one-sided Gaussian location model with
parameter µ. The target FDR level is α = 0.5.

one-sided location class F ′ = {Fµ : Fµ(x) = D(D
−1

(x) − µ), µ > 0} and the

scale class F ′ = {Fσ : Fσ(x) = 2D(D
−1

(x/2)/σ), σ > 1}, for which D is some

upper tail distribution function (see, e.g., Section 2.1 of Neuvial and Roquain

(2012) for details).

4.2. Nonasymptotic bound

We now derive a nonasymptotic version of Theorem 1. The main idea is

to consider the SUD procedure as a function operating on c.d.f.s, and develop a

perturbation analysis when the empirical c.d.f. of the p-values is δ-close to the
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population c.d.f. (which happens with large probability). In this perspective, we
introduce the following notation:

Definition 3. Let ρ : [0, 1] → [0, 1] be a continuous and nondecreasing function.
For any nondecreasing function G : [0, 1] → [0, 1], and ℓ ∈ [0, 1], define

U(ℓ,G) :=

{
min {u ∈ [ℓ, 1] : G(ρ(u)) ≤ u} if G(ρ(ℓ)) ≥ ℓ;

max {u ∈ [0, ℓ] : G(ρ(u)) ≥ u} if G(ρ(ℓ)) < ℓ.
(4.2)

Here, the infimum and supremum are well-defined, since the considered sets
are nonempty. Since G is nondecreasing, U(ℓ,G) is a fixed point of the function
G◦ρ (so that the infimum is indeed a minimum and the supremum, a maximum).

Denote by Ĝm(x) := m−1
∑m

i=1 1{pi ≤ x} the empirical c.d.f. of the p-values.
The following lemma establishes the close connection between the functional U
and the SUDλ procedure:

Lemma 1. For tk := ρ(k/m), it holds

U
(
λ

m
, Ĝm

)
≤ k̂

m
≤ U

(
λ

m
, (Ĝm +m−1) ∧ 1

)
, (4.3)

where k̂ is the number of hypotheses rejected by the SUDλ procedure (2.1).

The main result of this section is proved in Section 7.2:

Theorem 2. Let ρ : [0, 1] → [0, 1] satisfy (2.2)−(2.3) and let tk := ρ(k/m). For
ζ, δ ∈ (0, 1) arbitrary constants, let

u+δ := U
(
λ

m
, (GDU

ζ + δ) ∧ 1

)
and u−δ := U

(
λ

m
, (GDU

ζ − δ) ∨ 0

)
,

where GDU
ζ (x) := (1− ζ) + ζx; and, for any y ∈ (0, 1), let

ε(δ,m, ζ, y) :=

(
ρ(u+δ )− ρ(u−δ )

u+δ

)
ζ +

4ζ

1− ζ
e−2m(δ−y−1/m)2+(1−y/ζ)+ . (4.4)

Then, for any F ∈ F and λ ∈ {1, . . . ,m}, in the FM(m,m0, F ) model with
0 < m0 < m, we have

FDR(SUDλ(t),m0, F ) ≤ FDR(SUDλ(t),m0, F ≡ 1) + ε

(
δ,m,

m0

m
,
1

m

)
. (4.5)

In the RM(m,π0, F ) model, for m ≥ 3 we have

FDR(SUDλ(t), π0, F )≤FDR(SUDλ(t), π0, F ≡ 1)+ε
(
δ,m, π0,

√
logm

m

)
+

2

m
.

(4.6)
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Figure 4. Illustration of u+
δ and u−

δ for the LSUD and the SUD based on
the AORC. Here, the horizontal axis is on the “threshold scale” t = ρ(u).
ζ = 0.5; δ = 0.03. The area between (GDU

ζ − δ) ∨ 0 and (GDU
ζ + δ) ∧ 1 is

displayed in gray.

The bounds are valid for any δ ∈ (0, 1), so one can minimize (4.4) over δ to
get the sharpest bound. The first term in (4.4) is a bound on the perturbation
of the FDR compared to the population case when ∥Gm −GDU

ζ ∥∞ ≤ δ. The
second term bounds the probability of the complement of the latter event. As
m grows, δ = δm should be chosen to decrease to zero, while ensuring that the
second term remains negligible. We now analyze the behavior of the first term
as δ becomes small; and in Section 4.3, we give the resulting rate as m → ∞ and
δm is chosen appropriately.

