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Abstract: Poisson approximation using Stein’s method has been extensively studied

in the literature. The main focus has been on bounding the total variation distance.

This paper is a first attempt on moderate deviations in Poisson approximation for

right-tail probabilities of sums of dependent indicators. We obtain results under

certain general conditions for local dependence as well as for size-bias coupling.

These results are then applied to independent indicators, 2-runs, and the matching

problem.
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1. Introduction

Poisson approximation using Stein’s method has been applied to many areas,

ranging from computer science to computational biology. The main focus has

been on bounding the total variation distance between the distribution of a sum

of dependent indicators and the Poisson distribution with the same mean.

Broadly speaking, there are two main approaches to Poisson approximation,

the local approach and the size-bias coupling approach. The local approach

was first studied by Chen (1975) and developed further by Arratia, Goldstein,

and Gordon (1989, 1990), who presented Chen’s results in a form which is easy

to use, and applied them to a wide range of problems including problems in

extreme values, random graphs and molecular biology. The size-bias coupling

approach dates back to Barbour (1982) in his work on Poisson approximation

for random graphs. Barbour, Holst, and Janson (1992) presented a systematic

development of monotone couplings and applied their results to random graphs

and many combinatorial problems. A recent review of Poisson approximation

by Chatterjee, Diaconis, and Meckes (2005) used Stein’s method of exchangeable

pairs to study classical problems in combinatorial probability. They also reviewed

a size-bias coupling of Stein (1986, p.93).

http://dx.doi.org/10.5705/ss.2012.203s
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Although there is a vast literature on Poisson approximation, relatively little

has been done on such refinements as moderate deviations. For sums of indepen-

dent indicators, moderate deviations have been studied by Barbour, Holst, and

Janson (1992), Chen and Choi (1992), and Barbour, Chen, and Choi (1995). The

latter two actually considered the more general problem of unbounded function

approximation and deduced moderate deviations as a special case. However no

such results seem to have been obtained for dependent indicators, probably due

to the fact that unbounded function approximation becomes much harder for de-

pendent indicators. Although moderate deviations is a special case of unbounded

function approximation, it is of a similar nature as the latter and, as such, it is

also a difficult problem for dependent indicators.

This paper is a first attempt on moderate deviations in Poisson approxima-

tion for dependent indicators. We take both the local and the size-bias coupling

approach. Under the local approach we consider locally dependent indicators.

Under the size-bias coupling approach we consider size-bias coupling, which gen-

eralizes the monotone couplings of Barbour, Holst, and Janson (1992) and the

size-bias coupling of Stein (1986). In both approaches, we consider moderate

deviations for right-tail probabilities under certain general conditions.

This paper is organized as follows. Section 2 contains the main theorems.

In Section 3, we apply our main theorems to Poisson-binomial trials, 2-runs in a

sequence of i.i.d. Bernoulli random variables, and the matching problem. As far

as we know, the results for the last two applications are new. In Section 4 we

prove the main theorems.

2. Main Theorems

In this section, we state two general theorems on moderate deviations in

Poisson approximation, one under local dependence and the other under size-

bias coupling. Let | · | denote the Euclidean norm or cardinality.

2.1. Local dependence

Local dependence is a widely used dependence structure for Poisson approx-

imation. We refer to Arratia, Goldstein, and Gordon (1989, 1990) for results on

the total variation distance and applications. Here we prove a moderate deviation

result. Let Xi, i ∈ J , be random indicators indexed by J . Let W =
∑

i∈J Xi,

pi = P (Xi = 1), and λ =
∑
i∈J

pi > 0 . (2.1)

Suppose for each i ∈ J , there exists a subset Bi of J such that Xi is independent

of {Xj : j /∈ Bi}. The subset Bi is called a dependence neighborhood of Xi.
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Assume that
max
i∈J

|Bi| ≤ m, max
j∈J

|{i : j ∈ Bi}| ≤ m, (2.2)

and, for some δ, θ > 0,

E(
∑
i∈J

∑
j∈Bi\{i}

XiXj |W = w) ≤ δw2 for w ≤ θ. (2.3)

Let p̃ = maxi∈J pi.

