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Abstract: Real-time monitoring of blood glucose density is essential for managing

diabetes. Continuous glucose monitoring (CGM) systems have been developed to

help address this need. Many CGM systems are built around an electrochemi-

cal biosensor that may be inserted into the subcutaneous tissue of an individual

and allows for nearly continuous monitoring of an electrical current generated by

glucose molecules near the sensor site. This electrical current is correlated with

blood glucose density and, in principle, provides a means for real-time monitoring

of blood glucose density. One of the major challenges in CGM is developing algo-

rithms for converting sensor measurements into accurate estimates of blood glucose

density in real time. In this paper, we describe fundamental statistical problems

that arise in developing CGM algorithms. We propose statistical algorithms based

on Kalman filtering, nonparametric empirical Bayes methods, and ideas from se-

quential change-point detection, and apply them to a very rich CGM dataset. The

performance of our methods compares favorably to that of an existing widely used

CGM algorithm. A simulation study sheds light on other interesting and important

aspects of the problem. More broadly, this paper highlights an important appli-

cation that has received little attention in the statistics literature and our results

suggest that the appropriate application of statistical methodology may lead to

significant contributions in diabetes technology research.

Key words and phrases: Diabetes technology, Kalman filtering, nonparametric em-

pirical Bayes, sequential methods

1. Introduction

The U.S. Centers for Disease Control and Prevention estimate that over 25

million people in the U.S. have diabetes mellitus (U.S. Department of Health and

Human Services, Centers for Disease Control and Prevention (2011)). Further-

more, according to the same source, in the U.S.,

Diabetes is the leading cause of kidney failure, nontraumatic lower-limb amputa-

tions, and new cases of blindness among adults... [it] is a major cause of heart

disease and stroke... [and it] is the seventh leading cause of death.

http://dx.doi.org/10.5705/ss.2012.070s
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Diabetes results from defects in an individual’s ability to produce or use insulin,

and is characterized by persistent high blood glucose levels. There is no cure for

diabetes, but substantial progress has been made in developing tools and tech-

niques for managing the disease. Primary among these tools was the invention

of injectable insulin 90 years ago (Bliss (2007)). More recently, insulin pumps,

multiple injection regimens, and various insulin analogs have been introduced to

help diabetes patients control their blood glucose levels and simplify their health

maintenance regimens. The effectiveness of tools like these for treating dia-

betes has been validated in landmark studies, such as the Diabetes Control and

Complications Trial (DCCT), which found that intensive insulin treatment can

substantially reduce risks related to kidney failure and blindness that are associ-

ated with type 1 diabetes (Reichard, Nilsson, and Rosenqvist (1993)). However,

the DCCT also found that implementing more aggressive methods for glycemic

control increased the risk for severe hypoglycemia (episodes of dangerously low

blood glucose levels) by up to 200%.

A key to successfully utilizing any of the previously mentioned tools for

glycemic control, which is highlighted by the results of the DCCT, is the avail-

ability of reliable real-time measurements of a patient’s blood glucose density.

The development of electrochemical glucose biosensors that may be inserted into

a patient’s subcutaneous tissue provides a means for continuously monitoring

blood glucose density (Klonoff (2005); Wang (2008)). Ultimately, this technol-

ogy (continuous glucose monitoring, or CGM), when used in conjunction with

an insulin pump, could lead to the widespread adoption of the “artificial pan-

creas” – a closed-loop system for glycemic management, wherein glucose levels

are tracked by CGM and the results are used to determine the rate at which

insulin should be pumped into the body (Bequette (2005); Klonoff (2007)). Such

a device has the potential to provide life-altering benefits to some of the millions

of diabetics in the U.S. and throughout the world.

Though a great deal of progress towards the artificial pancreas has been

made, major challenges remain (Hovorka (2006); Harvey et al. (2010)). Many of

the most significant challenges are statistical or algorithmic in nature. For in-

stance, accurate CGM calibration algorithms for estimating blood glucose den-

sity in real-time are essential for the viability of an artificial pancreas (Kowalski

(2009)). Furthermore, given the many sources of noise and variability that exist

in the human body and CGM, it is evident that advanced statistical methods

will play a critical role in the development of these algorithms. In this paper, we

develop a rigorous statistical framework for continuous blood glucose monitoring

and show that methods derived within this framework can lead to significant im-

provements in the overall accuracy of CGM algorithms. These methods provide

online estimates of blood glucose density that, in principle, may be used to make

real-time decisions relating to glucose management.
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Motivated by biological and physical models for blood glucose biosensors

and continuous glucose monitoring, we propose and implement several CGM

algorithms. The Kalman filter (Kalman (1960)) plays a key role in most (but

not all) of the algorithms proposed in this paper. More broadly, all of the methods

described here are closely connected with Bayesian methods and hidden Markov

models (HMMs). Ideas from the theory of sequential change-point detection

(Siegmund (1985); Lai (1998)) play a key role in our top performing algorithms.

In addition to conducting extensive simulation studies, our statistical methods

have been developed, tested, and evaluated with the aid of the “Star 1” dataset

that is described in Section 2.2. Our analysis shows that the methods described in

this paper deliver substantial improvements in CGM accuracy when compared to

an existing widely-used algorithm. Additionally, and perhaps more importantly,

the methods proposed here may help lay the groundwork for future work on

statistical problems in glycemic control.

The rest of this paper is structured as follows. In Section 2, we describe more

details of the CGM systems studied in this paper and the Star 1 dataset. In Sec-

tion 3, we discuss mathematical and statistical models relating blood glucose

density to sensor measurements and the data typically available for developing

CGM algorithms. This provides a statistical framework for the development of

sensor calibration algorithms. As initially formulated, the models are quite gen-

eral. In order to implement effective, statistically sound calibration algorithms

based on these models, further specification is required. In Sections 4-5, we dis-

cuss how different distributional assumptions for the model in Section 3 lead to

different sensor calibration algorithms and describe several algorithms in detail.

Statistical inference and prediction intervals for estimated blood glucose density

are discussed in Section 6. Section 7 contains the results of a simulation study.

Results from our analysis of the Star 1 dataset are reported in Section 8. Section

9 contains a concluding discussion.

2. Additional Background

2.1. Blood glucose biosensors

An electrochemical blood glucose biosensor is at the core of most CGM

systems currently in use. These sensors, which are inserted into subcutaneous

tissue, consist of a single electrode coated with an enzyme which reacts with

glucose, such as glucose oxidase (Wang (2008)). When a glucose molecule from

the interstitial fluid that permeates subcutaneous tissue contacts the electrode,

a current is generated in the sensor. Furthermore, the current generated in the

sensor increases with the rate at which glucose molecules contact the sensor. By

measuring the current, one obtains a surrogate for blood glucose density: If the

blood glucose density is high, the density of glucose molecules in the interstitial
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fluid near the sensor will likely be high, leading to a high current measurement
in the sensor. The association between blood glucose density and current mea-
surements in the sensor explains the usefulness of the sensor for measuring blood
glucose density. However, calibrating the sensor, i.e., converting the current
measurements into more interpretable and accurate measures of blood glucose
density, is essential for clinical relevance. Indeed, this is the central problem of
this paper and a significant obstacle to creating an effective artificial pancreas.

In a review article on blood glucose biosensors, Wang (2008) mentions that
in addition to glucose, other electroactive substances (such as ascorbic and uric
acid) may be found in the interstitial fluid and contribute to current generated in
the bionsensor. This is a potential source of noise when using these biosensors to
measure blood glucose density. However, extensive research has been conducted
to minimize this type of noise and increase selectivity of blood glucose biosen-
sors. Indeed, according to Wang (2008), “remarkably high selectivity... has been
obtained.”

2.2. The Star 1 dataset

In the Star 1 study (Hirsch et al. (2008)) 137 subjects with type 1 diabetes
were followed for 6 months, on average, while using a CGM device (developed
by Medtronic MiniMed). For each patient in the study, an electrical current
measurement from the blood glucose sensor was recorded every 5 minutes; the
measurement (in nano amps, nA) at time t is denoted ISIG(t) throughout this
paper (ISIG is an abbreviation for interstitial signal; Table 1 contains a list
of all abbreviations commonly used by us). Less frequently – approximately
every 6 hours, on average – patients in the study recorded a more accurate
measure of blood glucose density, obtained via fingerstick (a more invasive and
time consuming, yet prevalent, procedure where the patient pricks their finger
to obtain a small droplet of blood; the blood droplet is then analyzed by a
blood glucose meter). The fingerstick blood glucose measurement (in mg/dL)
at time t is denoted FS = FS(t). These measurements are entered into the
CGM system and are essential for calibrating CGM algorithms. Ultimately,
for an artificial pancreas, one hopes to minimize the number and frequency of
fingersticks required for accurate calibration of CGM algorithms. However, we
do not address this further.