As a first example, consider ρ(x) = αx (LSUD, Figure 4, left panel); then
u−δ = (1− ζ − δ)/(1− αζ)∨0 and u+δ = (1− ζ + δ)(1− αζ)∧1. Hence, (ρ(u+δ )−
ρ(u−δ ))ζ/u

+
δ ≤ (2αζδ)/(1− ζ + δ). As a result, (4.5) and (4.6) hold by replacing

the first term of ε(δ,m, ζ, y) by (2αζδ)/(1− ζ + δ).
Consider now

ρ(u) =
αu

1− u(1− α)
, that is, ρ−1(t) =

t

α+ t(1− α)
, (4.7)

with ζ > α. The rejection curve ρ−1 (Figure 4 right panel), is the asymptotically
optimal rejection curve (AORC), introduced by Finner, Dickhaus, and Roters
(2009). Here, equation (GDU

ζ + δ)(u) = ρ(u) defining u+δ is quadratic with two

roots in [0, 1]; let vδ be the largest one. If λ/m ≥ vδ, we have u+δ = vδ and
obtain a singular situation where the bound ρ(u+δ ) − ρ(u−δ ) remains large for
small δ (see Figure 4 for an illustration). This is related to the known fact that
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AORC-based SUD procedures become unstable if λ/m is too close to 1. In the
“regular” case where λ/m < vδ, u

+
δ is the smaller root; the two points ρ(u−δ )

and ρ(u+δ ) are converging to each other as δ becomes small and the bound given
in Theorem 2 vanishes. The exact expressions of u−δ , u

+
δ , and vδ in this case

can be derived by solving the corresponding quadratic equations. We then have
vδ = 1 − δα/(ζ − α) + O(δ2), u+δ = (1 − ζ)/(1 − α) + δζ/(ζ − α) + O(δ2), and
u−δ = (1 − ζ)/(1 − α) − δζ/(ζ − α) + O(δ2). Since ρ′((1 − ζ)/(1 − α)) = α/ζ2,
we have ρ(u+δ ) − ρ(u−δ ) = 2αδ/(ζ2 − αζ) + O(δ2). Assuming λ/m < vδ, we find
that the first term of ε(δ,m, ζ, y) is equivalent to [2α(1− α)/(ζ − α)(1− ζ)]δ as
δ tends to zero.

4.3. Convergence rate when m tends to infinity

We use Theorem 2 to obtain an explicit bound on the convergence rate of
the LHS expression in (3.3) for specific critical value functions.

Corollary 1. Let α ∈ (0, 1). Let tk := ρ(k/m), for either ρ(x) := αx or ρ given
by (4.7) (AORC). Consider the SUD procedure with threshold collection t =
(tk)1≤k≤m and of order λ = λm possibly depending on m. With (ζm)m ∈ (α, 1),
consider either the FM(m,m0, F ) model with m0 = ⌊ζmm⌋ or the RM(m,π0, F )
model with π0 = ζm. Assume [1/(1− ζm)]

√
(logm)/m = o(1); for the AORC

case, assume additionally lim infm ζm > α and [1/(1− λm/m)]
√

(logm)/m =
o(1). Then for any F ∈ F ,

(FDR(SUDλm(t), F )−FDR(SUDλm(t), F ≡ 1))+=O
( 1

1−ζm

√
logm

m

)
. (4.8)

The assumption ζm > α is not restrictive, since when ζm ≤ α, controlling
the FDR is a trivial problem: the procedure rejecting all the hypotheses has an
FDR (and even an FDP) smaller than ζm ≤ α. While limited for simplicity
to the linear and AORC rejection curves, the conclusion of Corollary 1 is more
informative than that of Theorem 1. For ζm = ζ ∈ (0, 1) fixed independently of
m, the convergence in (4.8) occurs at a parametric rate, up to a logm factor.
Furthermore, the multiplicative constant in the O(·)-notation can be derived ex-
plicitly using the arguments from the previous section. Finally, for ζm tending
to 1 slower than

√
(logm)/m (“moderately” sparse case), the bound still con-

verges to zero, though at a slower rate. The assumptions of Corollary 1 are more
restrictive than those of Theorem 1 however, excluding in particular the case
where ζm tends to 1 faster than

√
(logm)/m (“highly” sparse case).