Theorem 1. Let W =
∑

i∈J Xi be a sum of locally dependent random indicators
with dependence neighborhoods Bi satisfying (2.2) and (2.3). Then there exist
absolute positive constants c, C such that for k ≥ λ satisfying

k ≤ θ

Cm
, p̃(1 + ξ2) + δλ(1 + ξ2 +

ξ3√
λ
) ≤ c

m2
, (2.4)

where ξ = (k − λ)/
√
λ, we have∣∣∣P (W ≥ k)

P (Y ≥ k)
− 1

∣∣∣
≤ Cm2

{
p̃(1 + ξ2) + δλ(1 + ξ2 +

ξ3√
λ
)
}
+ C(1 ∧ 1

λ
)m2 exp(−cθ

m
), (2.5)

where Y ∼ Poi(λ).

Remark 1. The main difficulty in applying Theorem 1 is to verify the condition
(2.3). Intuitively, if for many i ∈ J , j ∈ Bi\{i}, pji := P (Xj = 1|Xi = 1) is
large, then given W = w, the w 1’s tend to appear in clusters, which makes the
left-hand side of (2.3) large (bounded by w2 in the extreme case). If pji is small,
then the w 1’s tend to be distributed widely, making the left-hand side of (2.3)
small (0 in the extreme case). It is a challenge to replace the δ in (2.3) by a
quantity involving only {pi, pji : i ∈ J , j ∈ Bi\{i}}.

2.2. Size-bias coupling

Baldi, Rinott, and Stein (1989) and Goldstein and Rinott (1996) used size-
bias coupling to prove normal approximation results by Stein’s method. In the
context of Stein’s method for Poisson approximation, size-bias coupling was used
implicitly by Stein (1986, p.93), Barbour (1982), Barbour, Holst, and Janson
(1992, p.23) and Chatterjee, Diaconis, and Meckes (2005, p.93). The following
definition of size-bias distribution can be found in Goldstein and Rinott (1996).

Definition 1. For W a non-negative random variable with EW = λ > 0, W s

has a W -size biased distribution if

EWf(W ) = λEf(W s) (2.6)

for all functions f such that the expectations exist.



1526 LOUIS H. Y. CHEN, XIAO FANG AND QI-MAN SHAO

We take W to be a non-negative integer-valued random variable, in partic-

ular, a sum of random indicators. If we can couple W with W s on the same

probability space, then we have a bound on the total variation distance between

L(W ) and a Poisson distribution.

Theorem 2. Let W be a non-negative integer-valued random variable with EW =

λ > 0. If W s is defined on the same probability space as W with a W -size biased

distribution, then

∥L(W )− Poi(λ)∥TV ≤ (1− e−λ)E|W + 1−W s|. (2.7)

Proof. Let h(w) = I(w ∈ A) for w ∈ Z+, where A is any given subset of Z+.

Let fh be the bounded solution (unique except at w = 0) to the Stein equation

λf(w + 1)− wf(w) = h(w)− Eh(Y ) (2.8)

where Y ∼ Poi(λ). It is known that (see, for example, Barbour, Holst, and

Janson (1992, p.7)

∆fh := sup
j∈Z+,j≥1

|fh(j + 1)− fh(j)| ≤ λ−1(1− e−λ). (2.9)

From (2.8) and the fact that W s is coupled with W and has the W -size biased

distribution, we have

|P (W ∈ A)− P (Y ∈ A)| = |λEfh(W + 1)− EWfh(W )|
= λ|E(fh(W + 1)− fh(W

s))|
≤ λ∆fhE|W + 1−W s|
≤ (1− e−λ)E|W + 1−W s|,

where the first inequality is obtained by writing fh(W + 1) − fh(W
s) as a tele-

scoping sum and using the definition of ∆fh, along with the fact that W s ≥ 1.

