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Abstract: Scan statistic is a popular method in searching non-random clusters over
some random field. Motivated by a high energy particle detection problem, we are
interested in a ratchet scan statistic whose scanning window is a grid set, instead
of a rectangular box. We further generalize it to an r-dimensional problem for any
r ∈ Z+ and provide a tail probability approximation for a ratchet scan statistic over
an r-dimensional homogeneous Poisson process. We show that the ratchet effect
can be factored out as an overshoot function ν in each dimension.
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1. Introduction

We are interested in the tail distribution of a rachet scan statistic over an
r-dimensional Poisson random field. The ratchet scan statistic ML,∆,w is defined
as follows:

ML,∆,w = max
t∈TL,∆

Xw(t), (1.1)

where Xw(t) ≡ N(Aw(t)) counts the events occurred in the scanning window
Aw(t) =

∏
1≤i≤r[ti, ti + wi), and we model N as a counting process over an

r-dimensional homogeneous Poisson process with rate λ0 under the null hypoth-
esis. TL,∆ =

∏r
i=1([0, Li]

∩
∆iZi) is a grid set and Z = (Z1, . . . ,Zr) is the

r-dimensional integer set.
Scan statistics over a Poisson random field have been applied in molecu-

lar biology (Chan and Zhang (2007)), epidemiology, and geostatistics (Kulldorff
(1997); Glaz, Naus, and Wallenstein (2001)) to search non-random clusters. The
tail distributions of these statistics are of interest and their approximations have
been studied in the literature (Chan (2009)); Chan and Zhang (2007); Siegmund
and Yakir (2000); Alm (1997); Rabinowitz and Siegmund (1997); Loader (1991);
Naus (1965)). While interest may be in various forms of the statistic Xw(t), the
common point is that their scanning windows are over a rectangular box. Akin
to (1.1), the scan statistic with index over a rectangular box is

ML,w = max
t∈TL

Xw(t), (1.2)

http://dx.doi.org/10.5705/ss.2012.062s
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Figure 1. The detector scans the whole sky by shifting the window by size
∆ at each step in either the longitudinal or latitudinal directions.

where TL =
∏r

i=1([0, Li]).
Motivated by a high energy particle detection problem, we study the tail

probability of the ratchet scan statistic (1.1) that captures the characteristic
of a step-shifting scan of a detector (Glaz, Naus, and Wallenstein (2001, p.68-
71)). As high energy cosmic rays travel into our atmosphere, pion particles are
generated through nuclear reactions. Pion, a short-lived heavy particle, further
decays into muons, which are charged leptons that can be detected relatively
easily. By scanning muon particles across the whole sky, showers of cosmic rays
coming from a specific direction can be detected. For instance, the Soudan-2
detector, an underground muon telescope, was designed to search for cosmic ray
muon sources or hot spots in the sky. The search covers the sky region from −m1

to m2 declination degrees and all right accessions. Each observation counts the
total number of particles within a window size w1 ×w2 in a fixed length of time.
The detector scans the whole sky through shifting the window by size ∆ at each
step in either the longitudinal or latitudinal directions, see Figure 1.

In this paper, we provide a p-value approximation for the ratchet scan statis-
tic (1.1). We show that the ratchet effect in the approximation can be factored
out as a function ν (Tu (2009)) in each dimension. When the shift size ∆ → 0,
the overshoot correction function ν → 1, and the tail probability approxima-
tion for (1.1) converges to that for (1.2), which is consistent with the result in
Chan (2009), Chan and Zhang (2007), Alm (1997), and Aldous (1989). We take
the last time conditioning approach developed by Woodroofe (1976) to do the
approximation. In developing the overshoot correction term for higher dimen-
sions, we generalize the two-dimensional conditional distribution approximation
in Siegmund (1988) (Theorem 1). We first show the approximation for r = 1,
then apply the induction rule to get the results for any positive integer r.
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This paper is organized as follows. In Section 2, we state the main results. In

Section 3, we give a sketch of the proof. In Section 4, we report on a simulation

study. The paper ends with a brief discussion. We provide a computing formula

for the overshoot correction function ν in the Appendix.

2. Results

Our results give the asymptotic distributions for ML,∆,w. To simplify the

notation, we assume torus boundary conditions to avoid boundary effects, and

let wi = w, Li = L, and ∆i = ∆.