5. Exact Formulas

We summarize here some formulas derived by Roquain and Villers (2011a,b)
to calculate the joint distribution of the number of false discoveries and the
number of discoveries, and additionally contribute a new recursion that makes
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these formulas fully usable in all considered models. These calculations were used

to state the numerical result of Section 4.1, and also provide an exact expression

for the FDP distribution.

5.1. A generalization of Steck’s recursion

We need as an auxiliary result the multidimensional cumulative distribution

function of order statistics in a two population model. Let k ≥ 0. For any

t = (t1, . . . , tk), let

Ψk(t) = Ψk(t1, . . . , tk) := P
[
U(1) ≤ t1, . . . , U(k) ≤ tk

]
, (5.1)

where (Ui)1≤i≤k is a sequence of i.i.d. random variables uniformly distributed on

(0, 1), and with Ψ0(·) ≡ 1. These functions can be evaluated using Steck’s recur-

sion Ψk(t) = (tk)
k −

∑k−2
j=0

(
k
j

)
(tk − tj+1)

k−jΨj(t1, . . . , tj) (Shorack and Wellner

(1986)).

We generalize this to the case of two populations. For 0 ≤ k0 ≤ k and any

threshold collection t = (t1, . . . , tk), let

Ψk,k0,F (t1, . . . , tk) := P
[
U(1) ≤ t1, . . . , U(k) ≤ tk

]
, (5.2)

where (Ui)1≤i≤k is a sequence of independent random variables, with (Ui)1≤i≤k0

uniformly distributed on (0, 1), and (Ui)k0+1≤i≤k having c.d.f. F . By convention,

Ψ0,0,F (·) = 1. To our knowledge, existing formulas for computing Ψk,k0,F have a

complexity exponential with k (Glueck et al. (2008)). We propose a substantially

less complex computation:

Proposition 1. For 0 ≤ k0 ≤ k,

Ψk,k0,F (t1, . . . , tk) = (tk)
k0F (tk)

k−k0 −
∑

0≤j0≤j≤k−2
j0≤k0

j−j0≤k−k0

(
k0
j0

)(
k − k0
j − j0

)

×(tk − tj+1)
k0−j0(F (tk)− F (tj+1))

k−k0−j+j0Ψj,j0,F (t1, . . . , tj). (5.3)

The above formula uses 00 := 1. This proposition is proved in Section 7.4.

The case k = k0 reduces to the standard Steck’s recursion.

5.2. Reformulating the result of Roquain and Villers (2011)

For any threshold collection t = (tk)1≤k≤m, any F ∈ F , and for any π0 ∈
[0, 1], 0 ≤ k ≤ m, 0 ≤ j ≤ k, set

Pm,π0,F (t, k, j) =

(
m

j

)(
m− j

k − j

)
πj
0π

k−j
1 (tk)

j(F (tk))
k−j
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×Ψm−k(1−G(tm), . . . , 1−G(tk+1)); (5.4)

P̃m,π0,F (t, k, j) =

(
m

j

)(
m− j

k − j

)
πj
0π

k−j
1 (1−G(tk+1))

m−k

×Ψk,j,F (t1, . . . , tk), (5.5)

where G(t) = π0t + (1 − π0)F (t). For any m0 ∈ {0, . . . ,m}, k ≥ 0, k ≤ m,
j ≤ m0, k − j ≤ m−m0, set

Qm,m0,F (t, k, j) =

(
m0

j

)(
m−m0

k − j

)
(tk)

j(F (tk))
k−j

×Ψm−k,m0−j,F (1− tm, . . . , 1− tk+1); (5.6)

Q̃m,m0,F (t, k, j) =

(
m0

j

)(
m−m0

k − j

)
(1− tk+1)

m0−j(1− F (tk+1))
m−m0−k+j

×Ψk,j,F (t1, . . . , tk), (5.7)

where F (t) = 1−F (1−t). The following theorem summarizes some of the results
of Roquain and Villers (2011a,b).