The second inequality follows from (2.9). Taking supremum over A yields (2.7).

Similar results as Theorem 2 can be found in Barbour, Holst, and Janson

(1992) and Chatterjee, Diaconis, and Meckes (2005). In order for the bound (2.7)

to be useful, we need to couple W with W s such that E|W +1−W s| is small. A

general way of constructing such size-bias couplings for sums of random indicators

is as follows; see, for example, Goldstein and Rinott (1996). Let X = {Xi}i∈J
be {0, 1}-valued random variables with P (Xi = 1) = pi, λ =

∑
i∈J pi, and let

W =
∑

i∈J Xi. Let I be independent of X with P (I = i) = pi/λ. Given i ∈ J ,

construct Xi = {Xi
j}j∈J on the same probability space as X such that

L(Xi
j : j ∈ J ) = L(Xj : j ∈ J |Xi = 1).

Then W s =
∑

j∈J XI
j has the W -size biased distribution.
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Theorem 3. Let W be a non-negative integer-valued random variable with EW =

λ > 0. Let W s be defined on the same probability space as W with a W -size bi-

ased distribution. Assume that ∆ := W +1−W s ∈ {−1, 0, 1} and that there are

non-negative constants δ1, δ2 such that

P (∆ = −1 | W ) ≤ δ1, P (∆ = 1 | W ) ≤ δ2W. (2.10)

For integers k ≥ λ, let ξ = (k − λ)/
√
λ. Then there exist absolute positive

constants c, C, such that for (δ1 + δ2λ)(1 + ξ2) ≤ c, we have∣∣∣P (W ≥ k)

P (Y ≥ k)
− 1

∣∣∣ ≤ C(δ1 + δ2λ)(1 + ξ2), (2.11)

where Y ∼ Poi(λ).

The conditions of Theorem 3 do not hold for all size-bias couplings. Never-

theless, in Section 3, we are able to apply Theorem 3 to prove moderate deviation

results for Poisson-binomial trials and the matching problem. It is possible to

replace the upper bounds in (2.10) by any polynomial function of W , resulting

in a change of the upper bound in (2.11). However we will not pursue this in this

paper.

3. Applications

In this section, we apply our main results to Poisson-binomial trials, 2-runs

in a sequence of i.i.d. indicators and the matching problem.

3.1. Poisson-binomial trials

Let Xi, i ∈ J , be independent with P (Xi = 1) = pi = 1 − P (Xi = 0). Set

λ =
∑

i∈J pi and p̃ = supi∈J pi. Let W =
∑

i∈J Xi. Following the construction

in Section 2.2, W s in (2.6) can be constructed as W s = W − XI + 1, where I

is independent of {Xi : i ∈ J } and P (I = i) = pi/λ for each i ∈ J . Therefore,

∆ = W + 1 −W s = XI and condition (2.10) is satisfied with δ1 = 0, δ2 = p̃/λ.

Applying Theorem 3, there exist absolute positive constants c, C such that∣∣∣P (W ≥ k)

P (Y ≥ k)
− 1

∣∣∣ ≤ Cp̃(1 + ξ2) (3.1)

for integers k ≥ λ and p̃(1+ ξ2) ≤ c where Y ∼ Poi(λ) and ξ = (k−λ)/
√
λ. The

range p̃(1 + ξ2) ≤ c is optimal for the i.i.d. case where pi = p̃ for all i ∈ J (see

Theorem 9.D of Barbour, Holst, and Janson (1992, p.188) and Corollary 4.3 of

Barbour, Chen, and Choi (1995)).