To summarize, and introduce some additional notation, the observed data
consists of discretely sampled observations from ISIG(t) and FS(t):

{ISIG(τ̃k)}∞k=0 and {FS(τk)}∞k=0,

where the sequences of times {τ̃k} and {τk} are assumed to be increasing, and
{τk} ⊆ {τ̃k} (i.e., ISIG(t) is sampled more frequently that FS(t)). We take
ISIGk = ISIG(τk) and FSk = FS(τk).
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Table 1. Commonly used abbreviations.

Abbreviation Definition
CGM An abbreviation (i) for the general phrase “continuous glucose mon-

itoring” and (ii) for the estimated blood glucose density (mg/dL)
derived from a previously existing proprietary algorithm. It will be
clear from the context which definition is being referenced.

ISIG Interstitial signal (nA). The current measured by a CGM device.
The goal of CGM algorithms discussed here is to convert ISIG into
an accurate estimate of blood glucose density.

FS Fingerstick glucose density (mg/dL). Fingerstick measurements of
blood glucose density. These measurements are taken intermittently
(approximately every 6 hours by patients in the Star 1 study) and
used to calibrate CGM algorithms. FS measurements are taken to
be the gold standard for blood glucose density in our analysis of the
Star 1 dataset.

IG Interstitial glucose density (mg/dL). The glucose density in intersti-
tial fluid near the blood glucose biosensor. ISIG increases with IG.

BG Blood glucose density (mg/dL). The primary goal of the methods
considered in this paper is to accurately estimate BG. Glucose dif-
fuses from the blood into interstitial fluid, where it may be measured
by the blood glucose biosensor.

MARD Mean absolute relative difference. Defined in (7.3). A measure of
accuracy for CGM algorithms.

The primary sources of information for developing CGM algorithms are FS

and ISIG. Previous FS and ISIG values along with the current ISIG value

are used to estimate the current blood glucose density. However, other useful

information available in the Star 1 dataset includes (i) sensor identification codes

and (ii) the output of a previously existing, proprietary CGM algorithm for

estimating blood glucose density in real-time. Due to biofouling and other issues,

the electrochemical sensor in a CGM system must be replaced periodically (in

the Star 1 dataset, every 2.7 days on average). The sensor ID codes allow one to

monitor when sensors are replaced and to control for effects of sensor degradation

and variability in our algorithms. The output of the previously existing CGM

algorithm, denoted CGM(t), provides a standard of comparison by which we can

judge the performance of the methods proposed here. Fingerstick measurements

FS(t), ISIG(t), and CGM(t) are plotted for a representative subject in Figure

1, along with indicators for when sensors were replaced.

3. A Model for Blood Glucose Biosensors and Continuous Glucose

Monitoring

The electrical current ISIG(t) is correlated with the glucose density in inter-
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Figure 1. FS(t), ISIG(t), CGM(t), and sensor replacement times for Subject
5 in Star 1 dataset.

Figure 2. FS vs. ISIG for two subjects from the Star-1 study. Sample
correlation: 0.66 (Subject 19); 0.76 (Subject 35).

stitial fluid near the sensor site at time t, which we denote by IG(t). Empirical

and theoretical evidence suggests that there is an approximately linear relation-

ship between ISIG(t) and IG(t) (Koschwanez and Reichert (2007); Heller and

Feldman (2008)). This approximation is supported by Figure 2, which contains

plots of {(ISIGk,FSk)} for two subjects in the Star 1 study (here, FSk is used

as a surrogate for IG(τk) – this is discussed further below). Our basic model
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relating ISIG(t) and IG(t) is

ISIG(t) = α(t)IG(t), (3.1)

where α(t) is a slowly varying stochastic process. There is some debate about
whether an intercept term should be included in (3.1) (Steil et al. (2005); Wang
(2008)). In other words, whether (3.1) or ISIG(t) = α0(t) + α1(t)IG(t) for
some slowly varying processes α0(t) and α1(t) is the more appropriate. In our
investigations, we have not found a substantial benefit by including an intercept
term. Thus, for simplicity, we prefer (3.1). However, all of the methods discussed
below can easily be extended to models with an intercept term. Because of issues
like sensor degradation, it is known that the relationship between ISIG(t) and
IG(t) varies with time. Typically, this variation occurs slowly over a relatively
large time scale. Allowing for a time-varying process α(t) is a natural way to
account for this time-dependent relationship and helps provide the foundation
for a comprehensive statistical framework for the problem. Moreover, we have
found that this approach may lead to substantial improvements in the overall
performance of CGM algorithms.

Equation (3.1) describes the relationship between ISIG(t) and IG(t). On
the other hand, we are primarily interested in blood glucose density at time
t, BG(t), which is never directly observed. Instead, fingerstick measurements
of blood glucose density FS(t) are observed at discrete times t = τk. These
measurements are known to be error prone (Khan et al. (2006)), however, they
are generally more reliable than CGM measurements and are the gold standard
measurement for blood glucose density in our analysis of the Star 1 data. This
suggests the relationship

FSk = BGk + ϵk, (3.2)

where BGk = BG(τk) and ϵ1, ϵ2, . . . are mean 0 iid error terms. There have
been multiple studies about potential biases in FSk (Brunner et al. (1998); Co-
hen et al. (2006); Khan et al. (2006); Kristensen et al. (2008)). Overall, the
results of these studies seem inconclusive (Mahoney and Ellison (2007)). How-
ever, one might consider incorporating these potential biases in FSk into future
CGM calibration algorithms (i.e., allow for the possibility that E(FSk) ̸= BGk).
Equations (3.1)−(3.2) link the observed quantities ISIG(t) and FS(t) to the un-
observed quantities IG(t) and BG(t). It remains to describe the relationship
between IG(t) and BG(t). There is a well-known time lag associated with the
diffusion of blood glucose molecules into interstitial fluid (Steil et al. (2005); Wei
et al. (2010)). This implies that there may be a lag between interstitial glu-
cose density and the actual blood glucose density. Steil et al. (2005) proposed a
two-compartment model to quantify this lag. A simple variant of this model is

IG(t) =

∫ ∞

0
BG(t− u)ρ−1e−u/ρ du, (3.3)
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where ρ ≥ 0 is a constant related to the duration of the time lag. Differentiating

the previous integral equation yields BG(t) = IG(t) + ρIG′(t). In order to

account for variability in the diffusion rate ρ, we replace it with a slowly varying

process ρ(t) to obtain

BG(t) = IG(t) + ρ(t)IG′(t). (3.4)

Equations (3.1)−(3.4) determine a model that specifies the relationship be-

tween the observed data {ISIG(τ̃k)}, {FS(τk)} and the unknown quantity to be

estimated, BG(t). Given this model, the statistical problem is to devise methods

for estimating the blood glucose density BG(t) using the observed data up to

time t, Ft− = σ({ISIG(τ̃k); τ̃k < t}, {FS(τk); τk < t}), and the current sensor

measurement ISIG(t). In other words, our goal is to develop methods for online

estimation of BG(t). Additional information, such as sensor age, may also be

included in Ft−. This is discussed further in the next section, where we describe

additional distributional assumptions for (3.1)−(3.4) that provide motivation for

several novel, high-performing blood glucose estimation methods.

4. Prediction Methods: ρ(t) ≡ 0

To simplify things, our initial working assumption is that BG(t) does not in

fact depend on IG′(t), i.e., ρ(t) ≡ 0. Thus, (3.1)−(3.2) and (3.4) imply

FSk = βkISIGk + ϵk, (4.1)

where βk = β(τk) and the process β(t) captures the evolution of the relation-

ship between FSk and ISIGk over time. Despite scientific evidence that suggests

IG′(t) is related to BG(t) and, thus, the model (4.1) is biased, we believe that

(4.1) is a reasonable starting point for our analysis. Indeed, given the noise inher-

ent in CGM data, it is challenging to obtain reliable estimates of the derivative

IG′(t) (or proxies for IG′(t); this is addressed in more detail in Section 5 below)

and it seems sensible to begin with a simpler model.

The absence of IG′(t) in (4.1) simplifies matters considerably and, as seen in

Section 8, reasonable blood glucose estimation methods can be developed under

this assumption. In Sections 4.1 and 4.2 we discuss two approaches to esti-

mating BG(t). The first is highly parametric – strict distributional (normality)

assumptions are made. Though these assumptions can not be strictly true in

any given real-world situation, the Kalman filtering algorithms derived under

these assumptions seem to perform quite well in practice (see Section 8). In

our view, the usefulness of these methods is evidenced by their strong practical

performance, despite potential discrepancies in the distributional assumptions.

However, in practice, the data should be monitored for significant deviations
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from distributional assumptions in relationship to their historical behavior, as

this can be indicative of performance break-downs. In Section 4.2 we discuss

a more nonparametric approach designed to target sensor degradation that may

not be adequately captured by the Kalman filtering methods. Additional com-

ments on the methods proposed in Sections 4.1-4.2 may be found in Section

4.3.