Theorem 3 (Roquain and Villers (2011)). Let R = SUDλ(t) be a step-up-down
procedure of order λ ∈ {1, . . . ,m} with a threshold collection t. Let V := R ∩
{1, . . . ,m0} be the set of false rejections. Then,

(i) In the RM(m,π0, F ) model, for any π0 ∈ [0, 1], F ∈ F , 0≤k≤m, 0≤j≤k,

P(|V | = j, |R| = k) =

{
Pm,π0,F (t ∧ tλ, k, j) for k < λ,

P̃m,π0,F (t ∨ tλ, k, j) for k ≥ λ.
(5.8)

(ii) In the FM(m,m0, F ) model, for any m0 ∈ {0, . . . ,m}, F ∈ F , 0≤ k ≤m,
0 ∨ (k −m+m0)≤j≤m0 ∧ k,

P(|V | = j, |R| = k) =

{
Qm,m0,F (t ∧ tλ, k, j) for k < λ,

Q̃m,m0,F (t ∨ tλ, k, j) for k ≥ λ.
(5.9)

The above formulas in combination with Proposition 1 allow the exact com-
putation of the full joint distribution of (|V |, |R|) in the considered models, there-
fore also of the distribution of the FDP (which equals |V |/(|R| ∨ 1)), and of the
FDR, its expectation. The computations were found to be numerically tractable
up to m of the order of several hundreds.

6. Discussion

6.1. Rejection curve calibration

We discuss some practical consequences of our work. For concreteness, we
consider the critical value function

ρβ(t) :=
tα

1 + β − t(1− α)
, (6.1)
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and the associated threshold collection tβ; α corresponds to the target FDR

and β is a tuning parameter. This has been proposed as an ad hoc adjustment

of the asymptotically optimal rejection curve (4.7) by Finner, Dickhaus, and

Roters (2009), further studied by Finner, Gontscharuk, and Dickhaus (2012).

The AORC itself, obtained for β = 0, does not ensure strict FDR control at level

α for any finite m. The question is how to choose β as small as possible while

ensuring control of the FDR at level α.

In the case of a step-up procedure based on this function, it is known that

the LFC is a Dirac-Uniform distribution (see Section 3). Therefore, to calibrate

β, we can apply the principle delineated at (1.1): find β(α) so that

sup
m0∈{0,...,m}

FDR(SU(tβ),m0, F ≡ 1) = α.

The above equation can be solved by numerical search; for each value of β the left-

hand side can be computed either by exact computation or by Monte-Carlo ap-

proximation. This approach has been advocated by Finner, Dickhaus, and Roters

(2009); Finner, Gontscharuk, and Dickhaus (2012) and Gontscharuk (2010), us-

ing the exact computations for the FDR of SUD procedures under Dirac-Uniform

distributions derived by Dickhaus (2008).

In the case of a more general step-up-down procedure, the exact LFC is not

known; moreover, we have checked (using a numerical counterexample) that the

negative result of Section 4.1 also holds for the critical value function ρβ. There-

fore, the approach delineated above cannot rigorously be applied for exact cali-

bration of β. There is then interest in alternative approaches based on an upper

bound on the FDR. Here there is the in-depth analysis of Finner, Gontscharuk,

and Dickhaus (2012) for SUD procedures, and the elegant result obtained by

Gavrilov, Benjamini, and Sarkar (2009), namely, that β ≡ βm = 1/m leads to

an FDR upper bounded by α for the special case of the step-down procedure

(λ = 1).