Remark 2. The moderate deviation result (3.1) also follows from Theorem 1

for sums of locally dependent random variables.
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3.2. 2-runs

Let {ξ1, . . . , ξn} be i.i.d. Bernoulli(p) variables with n > 10, p < 1/2. For
each i ∈ {1, . . . , n}, let Xi = ξiξi+1 where ξj+n = ξj−n = ξj for any integer
j ∈ {1, . . . , n}. Take W =

∑n
i=1Xi with mean λ = np2. Then W is a sum of

locally dependent random variables with m = 3 where m is defined in (2.2). For
each i ∈ {1, . . . , n} and any positive integer w ≤ cnp for some sufficiently small
constant c < 1/50 to be chosen later, we write

P (Xi = 1, Xi+1 = 1,W = w)

=
∑

m1≥0,m2≥1
m1+m2<w

P (Xi−m1 = · · · = Xi+m2 = 1, Xi−m1−1 = Xi+m2+1 = 0,W = w)

=:
∑

m1≥0,m2≥1
m1+m2<w

am1,m2 ,

where the sum is over integers. By writing

am1,m2 = pm1+m2+2(1− p)2P
( n−(m1+m2+5)∑

i=1

Xi = w − (m1 +m2 + 1)
)
,

we have for m1 +m2 + 1 < w,

am1,m2+1

am1,m2

= p
P (

∑n−(m1+m2+6)
i=1 Xi = w − (m1 +m2 + 2))

P (
∑n−(m1+m2+5)

i=1 Xi = w − (m1 +m2 + 1))
≤ Cp

w

λ
(3.2)

for some positive constant C. The last inequality is proved by observing that for
each event

{Xi = xi : 1 ≤ i ≤ n− (m1+m2+6)} with

n−(m1+m2+6)∑
i=1

xi = w− (m1+m2+2),

we can change one of the . . . 000 . . . to . . . 010 . . . and let xn−(m1+m2+5) = 0, thus
resulting in an event

{Xi = xi : 1 ≤ i ≤ n− (m1+m2+5)} with

n−(m1+m2+5)∑
i=1

xi = w− (m1+m2+1),

the probability of which is at least c1p
2 times the probability of the original event

for an absolute positive constant c1. Summing over the probabilities of all the
events obtained in this way, and correcting for the multiple counts, yields the
inequality in (3.2). By choosing c to be small,

am1,m2+1

am1,m2

≤ 1

4
.
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Similarly,

am1+1,m2

am1,m2

≤ 1

4
.

Therefore,

P (Xi = 1, Xi+1 = 1,W = w) ≤ Ca0,1 ≤ Cp3P
( n−6∑

i=1

Xi = w − 2
)
.

Similar to (3.2),

P
( n−6∑

i=1

Xi = w − 2
)
≤ C

(w2

λ2

)
P (W = w).

Therefore,

n∑
i=1

∑
j=i−1,i+1

E(XiXj |W = w) = 2n
P (Xi = Xi+1 = 1,W = w)

P (W = w)

≤ Cnp3
w2

λ2
=

C

np
w2

for w ≤ cnp with sufficiently small c. Applying Theorem 1, there exist absolute

positive constants c, C, such that for k ≥ λ and p + pξ2 + ξ3/
√
n ≤ c, where

ξ = (k − λ)/
√
λ, ∣∣∣P (W ≥ k)

P (Y ≥ k)
− 1

∣∣∣ ≤ C
(
p+ pξ2 +

ξ3√
n

)
, (3.3)

where Y ∼ Poi(λ). We remark that if λ ≍ O(1), then the range of ξ is of order

O(n1/6).

Remark 3. Although the rate O(n1/6) may not be optimal, we have not seen a

result like (3.3) in the literature. Our argument for 2-runs can be extended to

study k-runs for k ≥ 3.

3.3. Matching problem

For a positive integer n, let π be a uniform random permutation of {1, . . . , n}.
Let W =

∑n
i=1 δiπ(i) be the number of fixed points in π. In Chatterjee, Diaconis,

and Meckes (2005), W s satisfying (2.6) was constructed as follows. First pick I

uniformly from {1, . . . , n}, and then set

πs(j) =


I if j = I,

π(I) if j = π−1(I),

π(j) otherwise.
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Take W s =
∑n

i=1 δiπs(i). With ∆ = W + 1−W s, we have

P (∆ = 1|W ) =
W

n
, P (∆ = −1|W ) =

E(2a2|W )

n
≤ 2

n
,

where a2 is the number of transpositions of π, and the last inequality follows

since

E(2a2|W ) =
n−W

n−W − 1
≤ 2

for n −W ≥ 2, and E(2a2|W ) = 0 for n −W ≤ 1. By Theorem 3 with λ = 1,

there exist absolute positive constants c, C such that for all positive integers k

satisfying k2/n ≤ c, ∣∣∣P (W ≥ k)

P (Y ≥ k)
− 1

∣∣∣ ≤ Ck2

n
.