4.1. Kalman filtering

Referring to (4.1), assume in this section that ϵ1, ϵ2, . . . ∼ N(0, σ2) are iid

and let W (·) be an independent standard Brownian motion. Assume further that

the errors ϵj and W (·) are independent of ISIG(·), and that β(t) = β0+vσW (t),

where σ, v > 0, β0 ∈ R are constant. In practice, v is very small and β(t)

resembles a slowly-varying process, despite the fact that it is non-stationary.

Under these assumptions, (4.1) can be rewritten as

FSk = βkISIGk + ϵk,

βk = βk−1 + δk,
(4.2)

where δk = βk−βk−1 ∼ N(0,∆kv
2σ2) is independent of βk−1 and ∆k = τk−τk−1.

To estimate BG(t), given Ft− and ISIG(t), take

B̂G(t) = β̂(t)ISIG(t),

where β̂(t) = E[β(t)|Ft−] is the conditional expectation of β(t) given Ft− (the

posterior mean at time t). Notice that B̂G(τk) = β̂(τk)ISIGk = E[FSk|Fτk−,

ISIGk]. In other words, the expected fingerstick value at time τk (conditional

on the observed data and ISIGk) is used to predict the blood glucose density

at time tk. Though FSk is a corrupted measurement of blood glucose density

(3.2), the fingerstick measurements are, in the present context, the gold standard

measurement for blood glucose density. Note that B̂G(t) is the minimum mean

squared error predictor for FS(t).

The model (4.2) is a dynamic linear model (West and Harrison (1997)) and

Kalman filtering can be used to compute E[β(t)|Ft−]. Indeed, let β̂k = β̂(τk) =

E[βk|Fτk−]. Then for τk < t ≤ τk+1, β̂(t) can be efficiently computed by the

recurrence

β̂(t) = β̂k+1 =
[∆kv

2 + v̂2k]FSkISIGk + β̂k

[∆kv2 + v̂2k]ISIG
2
k + 1

, (4.3)

v̂2k+1 =
∆kv

2 + v̂2k
[∆kv2 + v̂2k]ISIG

2
k + 1

, (4.4)

where β̂0 = β0 and v̂0 = 0. The auxiliary quantity v̂2k used to calculate β̂(t) in

(4.3) is the conditional variance, v̂2k = Var(βk|Fτk)/σ
2, where Ft = σ({ISIG(τ̃k);
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τ̃k ≤ t}, {FS(τk); τk ≤ t}). Note that in (4.3)−(4.4) if τk+1−τk is very large, then

prior information contained in β̂k and v̂k is weighted less heavily in computing

β̂k+1 and v̂k+1. One may estimate β0 and v using maximum likelihood with

historical data, or by using a training dataset and tuning against some criteria,

such as the mean absolute relative difference (MARD), defined below at (7.3).

Continuous glucose monitoring algorithms based on the Kalman filter rela-

tionship (4.3)−(4.4) perform reasonably well when applied to the Star 1 dataset

(details found in Section 8 below). However, further improvement may be had

by incorporating information about the age of the blood glucose sensor into the

model. In practice, blood glucose sensors must be replaced periodically (approx-

imately every 3 days in the Star 1 study) because of biofouling and other issues.

Let Tj be the time at which the patient begins using the j-th blood glucose sen-

sor, j = 1, 2, . . .. Then 0 = T0 < T1 < T2 < · · · . Now define Cj(t) = TjI{Tj < t}
and let

Gt− = σ({ISIG(τ̃k; τ̃k < t}, {FS(τk); τk < t}, {Cj(t); j = 1, 2, . . .}).

Assume that {T1, T2, . . .} ⊆ {τ1, τ2, . . .} (i.e., a fingerstick measurement is taken

whenever a new sensor is inserted, as is typically the case in the Star 1 dataset)

and that

β(t) =

∞∑
j=0

I{Tj ≤ t < Tj+1}β(j)((t− Tj) ∨ 0), (4.5)

for processes β(j)(t), j = 0, 1, 2, . . ., defined by

β(j)(t) = β
(j)
0 + vσW (j)(t),

β
(j)
0 = β0(Tj) = β0 + v0σW̃ (Tj),

where W̃ (t),W (0)(t),W (1)(t),W (2)(t), . . . are iid standard Brownian motions and

v, v0 > 0 are constants. Then the process β(t) essentially “restarts” whenever a

new sensor is inserted. The constants vσ and v0σ may be viewed as the “within

sensor” and “between sensor” volatility, respectively; both are assumed to be

constant and, in practice, are small. Similar to the above method that ignores

sensor replacement, we use an estimator of the form B̂G(t) = β̂(t)ISIG(t), where

β̂(t) is computed using a simply modified version of (4.3)−(4.4). In particular, if

τk < t ≤ τk+1 and τk ̸= Tj , then (4.3)−(4.4) are used to compute β̂(t); if, on the
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other hand, τk = Tj for some j, then

β̂(t) = β̂k+1 =
[∆kv

2 + (v̂
(j)
0 )2]FSkISIGk + β̂

(j)
0

[∆kv2 + (v̂
(j)
0 )2]ISIG2

k + 1
, (4.6)

v̂2k+1 =
∆kv

2 + (v̂
(j)
0 )2

[∆kv2 + (v̂
(j)
0 )2]ISIG2

k + 1
, (4.7)

β̂
(j+1)
0 =

[∆
(0)
j v20 + (v̂

(j)
0 )2]FSkISIGk + β̂

(j)
0

[∆
(0)
j v20 + (v̂

(j)
0 )2]ISIG2

k + 1
, (4.8)

(v̂
(j+1)
0 )2 =

∆
(0)
j v20 + (v̂

(j)
0 )2

[∆
(0)
j v20 + (v̂

(j)
0 )2]ISIG2

k + 1
, (4.9)

where ∆
(0)
j = Tj −Tj−1. In other words, at times that do not immediately follow

the insertion of a new sensor, one estimates BG(t) as in the original setting,

where sensor replacement is ignored. However, immediately after a new sensor

is inserted, estimates of BG(t) are based on the evolution of the sensor process

β
(j)
0 , j = 0, 1, 2, . . ., as determined by (4.6)−(4.9).

4.2. Nonparametric empirical Bayes

By modeling β(t) as (4.5), which leads to the modified Kalman filter (4.6)−
(4.9), we incorporate sensor-specific information into our estimation procedures.

We have found that this can lead to substantial improvements in the performance

of CGM algorithms (results may be found in Section 8). Given that sensors

are known to degrade over time, and that their performance changes as this

happens, these improvements are not unexpected. On the other hand, (4.5) only

incorporates the fact that a new sensor, when inserted, may perform differently

from an older sensor. In fact, one would expect that the sensitivity of the sensor

decreases gradually over time, due to biofouling and other causes. In other words,

one would expect that β(Tj + t) should be larger than β(Tj) for t < Tj+1. This

is confirmed by Figure 3, where the ratios FSk/ISIGk are plotted for different

sensor ages. Note that the ratio tends to increase with sensor age.

We attempted to incorporate information about the behavior of sensors as

they age by using a nonparametric alternative to the Kalman filter. Suppose

that (4.1) holds, that ϵ1, ϵ2, . . . ∼ N(0, σ2) are iid, and that β(t) is an unobserved

(hidden) Markov process, with β(t)|Gt ∼ π(·|t) for some distribution π(·). Note

that in the previous section β(t) was also an unobserved Markov process (a

Brownian motion). The blood glucoseBG(t) is estimated as above, with B̂G(t) =

β̂(t)ISIG(t). However, here we assume that β(t) is a nonstationary discrete
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Figure 3. Ratios FSk/ISIGk (mg/dL nA−1) )by sensor age. 1: Sensor less
than 1 day old. 2: Sensor between 1 and 2 days old. 3: Sensor between 2
and 3 days old. 4: Sensor at least 3 days old.

Markov process with a constant transition intensity λ where, at each transition
time, a new state for β(t) is generated from a distribution depending on sensor
age. More precisely, suppose that Tj ≤ t < Tj+1, where Tj is the time at which
the patient begins using the j-th sensor, and let S(t) = t− Tj denote the age of
the sensor in use at time t. Additionally assume that

0 = S0,j ≤ S1,j ≤ · · · ≤ SNj ,j = Tj+1 − Tj

are the arrival times of a Poisson process with rate λ > 0. Then

β(t) = β(Si,j), Si,j ≤ t < Si+1,j

and β(Si,j) is generated from a distribution with the probability density function
g(·|S(t) = Si,j), which is determined by the sensor age S(t).

For times Tj ≤ t′ < t < Tj+1, the transition probabilities for the process β(t)
are characterized as follows:

pt′,t(b|b′) = e−λ(t−t′)I{b = b′}+
∫ t

t′
g(b|S(r))de−λ(t−r).