Theorem 1. Suppose b → ∞, λ1 := λ1(b,w) = b/wr ∈ (λ0 + δ, 1/δ) for some

small δ, and 1 ≫ w
L > ϵ for some ϵ > 0 and w ≫ ∆. Then, for r ≥ 1, we have

P{ML,∆,w ≥ b} ∼ (1− λ0

λ1
)2r−1 · br exp[−bθ + wr · (λ1 − λ0)]√

2πb

(
(
L

w
)ν(θ, α)

)r

,

(2.1)

where ν(θ, α) = (1− Eθ exp(−θSτ+))/((1− e−θ)EθSτ+), θ = log(λ1/λ0), and

α = (λ0, b, w,∆) parametrizes the local random walk {Sn, n > 1}, with Sn’s i.i.d.

sums of the difference of independent Poissons rates (λ1w
r−1∆) and (λ0w

r−1∆),

and τ+ = inf{n : Sn > 0}.

Remark 1. ν(θ, α) is a correction term for the overshoot of the process Sn to

exceed b. Sn’s are i.i.d. partial sum of two independent Poissons with mean

greater than 0, which means that P (Sτ+ ≥ 1) = 1 by the definition of τ+. In

the case of no overshoot P (Sτ+ = 1) = 1, ν(θ, α) = 1. It can be shown that

0 < ν(θ, α) ≤ 1 for non-negative θ. The computation formula can be found in

Woodroofe (1979) for non-arithmetic iid random variables and in Tu (2009) for

arithmetic iid random variables.

Remark 2. The condition on the lower bound of w/L ensures that the expres-

sion (2.1) is a small number, but it is not a crucial assumption in this approx-

imation. If w/L is so small that (2.1) is greater than .1, we can rewrite it as

1− exp(−expression (2.1)).

Theorem 2. If ∆ → 0,

P{ML,w ≥ b} ∼ (1− λ0

λ1
)2r−1 · br exp[−bθ + wr · (λ1 − λ0)]√

2πb

(
L

w

)r

. (2.2)

This result is consistent with those in Chan (2009) Chan and Zhang (2007),

Alm (1997), and Aldous (1989).

Remark 3. The difference between (2.1) and (2.2) is the overshoot correction

function ν(θ, α). When the ratchet effect is ignored, (2.2) is usually employed to

do the approximation for P{ML,∆,w ≥ b}.
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Theorem 3. Let λ0 = n/Lr and B(n, b, p) =
(
n
b

)
pb(1 − p)n−b. If the total

number of events n is known, then

P{ML,∆,w≥b | N(TL,∆)=n}∼(1−λ0

λ1
)2r−1 · brB(n, b,

wr

Lr
)

(
(
L

w
)ν(θ, α)

)r

, (2.3)

P{ML,w≥b | N(TL)=n}∼(1−λ0

λ1
)2r−1 · brB(n, b,

wr

Lr
)

(
L

w

)r

. (2.4)

Remark 4. The conditional distribution of {Xw(t) | N(L)=n} is binomial(n, p),

where p = wr/Lr. By Lemma 1 in Section 3, it can be observed that P0{Xw(t) =

b + k} ∼ P0{Xw(t) = b} · e−θk. This is true as long as Xw(t) belongs to an

exponential family. Then (exp[−bθ + wr · (λ1 − λ0)])/(
√
2πb) in (2.1) and (2.2)

is replaced by B(n, b, p), which leads to (2.3) and (2.4).

3. Sketch of the Proof for Theorem 1

Our approximation applies the last time conditioning approach developed

by Woodroofe (1976). The tail probability can be written as a product of the

probability of a fixed time event and a conditional probability of a maximum of

the process. Let i = (i1, . . . , ir) be the r-dimensional index. We write i > j if

and only if {ir > jr} or {ir−1 > jr−1} ∩ {ir = jr}, or . . . or {i1 > j1} ∩ {i2 =

j2} ∩ · · · ∩ {ir = jr}. Let D(i0) = {i | i > i0}.
Then

P{ max
t∈TL,∆

Xw(t) ≥ b}

∼
∑

t0∈TL,∆

∞∑
k=0

P{Xw(t0)=b+k}P{ max
t∈D(t0)

Xw(t)−Xw(t0)<−k | Xw(t0)=b+k}.