6.2. Limitations of FDR as a multiple testing criterion

While the FDR is widely used in practice, one can question how appropriate

it is to base the multiple type I error criterion solely on controlling the expectation

of the FDP. The results of Section 5 may be used to study numerically this issue

by exact computation of the point mass function of the FDP under arbitrary

configurations for the alternative. Based on this, we investigated the extent

to which the distribution of the FDP concentrates around its expectation for a

simple Gaussian location model with parameter µ. A graphical representation of

this distribution in some specific cases is reported in Blanchard et al. (2013).
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We have found that the distribution of the FDP is not concentrated around
the corresponding FDR if the effect size µ is close to zero (weak signal) or if the
proportion π0 of true null hypotheses is close to 1 (sparse signal). Thus, even
though joint independence of the p-values holds, controlling the FDR alone does
not guarantee a small FDP in these cases. Furthermore, when µ and π0 are fixed
with m, such a spread of FDP distribution can arise when adding dependencies
between test statistics, see Finner, Dickhaus, and Roters (2007); Delattre and
Roquain (2011).

To alleviate such shortcomings, control of the false discovery exceedance
(i.e., of the probability that the FDP exceeds a given threshold) has recently
been proposed, see Farcomeni (2008) for a review. This brings the question of
the corresponding LFC: are Dirac-uniform configurations least favorable for, e.g.,
P(FDP(LSU) > x)? We have found numerically that this is not the case for any
x. Hence, finding (possibly approximate) LFCs for the false discovery exceedance
remains an open problem.

7. Proofs

7.1. Proof of Lemma 1

Let Ĝ′
m = (Ĝm +m−1) ∧ 1. Note that for any k ∈ {1, . . . ,m}, p(k) ≤ tk is

equivalent to Ĝm(ρ(k/m)) ≥ k/m. We first analyze the case where p(λ) > tλ,

that is, Ĝm(ρ(λ/m)) < λ/m, and SUDλ behaves as a step-up, so that:

k̂

m
= max

{ k

m
∈ {0, . . . , λ

m
} : Ĝm

(
ρ
( k

m

))
≥ k

m

}
= max

{
u ∈

[
0,

λ

m

]
: Ĝm(ρ(u)) ≥ u

}
= U

( λ

m
, Ĝm

)
,

where the second equality holds because U(ℓ, Ĝm), being a fixed point of the
function Ĝm ◦ ρ, belongs to {0, 1/m, . . . ,m/m}. This implies (4.3).

Assume now p(λ) ≤ tλ, that is, Ĝm(ρ(λ/m)) ≥ λ/m, and SUDλ behaves as

a step-down. First, suppose k̂ < m holds. Then, on the one hand,

k̂ + 1

m
=min

{ k

m
∈
{λ+ 1

m
, . . . ,

m

m

}
: Ĝm

(
ρ
( k

m

))
<

k

m

}
=min

{ k

m
∈
{ λ

m
, . . . ,

m

m

}
: Ĝm

(
ρ
( k

m

))
<

k

m

}
=min

{ k

m
∈
{ λ

m
, . . . ,

m

m

}
: Ĝ′

m

(
ρ
( k

m

))
≤ k

m

}
, (7.1)

because mĜm(ρ(k/m)) is an integer. On the other hand, since Ĝ′
m(ρ(λ/m)) ≥

λ/m and mU(λ/m, Ĝ′
m) is an integer, we have

U
( λ

m
, Ĝ′

m

)
=min

{
u ∈ [

λ

m
, 1] : Ĝ′

m

(
ρ(u)

)
≤ u

}
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=min
{
u ∈

{ λ

m
, . . . ,

m

m

}
: Ĝ′

m

(
ρ(u)

)
≤ u

}
. (7.2)

Combining (7.1) and (7.2), we conclude that (k̂+1)/m = U(λ/m, Ĝ′
m), and (4.3)

holds. Finally, if k̂ = m, then for any k/m ∈ {λ/m, . . . ,m/m} we have

Ĝm(ρ(k/m)) ≥ k/m. Hence, for all k/m ∈ {λ/m, . . . , (m− 1)/m}, Ĝ′
m(ρ(k/m))

> k/m which entails U(λ/m, Ĝ′
m) = 1. Hence, k̂/m = U(λ/m, Ĝ′

m), also imply-

ing (4.3).