The first term here corresponds to the case where there is no transition from time
t′ to time t, while the second term determines the probability of transitioning
from β(t′) = b′ to β(t) = b ̸= b′ between time t′ and t. Now let π(b|t−) be the
conditional probability mass function of β(t) given Gt− . Then

π(b|t−) = e−λ(t−τk)π(b|τk) +
∫ t

τk

g(b|S(r))de−λ(t−r)



CONTINUOUS GLUCOSE MONITORING 1607

for all t ∈ (τk, τk+1]. Since the data in (τk, τk+1) contains no information about

the process β(t), we do not update the density function for t ∈ (τk, τk+1). At

time t = τk+1, the posterior is updated using FSk+1. The updating rule is as

follows:

π(bi|τk+1) =
π(bi|τ−k+1) exp

(
− {FSk+1 − ISIGk+1bi}2/(2σ2)

)∑
j π(bj |τ

−
k+1) exp

(
− {FSk+1 − ISIGk+1bj}2/(2σ2)

) .
In this formulation, the distribution g(·|s) remains unknown. We may use

Markov chain Monte Carlo (MCMC) methods to estimate the density functions

g(·|s) for each s. However, it is computationally costly. For simplicity, we assume

that the last transition time is at time t and thus the approximate density function

is

π(b|t−) = e−λ(t−τk)π(b|τk) + (1− e−λ(t−τk))g(b|S(t)),

for t ∈ (τk, τk+1]. The coefficient distribution g(·|s(t)) may be estimated as

follows:

ĝ(·|S(t)) = 1

|Aϵ(t)|
∑

τj∈Aϵ(t)

π(·|τj),

where Aϵ(t) = {τj ; |S(τk)− S(t)| ≤ ϵ and τj < t} is the collection of times τj < t

where the sensor age is within ϵ of the sensor age at time t. In practice, we treat

the age of sensor as a discrete variable. In the Star 1 dataset, sensors are used

for up to 14 days; in our analysis, we take ϵ = 0.5 and track the averages of

posteriors for 14 categories: a = 0.5, 1.5, . . . , 13.5.

4.3. Additional comments

For the methods described in Section 4.1−4.2, estimates of blood glucose

density take the form B̂G(t) = β̂(t)ISIG(t), where β̂(t) depends on the data

available up to time t. It is noteworthy that in all of these methods, β̂(t) does not

depend on ISIG(τ̃j), for τ̃j /∈ {τk}. That is, only ISIG measurements obtained

at times τk < t, where a fingerstick blood glucose measurement is also available

are used to compute β̂(t). (Recall that ISIG is measured at the times {τ̃k},
FS is measured at times {τk}, and that {τk} ⊆ {τ̃k}. In the Star 1 dataset

the time between ISIG measurements, τ̃k+1 − τ̃k, is five minutes, while the time

between FS measurements, τk+1 − τk, is roughly six hours, on average; thus,

ISIG measurements are obtained much more frequently than FS.) Furthermore,

in all of the methods considered here, β̂(t) is only updated at times τ1, τ2, . . .. In

other words, β̂ is piecewise-constant, with jumps at τ1, τ2, . . ..

It may be reasonable to seek methods for computing β̂(t) that utilize all of

the measurements {ISIG(τ̃k); τ̃k < t} and to update β̂(t) more frequently, using

additional information as it becomes available in an attempt to obtain better
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estimates of blood glucose density. For example, one could potentially update

β̂(t) at each time τ̃k, in order to reflect the most recent ISIG measurements and

sensor age information. However, this is challenging: if ISIG measurements are

not paired with FS measurements (or some other direct measurement of blood

glucose density), information about the relationship between ISIG and blood

glucose density is confounded by changes in the blood glucose density. Indeed,

under the statistical models considered in Sections 4.1−4.2,

E [β(t)|{ISIG(τ̃k); τ̃k < t}, {FS(τk); τk < t}]
= E [β(t)|{ISIG(τk); τk < t}, {FS(τk); τk < t}] .

In our view, more refined statistical and mathematical models for describing

the relationship between ISIG and blood glucose density will likely be required

in order to successfully develop methods that utilize ISIG(τ̃j), τ̃j /∈ {τk}, for
estimating this relationship. This is an area of ongoing research.

5. Prediction Methods: ρ(t) ̸≡ 0

As demonstrated in Section 8 below, the implementations discussed in Sec-

tion 4 substantially improve on existing methods when applied to the Star 1

dataset. However, these methods are developed under the assumption that

ρ(t) ≡ 0 (i.e., that BG(t) does not depend on IG′(t)), even though there is

compelling theoretical and empirical evidence that ρ(t) ̸≡ 0 (Steil et al. (2005);

Wei et al. (2010)). In this section, we discuss approaches to predicting BG(t)

that attempt to incorporate this information.

The interstitial glucose density IG(t) and its derivative IG′(t) are not directly

observed by blood glucose biosensors. Rather, ISIG(t), an associated electrical

current, is measured. Noise in these measurements, along with the fact that

ISIG(t) is discretely sampled, make it challenging to estimate IG′(t). Thus, it is

unclear how beneficial it is to attempt to incorporate information about IG′(t)

into methods for predicting BG(t). However, simulations studies and results

from the Star 1 dataset indicate that substantial gains may be possible. In

fact, our method is to derive estimates ÎSIG
′
(t) of the derivative ISIG′(t), using

{ISIG(τ̃k); τ̃k ≤ t}, and to incorporate this into a model that relates FSk to

ISIGk and ÎSIG
′
k = ÎSIG

′
(τk):

FSk = βkISIGk + γk ÎSIG
′
k + ϵk, (5.1)

where ϵ1, ϵ2, . . . ∼ N(0, σ2) are iid, β(t) and γ(t) are slowly varying processes,

and βk = β(τk), γk = γ(τk). Note that we rely on an estimate of ISIG′(t),

as opposed to an estimate of IG′(t). This is partially justified by (3.1) and the
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assumption that α(t) is slowly varying, which implies that ISIG′(t) ≈ α(t)IG′(t).

Notice that ÎSIG
′
k is completely determined by previous values of ISIG(t) and

does not depend on fingerstick measurements FSk.
The model (5.1) extends (4.1) and suggests a natural way to use information

about the derivative ISIG′(t) for estimating BG(t). In particular, building on
the methodology developed in Section 4, we propose estimators

B̂G(t) = β̂(t)ISIG(t) + γ̂(t)ÎSIG
′
(t), (5.2)

where β̂(t) and γ̂(t) are estimates of β(t) and γ(t), respectively, whose specific
form is determined by additional assumptions on the processes β(t) and γ(t).
In fact, the main implementation studied here is an extension of the Kalman
filtering approach from Section 4.1. This approach is easily modified to include

estimates of the derivative ÎSIG
′
k. Assume that (5.1) holds and that β(t) = β0+

vβσWβ(t), γ(t) = γ0 + vγσWγ(t), where Wβ(·), Wγ(·) are independent Brownian

motions. Estimates B̂G(t) = β̂(t)ISIG(t)+ γ̂(t)ÎSIG
′
(t) are computed using a 2-

dimensional Kalman filter. Sensor replacement information may be incorporated
as in Section 4.1 by “restarting” the Kalman filter whenever a sensor is replaced.
Additionally, nonparametric empirical Bayes methodologies like those discussed

in Section 4.2 are easily extended to incorporate ÎSIG
′
(t).

5.1. Estimating ISIG′(t)

In this section, we discuss specific methods for estimating ISIG′(t) using
the data {ISIG(τ̃k); τ̃k ≤ t}. Here we use the fact that there are typically
many more sensor measurements {ISIG(τ̃k)}∞k=0 than fingerstick measurements
{FS(τk)}∞k=0. A reasonable initial estimate for ISIG′(t) is the first difference

ÎSIG
′
1(t) =

ISIG(τ̃k̃(t))− ISIG(τ̃k̃(t)−1)

τ̃k̃(t) − τ̃k̃(t)−1

,

where k̃(t) = max{k; τk ≤ t}. On the other hand, to account for noise in the
sensor measurements, it is reasonable to implement smoothing methods that
utilize more terms ISIG(τ̃k̃(t)−i), i = 1, 2, . . . , j for estimating IG′(t). For j ≥ 1,
define

ISIGk,j =
1

j + 1

j+1∑
i=1

ISIG(τ̃k−i+1) and τ̄k,j =
1

j + 1

j+1∑
i=1

τ̃k−i+1.