(3.1)

We need some lemmas to complete the proof.

Lemma 1. Let Y be a Poisson random variable with mean wrλ0. Let θ =

log(λ1/λ0), λ1 = b/wr, and Ar = exp[−bθ + wr · (λ1 − λ0)]/
√
2πb. Then

P{Y = b+ k} ∼ Are
−θk. (3.2)

Proof of Lemma 1. This approximation uses Stirling’s formula.

P{Y = b+ k} = (wrλ0)
b+k

(b+ k)!
e−wrλ0

∼ (wrλ0)
b+k√

2π(b+ k) (b+ k)b+k e−(b+k)
e−wrλ0
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∼ (wrλ0)
b+k

√
2πb bb+k ek e−(b+k)

e−wrλ0

=
exp[−bθ + wr · (λ1 − λ0)]√

2πb
e−θk

Lemma 2. Let x
(m)
i be the difference of independent Poissons with parameters

wr−1∆λ0 and wr−1∆λ1, let S
(m,+)
im

be the im
th partial sum of i.i.d. x

(m)
im

’s, and

let S
(m,−)
im

’s be i.i.d. copies of S
(m,+)
im

for all m and im. If B0(k) is a complete

set, B1(k) = {maxi1>0 S
(1,+)
i1

< −k}, and

Br(k) = Br−1(k)∩{ max
i1,...,ir−1≥0

ir>0

S
(1,−)
i1

+S
(2,−)
i2

+· · ·+S
(r−1,−)
ir−1

+S
(r,+)
ir

< −k}, (3.3)

then the distribution of

{ max
t∈D(t0)

Xw(t)−Xw(t0) < −k | Xw(t0) = b+ k} (3.4)

can be approximated by the distribution of the set Br(k).

Proof of Lemma 2. The proof of Lemma 2 for any r comes by extending the

method to prove the case for r = 2 in Siegmund (1988) and r = 3 in Loader

(1991).

By our definition, D(t0) = {t ∈ TL,∆ | {tr > t0r} or {tr−1 > t0r−1} ∩
{tr = t0r} or . . . or {t1 > t01} ∩ {t2 = t02} ∩ · · · ∩ {tr = t0r}}, and each index

t ∈ D(t0) has to satisfy (3.4). {t ∈ TL,∆ | tr > t0r} means that {t ∈ TL,∆ |
tr > t0r, ∀t1, . . . , tr−1}. By Siegmund (1988), we can approximate this conditional

set for the index set {t ∈ TL,∆ | tr > t0r} as

{ max
i1,...,ir−1≥0
p∈{+,−}

ir>0

S
(1,p)
i1

+ S
(2,p)
i2

+ · · ·+ S
(r−1,p)
ir−1

+ S
(r,+)
ir

< −k}.

Using the same argument, we can approximate this conditional distribution, with

index {t ∈ TL,∆ | {tr0 > t0r0} ∩ {tr0+1 = t0r0+1} ∩ · · · ∩ {tr = t0r}}, as

{ max
i1,...,ir0−1≥0

p∈{+,−}
ir0>0

S
(1,p)
i1

+ S
(2,p)
i2

+ · · ·+ S
(r0−1,p)
ir0−1

+ S
(r0,+)
ir0

< −k}.

Thus, we have

Br(k) = Br−1(k)∩{ max
i1,...,ir−1≥0
p∈{+,−}

ir>0

S
(1,p)
i1

+S
(2,p)
i2

+ · · ·+S
(r−1,p)
ir−1

+S
(r,+)
ir

< −k}. (3.5)
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From (3.5), it can be observed that

{ max
i1,...,ir−1≥0

ir>0

S
(1,+)
i1

+ S
(2,+)
i2

+ · · ·+ S
(r−1,+)
ir−1

+ S
(r,+)
ir

< −k}

is implied by

{max
i1>0

S
(1,+)
i1

< −k}
∩

· · ·
∩

{max
ir>0

S
(r,+)
ir

< −k}.

So, we can simplify (3.5) as

Br(k) = Br−1(k) ∩ { max
i1,...,ir−1≥0

ir>0

S
(1,−)
i1

+ S
(2,−)
i2

+ · · ·+ S
(r−1,−)
ir−1

+ S
(r,+)
ir

< −k}.