We remark that the order O(1/n) is the same as that of the total variation

bounds in Barbour, Holst, and Janson (1992) and Chatterjee, Diaconis, and

Meckes (2005). As remarked in those papers, this order is not optimal; it is an

open problem to prove the actual order O(2n/n!) using Stein’s method.

4. Proofs

We use c, C, to denote absolute positive constants whose values may be

different at each appearance.

Lemma 1. For any integer w ≥ λ > 0,

∞∑
j=0

λj w!(j + 1)

(j + w + 1)!
≤ C. (4.1)

Proof. We first bound λj by wj . Next, by expanding the product (w+ j +1)×
· · · × (w + 1) in terms of w and then bounding it below by wj+1 and cj4wj−1,

respectively, in the expansion, we have

∞∑
j=0

λj w!(j + 1)

(j + w + 1)!
≤

∞∑
j=0

wj j + 1

(w + j + 1)× · · · × (w + 1)

≤
∑

j≤
√
w

j + 1

w
+

∑
j>

√
w

j + 1

cj4/w
≤ C,

as desired.
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Lemma 2. Let Y ∼ Poi(λ) with λ > 0. Then we have

P (Y ≥ k) ≥ c > 0 for all integer k < λ, (4.2)

P (Y ≥ k)

P (Y ≥ k − 1)
≥ λ

λ+ k
for all integer k ≥ 1, (4.3)

P (Y ≥ k) ≤ P (Y = k)
k + 1

k − λ+ 1
for all integer k > λ− 1. (4.4)

Proof. The inequality in (4.2) is trivial when λ < 1 or 1 ≤ λ ≤ C for some

absolute constant C. When λ > C, we can use normal approximation to prove

(4.2).

For (4.3), noting that

P (Y ≥ k) = P (Y = k)(1 +
λ

k + 1
+

λ2

(k + 1)(k + 2)
+ · · · )

≥ λ+ k + 1

k + 1
P (Y = k),

we have

P (Y ≥ k)

P (Y ≥ k − 1)
= 1− P (Y = k − 1)

P (Y ≥ k − 1)
≥ 1− k

λ+ k
=

λ

λ+ k
.

The inequality in (4.4) follows by observing that

P (Y ≥ k) = P (Y = k)(1 +
λ

k + 1
+

λ2

(k + 1)(k + 2)
+ · · · )

≤ P (Y = k)(1 +
λ

k + 1
+

λ2

(k + 1)2
+ · · · )

= P (Y = k)
k + 1

k − λ+ 1
.

The bounded solution fh (unique except at w = 0) to the Stein equation

λf(w + 1)− wf(w) = h(w)−Eh(Y ), (4.5)

where Y ∼ Poi(λ) and h(w) = I{w ≥ k} for fixed integer k ≥ λ > 0, is

fh(w) = −eλ(w − 1)!

λw
E(h(Y )− Eh(Y ))I{Y ≥ w}

=

− eλ(w−1)!
λw (1− P (Y ≥ k))P (Y ≥ w), w ≥ k,

− eλ(w−1)!
λw P (Y ≥ k)P (Y ≤ w − 1), 0 < w ≤ k.

Although fh(0) does not enter into consideration, we set fh(0) := fh(1).
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For w ≥ k,

fh(w)− fh(w + 1)

1− P (Y ≥ k)
=

eλw!

λw+1
P (Y ≥ w + 1)− eλ(w − 1)!