The local linear regression (Cleveland (1979)) estimator for ISIG′(t) is

ÎSIG
′
j(t) =

∑j+1
i=1

(
τ̃k̃(t)−i+1 − τ̄k̃(t),j

) [
ISIG(τ̃k̃(t) − i+ 1)− ISIGk̃(t),j

]
∑j+1

i=1

(
τ̃k̃(t)−i+1 − τ̄k̃(t),j

)2 . (5.3)
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The main drawback of ÎSIG
′
j(t) is that it may be biased if ISIG′(t) is chang-

ing rapidly near t. One of the inherent challenges in successfully implementing

ÎSIG
′
j(t) is choosing the number of previous observations j. Other methods to

smooth estimates of the derivative ISIG′(t) may be used, but these methods typ-

ically rely on specification of additional tuning parameters analogous to j. For

example, a weighted local linear regression could be computed where more re-

cent ISIG observations are weighted more heavily. However, specification of the

weights further complicates matters and, in our analysis, we have not found that

this leads to substantial improvements. Kernel (Gasser, Muller and Mammitzsch

(1985)) or spline estimators (Zhou and Wolfe (2000)) for the derivative may also

be used, but it is more challenging to implement these methods “on-line,” where

the goal is to estimate the derivative ISIG′(t) only using data available at times

s ≤ t. Moreover, these methods still require specification of tuning parameters

(e.g. the kernel and bandwidth, or knot locations for splines). Ultimately, we

prefer (5.3) for its simplicity and effectiveness.

The local linear regression estimator ÎSIG
′
j(t) with j > 1 offers improvements

over the estimator ÎSIG
′
1(t). However, we have found that further improvements

may be had by using soft-thresholding. More specifically, define the estimator

ÎSIG
′
j,λ(t) = sign

[
ÎSIG

′
j(t)

]
max

{∣∣∣ÎSIG′
j(t)

∣∣∣− λ, 0
}
,

where λ ≥ 0 is the thresholding level. Soft-thresholding methods have been

extensively studied in a variety of statistical settings (Donoho (1995); Tibshirani

(1996)). Benefits provided by soft-thresholding typically arise from their variance

reduction and parsimony properties. Taken together, (3.4) and (5.2) suggest that,

in the present setting, soft-thresholding may be viewed as adaptively identifying

situations where ISIG′(t) is likely to be nonzero and ÎSIG
′
j(t) is likely to be

useful for estimating BG(t).

Like some of the smoothing methods discussed above, soft-thresholding re-

quires specification of a tuning parameter, λ. Larger values of λ yield estimators

that equal 0 more frequently and have smaller variance, but tend to have larger

bias as well. The major benefit that we have observed from soft-thresholding

seems to arise in settings where ISIG′(t) ≈ 0. When ISIG′(t) is near zero, es-

timates of the derivative that do not utilize soft-thresholding tend to be highly

variable. Soft-thresholding effectively moderates this, at the cost of some bias in

our estimates. This is illustrated in the simulation studies in Section 7. Choosing

λ to optimally balance this bias-variance tradeoff is challenging and important.

In our analysis of the Star 1 dataset, we choose λ to optimize estimation accuracy

(MARD) on a training dataset.
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Our use of soft-thresholding shares similarities with existing methods for

sequential change-point detection. However, existing methods for sequential

change-point detection in dynamic models are typically based on identifying de-

viations in residuals (FSk − B̂Gk ) or the likelihood ratio (Lai (1995, 1998)).

The soft-thresholding procedure implemented here focuses solely on estimates of

the derivative ISIG′(t). This reflects our underlying assumption that there is

a nonzero lag time associated with the diffusion of glucose molecules from the

blood into interstitial space where the sensor is located (i.e., ρ(t) > 0), which

implies that the relevance of ISIG′(t) for prediction is determined by whether or

not ISIG′(t) = 0. Moreover, if ISIG′(t) = 0, then ÎSIG
′
(t) can only contribute

noise to estimates of BG(t) and, in these settings, it is sensible to use estimators

B̂G(t) that do not depend on ÎSIG
′
(t). This highlights the importance of being

able to identify situations where ISIG′(t) is relatively large in magnitude and

ÎSIG
′
(t) may be useful for estimating BG(t). Soft-thresholding addresses this

need.

6. Inference and Prediction Intervals for BG(t).

Statistical inference for online estimates of blood glucose density has received

little attention in the CGM literature. In this section, we discuss basic methods

for constructing prediction intervals for BG(t) that may be used in conjunction

with the estimation methods introduced in Sections 4 and 5. We study the

empirical performance of these procedures in our analysis of the Star 1 dataset

in Section 8. One of the challenges in constructing reliable prediction intervals

is that in our analysis, FS is the gold-standard measurement for blood glucose

density, yet it is known that fingerstick measurements for blood glucose density

are themselves error-prone (Khan et al. (2006)). For the prediction intervals

developed in this section, we simply identify BG and FS; alternative approaches

to developing prediction intervals that effectively incorporate the errors inherent

in FS measurements are the subject of ongoing research.

6.1. Normal-based intervals

Under the normality assumptions of the Kalman filter-based methods de-

scribed in Section 4.1 and Section 5.1, statistical inference via the posterior

distribution of β(t) is straightforward. This provides a means for determin-

ing, among other things, prediction intervals for BG(t). In the following dis-

cussion, we restrict our attention to the one-dimensional Kalman filter-based

methods of Section 4.1 (i.e., the methods developed under the assumption that

ρ(t) ≡ 0). The discussion and the proposed intervals are easily adapted to the
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two-dimensional Kalman filter from Section 5.1 that incorporates estimates of

the derivatives ÎSIG
′
(t).

For t > 0, suppose that τk < t ≤ τk+1. Under the model (4.2), we have

β(t)|Ft− ∼ N
[
β̂k, σ

2{(t− τk)v
2 + v̂2k}

]
,

where β̂k and v̂2k are given in (4.3)−(4.4). Thus, the variance of B̂G(t) given the

data available up to time t is

Var
{
B̂G(t)

∣∣∣Ft−, ISIG(t)
}
= σ2{(t− τk)v

2 + v̂2k}ISIG(t)2. (6.1)

Equation (6.1) quantifies the variability of our estimates for blood glucose den-

sity and, in conjunction with (4.1), naturally suggests a 100(1− α)% prediction

interval for BG(t):(
B̂G(t)− zα/2σ

√
{(t− τk)v2 + v̂2k}ISIG(t)2 + 1,

B̂G(t) + zα/2σ
√

{(t− τk)v2 + v̂2k}ISIG(t)2 + 1
)
.

(6.2)

Formula (6.2) is also used to obtain prediction intervals for the sensor replacement

model of Section 4.1, with β̂k and v̂2k given by (4.3)−(4.4) and (4.6)−(4.9), as

described at the end of Section 4.1.

Note that in order to construct the interval (6.3), σ2 must be estimated (on

the other hand, estimating σ2 is not required to compute the estimate B̂G(t)).

We propose estimating σ2 online using the MLE σ̂2
k, based on the data available

at time τk. The estimator σ̂2
k is defined recursively by σ̂2

0 = 0 and

σ̂2
k =

(
1− 1

k

)
σ̂2
k−1 +

1

k

{
(FSk − β̂kISIGk)

2

(∆kv2 + v̂2k)ISIG
2
k + 1

}
, k ≥ 1.

6.2. Residual-based intervals

In principle, prediction intervals for BG(t) based on the nonparametric em-

pirical Bayes methods of Section 4.2 may be constructed via the posterior dis-

tribution of β̂(t) and the relationship (4.1). However, the relevant distributions

are fairly complex and the computational challenges associated with constructing

these prediction intervals are nontrivial. Thus, we propose a simple and flexi-

ble alternative method for constructing prediction intervals that may be used

in conjunction with the estimation methods of Section 4.2: The residual-based

100(1− α)% prediction interval for BG(t) is(
B̂G(t) + F−1

t (
α

2
), B̂G(t) + F−1

t (1− α

2
)
)
, (6.3)
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where F−1
t (·) is the inverse CDF of the empirical distribution of the residuals

available at time t, {FS(τk) − B̂G(τk); τk < t}. Notice that the prediction

intervals (6.3) can be constructed using the residuals from any blood glucose

estimation method. Indeed, in our analysis of the Star 1 dataset in Section 8,

we study the empirical performance of these residual-based intervals when used

in conjunction with the nonparametric empirical Bayes estimation methods of

Section 4.2, along with the Kalman filter estimation methods of Section 4.1 and

Section 5.

7. Simulation Studies

In this section, we discuss the results of a simulation study designed to iden-

tify situations where estimating ISIG′(t) may be useful for predicting BG(t).