Lemma 3. Let Sn be the partial sum of i.i.d. xi’s, with xi the difference of
Poissons with parameters wr−1∆λ0 and wr−1∆λ1. Let Pθ be the exponential
tilted measure of the original measure P0, with θ = log(λ1/λ0). Then

Pθ{Sn = l} = P0{Sn = l} · eθl and P0{xi = l} = Pθ{xi = −l}. (3.6)

Proof of Lemma 3. The proof of Lemma 3 uses a change of measure method.
Let xi = ai − bi, where ai and bi are i.i.d. Poissons with means wr−1∆λ0 and
wr−1∆λ1. Notice that φ(θ) = log(EeS1θ) = log(Eea1θ) + log(Eeb1(−θ)) = 0.
Thus, we find Pθ{Sn = l} = P0{Sn = l} · eθl.

P0{xi = l} =
∞∑
k=0

Pλ0{ai = k + l}Pλ1{bi = k}

=
∞∑
k=0

Pλ1{ai = k + l}e−θ0(k+l)+wr−1∆(λ1−λ0)

·Pλ0{bi = k}eθ0k+wr−1∆(λ0−λ1)

=

∞∑
k=0

Pλ0{ai = k}Pλ1{bi = k + l}e−θ0l

= P0{xi = −l}e−θ0l (3.7)

= Pθ{xi = −l}. (3.8)

From (3.7) to (3.8), we use (3.6) with n = 1. It can be observed that, by changing
the measure to Pθ, ai and bi exchange their parameters.

Lemma 4. Let τ+ = inf{n > 0 | Sn > 0}, τ− = inf{n > 0 | Sn < 0}, and
µ = wr−1∆(λ1 − λ0) = b(∆/w)(1− e−θ). In the notation of Lemma 3,

∞∑
k=0

e−θkP{max
j>0

Sj < −k} = µ
(1− Eθe

−θSτ+ )

(1− e−θ)EθSτ+

= µν(θ, α). (3.9)
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Remark of Lemma 4. Lemma 4 uses the result of Lemma 3, P{maxj>0 Sj <
−k} = Pθ{minj>0 Sj>k}, and applies the Siegmund (1985) reuslt that P{minj>0

Sj > k}=µP (Sτ+ >k)/ESτ+ .

Lemma 5. With the notation of Lemma 3, let η be a positive integer. Then

η∑
k=0

eθ(η−k)P{max
i>0

Si < −k}P{max
i≥0

Si = η − k} = µ(1− e−θ)ν(θ, α). (3.10)

Proof of Lemma 5. By Lemma 3, we have P{maxi>0 Si < −k} = Pθ{mini>0 Si

> k} = µPθ(Sτ+ > k)/EθSτ+ . Let Z(k) = eθkP{maxi≥0 Si = k}, F (k) =
Pθ(Sτ+ > k), and f(k) = Pθ(Sτ+ = k). Then, Lemma 5 is equivalent to F∗Z(η) ≡∑η

k=0 F (k)Z(η − k) = 1 − Eθe
−Sτ+ = P (τ+ = ∞) for any non-negative integer

η. Notice that Z(0) = P{maxi≥0 Si = 0} = P (τ+ = ∞). When k ≥ 1, we have

Z(k) = eθk
k∑

k′=1

P (Sτ+ = k′)P{max
i≥0

Si = k − k′}

=
k∑

k′=1

eθk
′
P (Sτ+ = k′)Z(k − k′)

=
k∑

k′=1

f(k′)Z(k − k′)

=

k∑
k′=1

(
F (k′ − 1)− F (k′)

)
Z(k − k′)

= F ∗ Z(k − 1)− F ∗ Z(k) + F (0)Z(k). (3.11)

From (3.11), F ∗ Z(k − 1) = F ∗ Z(k) for any positive integer k, because
F (0) = 1. Thus, F ∗ Z(η) = F ∗ Z(0) = P (τ+ = ∞), and the proof is done.