7.2. Proof of Theorem 2

Consider first the FM(m,m0, F ) model. We establish the following slightly

more general inequality: for arbitrary δ, ζ ∈ (0, 1), with ν0 = maxk∈{m0−1,m0}
{|k/m− ζ|} ∈ [0, 1], we have

FDR(SUDλ(t),m0, F ) ≤ FDR(SUDλ(t),m0, F ≡ 1) +
m0

mζ
ε (δ,m, ζ, ν0) . (7.3)

Inequality (4.5) is then obtained for ζ = m0/m and ν0 = 1/m.

Preliminaries. With Ĝm(x) the empirical p-value c.d.f., and GDU
ζ (x) := (1 −

ζ) + ζx, put û := k̂/m, where k̂ is defined by (2.1). Definition 3 implies that if

G,G′ are two nondecreasing functions such that ∀x ∈ [0, 1], G(x) ≥ G′(x), then

U(λ/m,G) ≥ U(λ/m,G′). Based on the bound (4.3), we deduce that ∀δ ∈ (0, 1),{
sup

x∈[0,1]
|Ĝm(x)−GDU

ζ (x)| ≤ δ − 1

m

}
⊂

{
u−δ ≤ û ≤ u+δ

}
. (7.4)

We now assume the DU(m, k) model. In this case, we have (a.s.) pk′ = 0 for k′ ≥
k + 1, so that Ĝm = (m− k)/m+ k/mĜk, implying in turn GDU

ζ (x)− Ĝm(x) =

(k/m − ζ)(1 − Ĝk(x)) − ζ(Ĝk(x) − x). For any ν > 0 satisfying |k/m− ζ| ≤ ν,

we deduce from (7.4) the following relation, which is valid up to a negligible set:

Ωδ(k) :=
{

sup
x∈[0,1]

|Ĝk(x)− x| ≤ ζ−1(δ − ν − 1

m
)
}
⊂

{
u−δ ≤ û ≤ u+δ

}
. (7.5)

Under the DU(m, k) model, Ĝk is the empirical c.d.f. of k i.i.d. uniform variables.

Using the DKW inequality with Massart’s (1990) optimal constant, we get

PDU(m,k)[(Ωδ(k))
c] ≤ 2 exp

{
−

2k (δ − ν − 1/m)2+
ζ2

}
≤ 2 exp

{
− 2m

(
δ − ν − 1

m

)2

+
(1− ν

ζ
)+

}
, (7.6)

because k/m ≥ ζ − ν and ζ ≤ 1.
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Upper bound. Let q(x) = ρ(x)/x when x ∈ (0, 1] and q(0) = limx→0+ ρ(x)/x

(this limit exists since q is nondecreasing). Applying Theorem 4.3 of Finner,

Dickhaus, and Roters (2009), we obtain

FDR(SUDλ(t),m0, F )

≤ m0

m
EDU(m,m0−1)[q(û)]

≤ m0

m

ρ(u+δ )

u+δ
+

m0

m
PDU(m,m0−1)[(Ωδ(m0 − 1))c],

≤ m0

m

ρ(u+δ )

u+δ
+

m0

m
2 exp

{
− 2m

(
δ − ν − 1

m

)2

+
(1− ν

ζ
)+

}
, (7.7)

using (7.5)−(7.6) with k :=m0−1 and for any ν>0 satisfying ν≥|[(m0−1)/m]−ζ|.

Lower bound. In the model DU(m,m0) with m0 < m, we have û > 0 a.s. and

thus, using (7.5) (with k := m0),

FDR(SUDλ(t),m0, F ≡ 1) =
m0

m
EDU(m,m0)

(Ĝm0(ρ(û))

û

)
≥ m0

m
EDU(m,m0)

(Ĝm0(ρ(û))

û
1{Ωδ(m0)}

)
.

Now, the latter is larger than or equal to

m0

m
EDU(m,m0)

(Ĝm0(ρ(u
−
δ ))

u+δ
1{Ωδ(m0)}

)
≥ m0

m

ρ(u−δ )

u+δ
− m0

m

1

1− ζ
PDU(m,m0) [(Ωδ(m0))

c] ,

because u+δ ≥ 1− ζ. From (7.6), we obtain the lower bound

FDR(SUDλ(t),m0, F ≡ 1)

≥ m0

m

ρ(u−δ )

u+δ
− m0

m

1

1− ζ
2 exp

{
− 2m

(
δ − ν − 1

m

)2

+
(1− ν

ζ
)+

}
, (7.8)

for any ν > 0 satisfying ν ≥ |m0/m− ζ|. Finally, (7.7) and (7.8) entail (7.3).