The model (3.1)−(3.4) forms the basis of our simulation study. However, several

simplifying assumptions were made. We generated continuous deterministic sig-

nals BG(t) (different representative signals are studied in Sections 7.1−7.2) and

then generated

IG(t) =

∫ ∞

0
BG(t− u)ρ−1e−u/ρ du, (7.1)

ISIG(τk) = αIG(τk) + ϵk, k = 0, 1, 2, . . . , (7.2)

where ϵ0, ϵ1, ϵ2, . . .
iid∼ N(0, σ2), τ0, τ1, τ2, . . . were regularly spaced sampling times,

ρ, σ2 > 0 were fixed and known, and α ≡ 1 nA mg/dL. Note that in this model,

the relationship between ISIG and IG is not time-varying, the constant α ≡ 1

nA mg/dL is known, and random noise enters the ISIG(τk) observations through

iid additive errors ϵk. There are no fingerstick observations FS(t) in this model

and only the electrical current measurements ISIG(τ0), ISIG(τ1), . . . , ISIG(τk)

are used to estimate BG(τk).

Two types of estimators for BG(t) were considered in this study,

B̂G0(t) = ISIG(t) and B̂Gj,λ(t) = ISIG(t) + ρÎSIG
′
j,λ(t).

Clearly, the estimator B̂G0(t) does not attempt to utilize information about the

derivative ISIG′(t) to estimateBG(t), similar to the estimators studied in Section

4. Note that (7.1) implies that B̂G0(t) is necessarily biased. The estimator

B̂Gj,λ(t) makes use of an estimate ÎSIG
′
j,λ(t). It may be less biased than B̂G0(t),

but tends to have higher variance. In all of our simulation studies, we used a

training dataset to select j and λ from B̂Gj,λ(t) in order to minimize MARD

(defined in (7.3)).
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The overall performance of each estimator was measured by its mean absolute

relative difference,

MARD(B̂G) =
1

#{τk}
∑
k

{
100× |B̂G(τk)−BG(τk)|

BG(τk)

}
, (7.3)

where the sum on the right-hand side above is taken over all sampling times τk and

#{τk} is the number of sampling times. MARD is a widely used overall measure

of performance for continuous blood glucose monitoring (Kovatchev et al. (2008);

Keenan, Cartaya, and Mastrototaro (2010)) (in general, if the exact measurement

BG(τk) is not available in (7.3), then it may be replaced with a surrogate – we

use FS(τk) in the Star 1 analysis). In our simulation study, we also computed

MARDA(B̂G) =
1

#A

∑
k∈A

{
100× |B̂G(τk)−BG(tk)|

BG(τk)

}
,

MARDQ(B̂G) =
1

#Q

∑
k∈Q

{
100× |B̂G(τk)−BG(tk)|

BG(τk)

}
,

where A = {k; BG′(τk) ̸= 0} and Q = {k; BG′(τk) = 0} in order to help

determine if the estimated derivative ÎSIG
′
j,λ(t) may be more useful when blood

glucose density is in an “active” (A) or “quiescent” (Q) phase. This may have

significant clinical implications.

7.1. Simulation study 1: Severe hypoglycemia

First consider a blood glucose path BG(t) that begins at 180 and drops to

40 in 15 mins. Suppose that the interstitial/blood glucose lag is ρ = 15 minutes,

sampling occurs every 5 minutes (i.e., τk − τk−1 = 5), and σ = 5. Time lags

(ρ) of 3-15 minutes are referenced in the literature (Boyne et al. (2003); Kulcu

et al. (2003); Steil et al. (2005); Wei et al. (2010)). Figure 4 contains plots of

BG(t), IG(t), B̂G0(t) = ISIG(t), B̂G1,0(t), and B̂G2,1(t) for a single sample

path {ISIG(τk)}. Note that in Figure 4 (a) B̂G0(t) = ISIG(t) tracks IG(t) quite

closely, and that when BG(t) begins to drop at time t = 60, there is a substantial

lag in B̂G0(t) = ISIG(t). Indeed, when BG(t) reaches 40 at time t = 75, which

indicates severe hypoglycemia, the estimate B̂G0(t) = ISIG(t) = 126 is well

within the normal range. If B̂G0(t) = ÎSIG(t) was used to estimate a patient’s

blood glucose this could lead to significant clinical consequences. On the other

hand, the estimators that attempt to estimate the derivative ISIG′(t) (Figure 4

(b)−(c)) track the drop in blood glucose density beginning at time t = 60 much

better; at time t = 75, when BG(t) = 40, these methods yield B̂G1,0(75) = 53
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Figure 4. Simulation study 1. BG(t), IG(t), and various estimates: (a)

B̂G0(t) = ISIG(t); (b) B̂G1,0(t); (c) B̂G2,1(t). Notice that BG(75) = 40,

B̂G0(75) = ISIG(75) = 126, B̂G1,0(75) = 53, and B̂G2,1(75) = 66. The

discrepancy between B̂G0(75) = ISIG(75) and BG(75) could have adverse
clinical consequences.

Table 2. Simulation study 1. Mean MARD for various estimation methods
(1,000 sample paths).

MARD
(all time points)

MARDA

(times t with
BG′(t) ̸= 0)

MARDQ

(times t with
BG′(t) = 0)

B̂G0(t) = ISIG(t) 30.88 54.00 29.29

B̂G1,0(t) 32.41 22.66 33.08

B̂G2,1(t) 16.88 39.98 15.28

and B̂G2,1(75) = 66. Note that the estimator B̂G1,0(t) in Figure 4 (b) appears

to be more variable than the estimator B̂G2,1(t) in Figure 3 (c), which uses local
linear regression and soft-thresholding to estimate the derivative ISIG′(t).

We generated 1,000 sample paths as depicted in Figure 4 and computed
MARD for the estimators B̂G0(t), B̂G1,0(t), and B̂G2,1(t). The results are

summarized in Table 2. Note that B̂G2,1(t) has the smallest MARD (nearly

half that of B̂G0(t) = ISIG(t)) while B̂G1,0(t) has the largest MARD. Both

B̂G2,1(t) and B̂G1,0(t) have smaller MARDA than B̂G0(t) = ISIG(t) and, in

fact, B̂G1,0(t) has the smallest MARDA. This reflects the potential usefulness
of the derivative ISIG′(t) in situations where blood glucose density is changing.
During more stable periods, the benefits of estimating the derivative ISIG′(t)
may be more questionable. Notice that

MARDQ

[
B̂G2,1(t)

]
< MARDQ

[
B̂G0(t)

]
< MARDQ

[
B̂G1,0(t)

]
.

The large MARDQ for B̂G1,0(t) is related to instability in ÎSIG
′
1(t). On the
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Figure 5. Simulation study 2. BG(t), IG(t), and ISIG(t); σ = 15; twenty-
four hour path.

other hand, B̂G2,1(t) outperforms B̂G0(t) = ISIG(t) in all situations, whether

the blood glucose density is varying (MARDA) or stable (MARDQ). Overall,

these results suggest that significant improvements in estimating blood glucose

density may be possible during hypoglycemic episodes by utilizing estimates of

the derivative IG′(t); however, care must be taken when implementing these

estimators.

7.2. Simulation study 2: Twenty-four hour monitoring

The blood glucose path depicted in Figure 4 is somewhat specialized and

is not representative of the long-term behavior of an individual’s blood glucose

density that CGM systems are designed to monitor. However, it illustrates

the point that, in isolation, certain extreme events can potentially have serious

practical implications if the derivative ISIG′(t) is not included in blood glucose

prediction algorithms. In Figure 5, we depict a more complex blood glucose

path BG(t), over a period of 24 hours (1440 minutes), along with IG(t) and

ISIG(t). In this simulation, we assume that interstitial/blood glucose time lag

is ρ = 15 minutes and sampling occurs every 5 minutes. We simulated 1,000

sample paths at each of four noise levels, σ = 20, 15, 10, 5, 0, and computed the

MARD. Results are summarized in Table 3.

The noise level σ = 15 was chosen so that MARD for this simulation was

similar to the MARD found in our analysis of the Star 1 dataset; the smaller

noise levels are used for illustrative purposes. Notice that B̂Gj,λ outperforms

B̂G0(t) = ISIG(t) in all settings, except for σ = 20, where B̂G0(t) = ISIG(t)

slightly outperforms B̂Gj,λ(t). For σ = 15, the noise level with results most

closely resembling those from the Star 1 analysis, the estimator B̂Gj,λ(t) only

slightly outperforms B̂G0(t), with an MARD that is 0.38 smaller. Generally

speaking, as the noise level σ decreases, the performance of both B̂G0(t) and

B̂Gj,λ(t) improves; however, the improvements achieved by B̂Gj,λ(t) are greater

than those of B̂G0(t). This is because of the bias inherent in the estimator



CONTINUOUS GLUCOSE MONITORING 1617

Table 3. Simulation study 2. Mean MARD for various estimation methods
and noise levels (1,000 sample paths).