Now, we continue with (3.1). For r = 1, we get the last time conditional
set as {maxj>0 Sj < −k} by Lemma 2. Thus the approximation at (2.1) can be
derived by using Lemma 1 and Lemma 4. (3.1) is approximated by

L

∆

exp[−bθ + w · (λ1 − λ0)]√
2πb

∞∑
k=0

e−θkPθ{max
j>0

Sj < −k}

= (1− λ0

λ1
) · bexp[−bθ + w · (λ1 − λ0)]√

2πb

(
L

w
ν(θ, α)

)
. (3.12)

Note that (3.12) gives (2.1) when r = 1.
For r ≥ 2, we rewrite the conditional set first. We condition on {maxi1≥0 S

1,−
i1

= η−k}, then take this set and the set {maxi1>0 S
1,+
i1

< −k} out by independen-

cies. The random variable maxi1≥0 S
1,−
i1

must be non-negative because the index
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includes 0. We sum over η from 0 to ∞ and thus force k to be summed from 0

to η. Let h(r) =
∑∞

k=0 e
−θkP (Br(k)), where Br(k) is defined in Lemma 2, then

(3.1) can be approximated as (L/w)rArh(r) by Lemma 2, where Ar is defined in

Lemma 1.

h(r) =
∞∑
k=0

e−θkP{max
i1>0

S1,+
i1

< −k; max
i1≥0;i2>0

S1,−
i1

+ S2,+
i2

< −k; . . . ;

max
i1,...,ir−1≥0

ir>0

S1,−
i1

+· · ·+Sr−1,−
ir−1

+Sr,+
ir

<−k}

=

∞∑
η=0

e−θηP{max
i2>0

S2,+
i2

<−η; . . . ; max
i2,...,ir−1≥0

ir>0

S2,−
i2

+. . .+Sr−1,−
ir−1

+Sr,+
ir

<−η}

η∑
k=0

eθ(η−k)P{max
i1>0

S1,+
i1

< −k}P{max
i1≥0

S1,−
i1

= η − k} (3.13)

= h(r − 1) · µ(1− e−θ)ν(θ, α). (3.14)

From (3.13) and (3.14), we use Lemma 5 and observe that the first line in (3.13)

is h(r − 1). By Lemma 1 and Lemma 4, we know that h(1) = µν(θ, α), also

shown in deriving (3.12). By (3.14), we get h(r) = (1 − e−θ)r−1µrνr(θ, α) =

br(1− e−θ)2r−1(w/∆)rνr(θ, α). Thus, (2.1) is proved for any r ≥ 2.

4. Simulation Examples

Applying Theorem 1, the thresholds for the Soudan-2 detector are provided

for various background intensities λ0 (see Table 1). A simulation experiment was

set to check the accuracies of the approximation (2.1) with r = 2 in Table 2.

The approximations are compared with Normal approximation, an importance

sampling simulation with 1,000 repetitions, and the direct Monte Carlo simula-

tion with 10,000 repetitions. To highlight the impact of the ratchet factor, an

approximation ignoring the ratchet effect is also presented.

Starting from the direct Monte Carlo procedure, we simulated Poissons on

each unit square ∆×∆, where ∆ is the shifting size. With {Q(k)
ij | 1 ≤ i ≤ L1, 1 ≤

j ≤ L2}, 1 ≤ k ≤ B, a B independent realization of the Poisson random field with

rate λ0. X(k)(i, j) =
∑i+w1−1

m=i

∑j+w2−1
n=j Q

(k)
ij , P̂D = B−1

∑B
k=1 I[maxi,j X(k)(i,j)≥b],

and ˆs.e.D = [P̂D(1− P̂D)/B]1/2 are the unbiased direct Monte Carlo estimate of

p := P (maxi,j X
(k)(i, j) ≥ b) and its consistent standard error estimate.

Following Chan and Zhang (2007), we used a change of measure impor-

tance sampling procedure for two-dimensional ratchet scan statistics that can

be modified easily to higher dimensional cases. We took (u(k), v(k)) randomly
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generated from ([1, L1] ∩ Z)× ([1, L2] ∩ Z), and generated X(k)(i, j) as an alter-

native measure P ∗ with Q
(k)
ij generated as independent Poissons with rate λ1 for

(i, j) ∈ [u(k), u(k) + w1 − 1] × [v(k), v(k) + w2 − 1], and with rate λ0 elsewhere.

Under this setting,

Lk =
dP ∗(k)

dP0
=

∑
1≤i≤L1,1≤j≤L2

e(λ0−λ1)w1w2
(λ1/λ0)

X(k)(i,j)

L1L2
.