Proof for random mixture model. In the RM(m,π0, F ) model, conditional

on m0, we recover the FM(m,m0, F ) model and (7.3) holds. Taking ζ = π0,

the distribution of m0 is binomial with parameters (m, ζ). In particular, ν0 is

random. However, we have for any γ ∈ (0, 1):

E[FDP(SUDλ(t),m0)] ≤ E [FDP(SUDλ(t),m0)1{ν0 ≤ γ}]
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+P
(∣∣∣m0

m
− π0

∣∣∣ > γ − 1

m

)
. (7.9)

Using Hoeffding’s (1963) inequality, we can write

P
(∣∣∣m0

m
− π0

∣∣∣ > γ − 1

m

)
≤ 2e−2m(γ−1/m)2+ . (7.10)

We now combine (7.9) and (7.10) with (4.5), and take γ :=
√

logm/m ≥√
logm/2m+ 1/m as soon as m ≥ 3. This finishes the proof.

7.3. Proof of Corollary 1

Consider the FM(m,m0, F ) model withm0 < m (the casem0 = m is trivial).

Consider δm ∈ (2/m, 1) satisfying for large m,

2
(
1− 1

mζm

)(
δm − 2

m

)2
=

logm

m
, (7.11)

so that e−2m(δm−2/m)2+(1−1/(mζm))+ = 1/m for large m. Since ζm > α > 0 by

assumption, we have δm ≍
√
(logm)/m. From Theorem 2, it is sufficient to

prove that
ρ(u+δm)− ρ(u−δm)

u+δm
= O

( δm
1− ζm

)
.

From the examples of Section 4.2, this holds for the linear critical value function.

This also holds for the AORC as soon as λm/m < vδm for large m and 1/(ζm −
α) = O(1), which is the case by assumption (the formulas provided at the end of

Section 4.2 are also valid when ζ depends on m, because the O(·) are uniform in

ζ, for ζ bounded away from α). The proof in the RM(m,π0, F ) model is similar.

7.4. Proof of Proposition 1

We follow the proof of the “regular” Steck’s recursion, see Shorack and Well-

ner (1986) p. 366–369. By using the convention U(0) = t0 = 0 and by considering

the smallest j for which U(j+1) > tj+1, we can write

P(U(k) ≤ tk)− P
[
U(1) ≤ t1, . . . , U(k) ≤ tk

]
=

k−2∑
j=0

P(∀i ≤ j, U(i) ≤ ti, U(j+1) > tj+1, Uk ≤ tk)

=
k−2∑
j=0

∑
X⊂{1,...,k},|X|=j

P(∀i ≤ j, U(i) ≤ ti, ∀i /∈ X, tj+1 ≤ Ui ≤ tk).
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Hence, if U(i:X) denotes the ith smallest member of the set {Ui, i ∈ X}, we obtain

(tk)
k0F (tk)

k−k0 −Ψk(t1, . . . , tk)

= P(U(k) ≤ tk)− P
[
U(1) ≤ t1, . . . , U(k) ≤ tk

]
=

k−2∑
j=0

∑
X⊂{1,...,k},|X|=j

P(∀i ≤ j, U(i:X) ≤ ti)P(∀i /∈ X, tj+1 ≤ Ui ≤ tk)

=
k−2∑
j=0

j∑
j0=0

∑
X⊂{1,...,k},|X|=j

1{|X ∩ {1, . . . , k0}| = j0}Ψj,j0,F (t1, . . . , tj)

×P(∀i /∈ X, tj+1 ≤ Ui ≤ tk)

=
∑

0≤j0≤j≤k−2
j0≤k0

j−j0≤k−k0

(
k0
j0

)(
k − k0
j − j0

)
Ψj,j0,F (t1, . . . , tj)

×(tk − tj+1)
k0−j0(F (tk)− F (tj+1))

k−k0−j+j0 .
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