σ MARD MARDA MARDQ

20 B̂G0(t) = ISIG(t) 19.03 26.55 17.46

B̂G4,2 19.48 26.70 17.97

15 B̂G0(t) = αISIG(t) 16.10 24.59 14.32

B̂G4,1.5 15.72 23.41 14.12

10 B̂G0(t) = ISIG(t) 13.43 23.22 11.38

B̂G4,1 11.78 19.64 10.14

5 B̂G0(t) = ISIG(t) 11.15 22.55 8.77

B̂G4,0.5 7.58 14.50 6.13

0 B̂G0(t) = ISIG(t) 9.69 22.52 7.00

B̂G1,0 1.19 2.25 0.97

B̂G0(t) = ISIG(t), which does not account for the derivative IG′(t). The case

σ = 0 illustrates the extreme case where there is no noise; here B̂G0(t) = IG(t)

and the error MARD
[
B̂G0

]
is due entirely to the bias that results from omit-

ting ISIG′(t). On the other hand, when σ = 0, B̂G1,0(t) provides near perfect

reconstruction of BG(t); the MARD is 0.012 and this could be driven to 0 with

a faster sampling rate (so that ISIG′(t) could be more accurately estimated).

This simulation study suggests that the effectiveness of estimators B̂G(t)

that utilize estimates of ISIG′(t) depends largely on the inherent noise level in

the data; if the data are less noisy, then these estimators are more likely to

perform well. Though the simulation model studied here is greatly simplified,

our results suggest that estimating the derivative ISIG′(t) may lead to slight

improvements in CGM algorithm performance when applied to the Star 1 data

(this is borne out in the next section) and when used in other situations with

similar noise levels. Our results also suggest that if these noise levels can be

reduced – either through an improved biosensor or by other means – then even

greater performance gains may be possible.

8. Analysis of the Star 1 Dataset

In the Star 1 dataset, 137 subjects using blood glucose sensors were moni-

tored for periods of time spanning 6 days to 948 days (mean 188 days, SD 148).

For each subject, ISIG(t) was recorded every five minutes with limited excep-

tions. Fingerstick blood glucose measurements were recorded, on average, every

5.93 hours (mean time between fingersticks). Each individual in the study reg-

ularly replaced their blood glucose biosensors, on average every 2.72 days (in

the Star1 study, it was recommended that patients replace sensors every 3 days;
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more recently available sensors may be used for up to at least 6 days (Keenan

et al. (2011)). Sensor replacement times are also contained in the Star 1 dataset,

along with estimates of blood glucose density derived from an existing algorithm,

denoted CGM(t).

We implemented four methods for estimating BG(t) with the Star 1 data.

(i) The original Kalman filter proposed in Section 4.1 that does not account for

sensor replacement.

(ii) The Kalman filter that “restarts” when a new sensor is inserted (Section 4.1).

(iii)The nonparametric empirical Bayes method of Section 4.2.

(iv)The Kalman filtering method that utilizes estimates of ÎSIG
′
(t) (sensor

restarting is not utilized; Section 5).

The mean absolute relative differenceMARD was used as the primary metric

for comparing the performance of these methods to that of CGM(t). The first

50 patients in the Star 1 dataset were used for training these methods (e.g.

identifying β0 and v2 for the Kalman filtering method, and identifying λ for

the nonparametric empirical Bayes method; parameters were chosen to minimize

MARD in the training data). The remaining 87 patients were used for validation.

For the Kalman filtering methods described in Section 4.1 (where ρ(t) ≡ 0),

we took β0 = 7, v = 0.002 and v0 = 0.0001. These values for v and v0 are

seemingly very small. However, from (4.3) it is clear that ∆kv
2/(∆kv

2+1/ISIG2
k)

helps determine the relative significance of recent observations in computing β̂(t).

For the first 50 subjects in the Star 1 dataset, the mean value of ISIG2
k was

ISIG2
k = 607 and the mean time between fingersticks was ∆̄k = 369 minutes.

Thus, since
∆̄kv

2

∆̄kv2 + 1/ISIG2
k

=
369 · 0.0022

607
= 0.53 (8.1)

is substantially larger than 0, one can conclude that recent observations have

a significant effect on β̂(t). The relevant quantity for determining the effect of

recent observations onβ̂
(j)
0 is

∆̄
(0)
j v20

∆̄
(0)
j v20 + 1/ISIG2

k

= 0.06,

where we have used the fact that the mean sensor life for the first 50 subjects

was ∆̄
(0)
j = 5110 minutes. This is significantly smaller than (8.1), suggesting

that β̂
(j)
0 is less variable than β̂(t). In Figure 6, β̂(t) and β̂

(0)
j are plotted for a

representative subject in the Star 1 dataset.
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(a) Subject 23
Kalman filter coefficients (fingerstick updates)

(b) Subject 23
Kalman filter coefficients (new sensor updates)

Figure 6. (a) β̂(t) vs. time (in minutes) for Subject 23. (b) β̂
(0)
j vs. time (in

minutes) for Subject 23. Note that β̂(t) ranges between 3 and 11, while β̂
(0)
0

ranges between 5 and 9. There are more discontinuities in β̂(t) because it

is updated much more frequently than β̂
(j)
0 (at every fingerstick, as opposed

to every time a sensor is replaced). Units for the vertical axes are mg/dL
nA−1.

For the nonparametric Bayes methods, we took σ = 20, eλ = 0.6 and let

initial distributions g(·|a) be uniform U [0, 14] for each a. More precisely, the

noise level σ for finger stick measurement is first estimated by a ballpark interval

[10, 25] according to (Brunner et al. (1998)), which provides the percentage of

measurements within a defined range of the reference values according to different

glycemic ranges for various blood glucose meters. The tuning parameter eλ is a

weight for the effect of recent performance and thus between (0, 1). We tested

various parameters on the training dataset and selected the optimal values in

terms of MARD. In practice, it is noticed that the choice of initial distributions

does not affect the performance and the results are pretty stable when eλ ∈
[0.5, 0.7] and σ ∈ [20, 25].

To implement the Kalman filter that utilizes derivative ISIG′(t), we took

j = 30 and λ = 0.01, for the derivative estimates ÎSIG
′
j,λ(t). Notice that j = 30
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is much larger than in the simulation studied from the previous section. Since

the typical time between ISIG measurements in the Star 1 dataset is 5 minutes,

it follows that, on average, ISIG data from the previous 150 minutes is used

to estimate ÎSIG
′
(t) at a given time. We found this to be more effective in the

Star 1 dataset than using smaller time windows (i.e., smaller j). Other parameter

values for our analysis involving ÎSIG
′
j,λ(t) were β0 = 7, vβ = v = 0.002, γ0 = 60,

and vγ = 0.001 (these parameters are defined in Section 5). In Sections 8.1−8.3

we report the results of our analysis.

8.1. Estimation accuracy

In Table 4 we report:

(i) MARD: The average MARD over the 50 subjects in the training data and

the 87 subjects in the validation data for the five methods (including CGM)

considered here.

(ii) ∆MARD: The difference between the MARD for each method and MARD

(CGM).

(iii) sdARD: The standard deviation of the absolute relative differences

100× |B̂G(τk)− FS(τk)|
BG(τk)

, (8.2)

calculated over all sampling times τk.

(iv)MedARD: The median of (8.2) over all sampling times τk.

(v) NMARD: The number of individual subjects in the training and validation

datasets for which the subject-levelMARD of the specified method is smaller

than MARD(CGM).

Note that all of the proposed methods substantially outperform CGM. Differ-

ences between the four proposed methods are more slight. However, it appears

that the Kalman filtering method that utilizes ÎSIG
′
(t) performs the best, and

the original Kalman filter from Section 4.1 (which ignores sensors replacements,

and the derivative ISIG′(t)) performs the worst. We point out that though there

is a slight degradation in the performance of the four proposed methods when

comparing the results for the training data to the results for the validation data,

substantial improvements over CGM persist.

8.2. Prediction intervals

In Section 5 we proposed methods for constructing prediction intervals for

BG(t). We applied these methods to the Star 1 dataset and constructed predic-

tion intervals for BG(t) at all times τ̃k when an ISIG value was observed. The
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Table 4. Summary statistics for analysis of Star1 dataset.

MARD sdARD MedARD ∆MARD

NMARD

(# of subjects

in dataset)

Train. Kalman Original 15.51 15.65 11.48 0.99 46 (50)

Restart w/new sensor 15.37 15.03 11.52 1.13 46 (50)

ÎSIG
′
(t) 15.24 15.38 11.32 1.26 48 (50)

NP-Bayes 15.39 15.15 11.53 1.11 47 (50)

CGM 16.50 16.75 12.25

Valid. Kalman Original 15.54 17.01 11.04 0.85 73 (87)

Restart w/new sensor 15.34 16.44 11.05 1.05 80 (87)

ÎSIG
′
(t) 15.27 16.76 10.85 1.12 80 (87)

NP-Bayes 15.52 17.05 11.18 0.87 77 (87)

CGM 16.39 18.31 11.68

normal-based intervals described in Section 6.1 were constructed in conjunction

with the Kalman filter-based estimation methods; the residual-based intervals

from Section 6.2 were constructed in conjunction with all estimation methodolo-

gies.