Then

P̂I = B−1
B∑

k=1

L−1
k I[maxi,j X(k)(i,j)≥b]

and

ˆs.e.I = B−1(

B∑
k=1

L−2
k I[maxi,j X(k)(i,j)≥b] −BP̂ 2

I )
1/2

are unbiased estimate of p and its standard error estimate.

We give an example on deriving the threshold in detecting the muon source.

We use the window shifting size ∆ as the unit length. The window size is 29×56,

and the whole sky space is 1160×4480. Table 1 lists the scaled thresholds for .05

significance level for both ML,∆,w and ML,w, applying Theorem 1 and Theorem

2. We also show the scaled threshold calculated by Normal approximation for

both with and without ratchet effect. The results show that the tests are too

conservative if we ignore the ratchet effect. The threshold values in Table 1 have

been scaled as the numbers of standard deviation. We also show the p-value for

fixed b in Table 2, and we increase the ratio between window shifting size and

window size to magnify the ratchet effect. The window size is 9×9 and the whole

sky space is 180× 180. We also present the normal approximations in the tables

as a comparison. The important resampling method and the direct Monte Carlo

simulation are both quite consistent with Theorem 1.

It is a reasonable practice to approximate a Poisson random variable by a

Gaussian when the mean of X(t) is greater than five. However, in this case, we

see that even when the mean is above 30, discrepancies in threshold approxima-

tions still exist between these two, as skewness plays an important role in large

deviation approximations (Tu and Siegmund (1999); Tang and Siegmund (2001)).

For a scan statistic, the threshold is usually four or five standard deviations above

the mean, which is really a large deviation problem.

5. Discussion

Ratchet scan statistics are of practical interest. When ignoring the ratchet

effect, the critical value for a hypothesis test tends to be too conservative and
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Table 1. 2-dim Poisson Random Field.
Window Size = 29× 56, Whole Space = 1160× 4480

Thresholds for Type I Error = 0.05

scaled b (SD)
λ0 E0Xw(t) ML,∆,w ML,w

0.002 3.248 7.34 7.46
0.02 32.48 5.99 6.18
0.2 324.8 5.48 5.73
2. 3248 5.32 5.58
Norm. App. 5.23 5.52

Table 2. 2-dim Poisson Random Field.
Window Size: w1 = 9, w2 = 9, Whole Space: L1 = 180, L2 = 180

P (ML,∆,w ≥ b).

λ0 b Normal Thm. 1 Importance Direct Thm. 2
Approx with ratchet Sampling Monte Carlo ignore ratchet

effect 1,000 repetitions 10,000 repetitions effect
0.1 24 0.0002 0.0559 0.0535 0.0517 0.2093

25 0.00002 0.0194 0.0200 0.0174 0.0781
0.3 49 0.0045 0.0893 0.0833 0.0810 0.4446

50 0.0016 0.0453 0.0454 0.0424 0.2385
0.5 72 0.0060 0.0690 0.0736 0.0616 0.3990

73 0.0028 0.0395 0.0394 0.0341 0.2398
1.0 125 0.0080 0.0506 0.0491 0.0475 0.3498

126 0.0047 0.0307 0.0320 0.0300 0.3320

the test loses its power. We develop an approximation method to factor out

the ratchet effect on the tail probabilities as an overshoot function ν in each

dimension for any r-dimensional Poisson process. Although we use w1 = · · · =
wr, ∆1 = · · · = ∆r, and L1 = · · · = Lr for notation simplicity, it should be

very easy to generalize to any set of parameters {(Li, wi,∆i), 1 ≤ i ≤ r} given a

reasonable region. This method can also be extended to do the tail probability

approximation for a ratchet scan statistic over a compound Poisson process.
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Appendix

A computing formula for ν (Tu (2009)) Let x1, x2, . . . be arithmetic i.i.d.
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random variables with span h. If µ = Ex1 > 0, Ex21 < ∞, τ+ = inf{n : Sn > 0},
ϕ(t) = E exp(itx1), and ξ(t) =

∑∞
n=1 ϕ

n(t)/n = − log(1− ϕ(t)), then

ν(θ) = h
1− E exp(−θSτ+)

(1− exp(−θh))ESτ+

= exp
{−h

2π

∫ π/h

−π/h
dt
[(

ξ(t) + log(
µ(1− eiht)

h
)
)
(

e−θh−iht

1− e−θh−iht
+

1

1− eiht
)
]}

.
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