Statistics related to the width and coverage of the prediction intervals for

the Star 1 dataset are reported in Table 5. Intervals were calculated for nominal

coverage levels 80%, 90%, and 95%. The “Coverage” statistics in Table 5 were

found by computing the percentage of intervals that contain FS(τk), across all

times τk and all 137 patients in the dataset. The “Width” statistics in Table

5 were found by taking the mean width of intervals at all times τ̃k across all

patients in the dataset.

The results in Table 5 indicate that the normal-based intervals for the Kalman

filter methodologies tend to be conservative at the nominal 80% and 90% levels,

and are slightly agressive at the nominal 95% level. On the other hand, the

residual-based intervals are somewhat agressive throughout the range of nominal

levels considered here, delivering empirical coverage approximately 2% smaller

than the nominal levels in each setting. The mean widths of the intervals con-

structed for the Star 1 dataset are quite large, ranging from 80.65 mg/dL to

179.67 mg/dL. The prediction intervals for the nonparametric empirical Bayes

methods have the smallest mean width of the intervals considered here. Though

most of the prediction intervals considered are reasonably accurate (in terms of

coverage), they may be too large to serve as the basis for many clinical decisions.

On the other hand, this does not negate the improvements in MARD deliv-

ered by the proposed methods. Further questions relating to the construction of

accurate and useful prediction intervals are the subject of ongoing research.

Table 6 contains quantiles for the empirical distribution of residuals FS(τk)−
B̂G(τk) for all times τk and all 137 patients in the Star 1 dataset. The residuals
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Table 5. Coverage and width of prediction intervals for the Star 1 dataset.
“Coverage” is the percentage of intervals that contain FS(τk), across all
times τk and all 137 patients in the dataset; “Width” is the mean width of
intervals, across all times τ̃k and all patients in the dataset. Note that the
coverage statistics are determined by intervals constructed at times when
a FS measurement is available (approximately every six hours), while the
width statistics are computed using intervals constructed whenever an ISIG
measurement is available (every five minutes).

Nominal coverage

Estimation

methodology
Statistic

Interval

type

80%

(α = 0.20)

90%

(α = 0.10)

95%

(α = 0.05)

Kalman Coverage Normal 86.98% 91.98% 94.49%

(Original) Residual 78.12% 88.04% 93.20%

Width Normal 116.30 149.27 177.86

Residual 83.17 125.11 178.66

Kalman Coverage Normal 86.95% 91.93% 94.47%

(Restart w/new sensor) Residual 78.19% 88.06% 93.20%

Width Normal 116.28 149.25 177.84

Residual 82.65 123.84 176.85

Kalman Coverage Normal 86.92% 92.02% 94.56%

(ÎSIG
′
(t)) Residual 78.17% 88.06% 93.23%

Width Normal 112.29 144.12 171.74

Residual 82.00 124.29 179.67

NP-Bayes Coverage Residual 78.08% 88.05% 93.23%

Width Residual 80.22 116.70 158.05

Table 6. Quantiles of the empirical distribution of residuals FS(τk)−B̂G(τk)
(mg/dL) for all time points τk and all 137 patients in the dataset.

Quantile
Estimation
Methodology

2.5% 5% 10% 90% 95% 97.5 %

Kalman (Original) -95.45 -60.86 -36.94 45.93 68.60 92.90
Kalman (Restart w/new sensor) -89.95 -56.51 -34.33 48.30 71.38 95.80

Kalman (ÎSIG
′
(t)) -95.99 -61.11 -36.80 44.90 67.10 92.00

NP-Bayes -75.64 -51.63 -33.63 47.06 68.79 93.22

for the Kalman filter-based methods indicate that the residual-based prediction

intervals at the 80% and 90% level are somewhat skewed to the right, but the

95% intervals are more symmetric. (Note that all of the normal-based prediction

intervals are symmetric by construction.) The residual distribution for the NP-

Bayes method is more substantially right-skewed; prediction intervals at the 80%,

90%, and 95% level all tend to be skewed to the right. This is consistent with

the fact that while all of the residual-based prediction intervals have similar

coverage in the Star 1 dataset, the mean width of the prediction intervals for the
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(a) Valid. data: ROC curve for detecting hypoglycemia (b) Valid. data: ROC curve for detecting hyperglycemia

1 . Specificity 1 . Specificity

Kalman filter AUC = 0.947, CGM AUC = 0.938 Kalman filter AUC = 0.939, CGM AUC = 0.935

Figure 7. Partial ROC curves (not all thresholds depicted) for detecting
hyperglycemia and hypoglycemia using CGM and Kalman filter estimates

that utilize ÎSIG
′
(t), based on validation data (last 87 subjects from Star1

dataset). Sensitivity and 1 - specificity for specific threshold levels are indi-
cated by the symbols specified in the figure legend. Reported AUC is area
under entire ROC curve (all thresholds – so sensitivity and specificity range
from 0 to 1).

nonparametric empirical Bayes method is notably smaller than the mean widths

of the other residual-based prediction intervals.

8.3. Detecting hypoglycemia and hyperglycemia

In addition to achieving good overall accuracy (as measured by MARD, for

instance), it is important for CGM algorithms to reliably detect hypoglycemia

(low blood glucose density) and hyperglycemia (high blood glucose density). Fol-

lowing (Bode et al. (2004)), any timepoint with FSk ≤ 70 mg/dL is defined to be

a hypoglycemic period, and any timepoint with FSk ≥ 250 is defined to be a hy-

perglycemic period. Threshold rules (with thresholds shypo, shyper) are a simple

class of rules for detecting hypoglycemia or hyperglycemia based on an estimate

B̂G(τk): If B̂G(τk) ≤ shypo, declare hypoglycemia; if B̂G(τk) ≥ shyper, declare

hyperglycemia. Using the validation data from the Star 1 dataset, we computed

the sensitivity and specificity of these threshold rules for CGM and the Kalman

filter estimates for BG(t) that utilize ÎSIG
′
(t). The results are summarized in the

ROC curves in Figure 7. Notice in Figure 7 that the AUC (area under the ROC

curve) is larger for the Kalman filtering method than CGM, both for detecting

hypoglycemia and detecting hyperglycemia. Moreover, the ROC curve for the
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Table 7. Sensitivity, specificity, and false positive rate for hypoglycemia
and hyperglycemia detection with different threshold rules. shypo denotes
threshold for detecting hypoglycemia; shyper denotes threshold for detecting
hyperglycemia.

Hypoglycemia Hyperglycemia

shypo=70 shypo=90 shyper=250 shyper=220

Sensitivity Kalman ÎSIG
′
(t) 0.4876 0.8752 0.6568 0.8529

CGM 0.4273 0.8388 0.6374 0.8432

Specificity Kalman ÎSIG
′
(t) 0.9695 0.8943 0.9619 0.8877

CGM 0.9696 0.8981 0.9617 0.8876

False positive rate Kalman ÎSIG
′
(t) 0.0294 0.1025 0.0370 0.1101

CGM 0.0295 0.0989 0.0373 0.1103

Kalman filtering method appears to dominate the ROC curve for CGM across

the entire plotted range in Figures 7 (a)−(b) (the Kalman filtering ROC curve

lies above and to the left of the CGM ROC curve). Table 7 contains the sensi-

tivity, specificity, and false positive rate for the threshold rules for specific values

of shypo and shyper. Overall, when used in conjunction with a threshold rule for

detecting hypoglycemia and hyperglycemia, the Kalman filtering method seems

to perform favorably when compared to CGM. These results could potentially

be improved by considering alternatives to simple threshold rules for detecting

hypoglycemia and hyperglycemia (e.g. by considering rules which account for

trends in ISIG(t) – note that the Kalman filtering method that incorporates

ÎSIG
′
(t) already does this implicitly). However, this is not pursued here.

9. Discussion

In this paper, we showed that an array of statistical techniques may be effec-

tively brought to bear on an important problem that has received little attention

in the statistical literature. However, there are many important open questions

about statistical aspects of continuous glucose monitoring. Ongoing research

goals include (i) establishing more refined mathematical and statistical models

for the relationship between ISIG and BG, (ii) developing more accurate and

robust methods for statistical inference in continuous glucose monitoring, and

(iii) precisely identifying situations where estimates of the derivative ISIG′(t)

may be effectively utilized and identifying optimality properties of estimators

for ISIG′(t). Another important challenges lies in developing a more thorough

understanding of the tradeoffs between parametric (e.g. Kalman filtering) and

nonparametric methods for continuous glucose monitoring. Other interesting sta-

tistical problems in continuous glucose monitoring include real-time identification
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of hyper- and hypoglycemia, and control algorithms for insulin pumps. Statis-

tical tools from control theory, sequential analysis, and nonparametric function

estimation are likely to play important roles in addressing critical problems in

this important field.
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