λw
P (Y ≥ w)

=

∞∑
j=w+1

w!

j!
λj−w−1 −

∞∑
j=w

(w − 1)!

j!
λj−w

=

∞∑
j=0

λj(
w!

(j + w + 1)!
− (w − 1)!

(j + w)!
)

= −
∞∑
j=0

λj (w − 1)!(j + 1)

(j + w + 1)!
,

and hence by (4.1),

0 < fh(w + 1)− fh(w) ≤
C

w
for w ≥ k. (4.6)

For 0 ≤ w ≤ k − 1,

fh(w)− fh(w + 1)

P (Y ≥ k)
= g1(w),

where

g1(w) =
eλw!

λw+1
P (Y ≤ w)− eλ(w − 1)!

λw
P (Y ≤ w − 1) (4.7)

and g1(0) := 0.

Let W be a non-negative integer-valued random variable with EW = λ > 0,

and let Y ∼ Poi(λ). Define

ηk := sup
λ≤r≤k

P (W ≥ r)

P (Y ≥ r)
. (4.8)

By (4.2),

sup
0≤r≤k

P (W ≥ r)

P (Y ≥ r)
≤ ηk + C. (4.9)

Lemma 3. The function g1 is non-negative, non-decreasing and

g1(w) ≤
1

λ
+

(w − 1)!(w − λ)+
λw+1

eλ (4.10)

for all w ≥ 1 where x+ denotes the positive part of x.

Proof. For w ≥ 1, g1(w) can be expressed as

eλw!

λw+1
P (Y ≤ w)− eλ(w − 1)!

λw
P (Y ≤ w − 1)
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=
eλ

λw+1

∫ ∞

λ
xwe−xdx− eλ

λw

∫ ∞

λ
xw−1e−xdx

= eλ
∫ ∞

1
xw−1(x− 1)e−λxdx

=

∫ ∞

0
x(1 + x)w−1e−λxdx,

from which g1 is non-negative and non-decreasing. Also for w ≥ 1,

eλw!

λw+1
P (Y ≤ w)− eλ(w − 1)!

λw
P (Y ≤ w − 1)

=
eλw!

λw+1
P (Y = w) +

( eλw!
λw+1

− eλ(w − 1)!

λw

)
P (Y ≤ w − 1)

≤ 1

λ
+

(w − 1)!(w − λ)+
λw+1

eλ.

Lemma 4. For any non-negative and non-decreasing function g : {0, 1, 2, . . . } →
R and any k ≥ 0, we have

Eg(W ∧ k) ≤ C(ηk + 1)Eg(Y ∧ k). (4.11)

Proof. Write

g(W ∧ k) = g(0) +

k∑
j=1

(g(j)− g(j − 1))I(W ≥ j).

From (4.9) and the fact that g is non-decreasing, we have

Eg(W ∧ k) ≤ g(0) + C(ηk + 1)
k∑

j=1

(g(j)− g(j − 1))P (Y ≥ j)

= C(ηk + 1)Eg(Y ∧ k).

Lemma 5. For all k ≥ 0, we have

Eg1((W + 1) ∧ k) ≤ C(ηk + 1)
( 1
λ
+

(k + 1− λ)2+
λ2

)
, (4.12)

E[(W ∧ k)g1(W ∧ k)] ≤ C(ηk + 1)
(
1 +

(k − λ)2+
λ

)
, (4.13)

E[(W ∧ k)2g1(W ∧ k)] ≤ C(ηk + 1)
(
λ+ (k − λ)2+ +

(k − λ)3+
λ

)
. (4.14)
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Proof. The case k = 0 is trivial. Let k ≥ 1. For any p ∈ {0, 1}, q ≥ 0, by (4.11)

and (4.10),

E
[
((W + p) ∧ k)qg1((W + p) ∧ k)

]
≤ C(ηk + 1)E

[
((Y + p) ∧ k)qg1((Y + p) ∧ k)

]
≤ C(ηk + 1)

(kq
λ

+A(k, p, q) +B(k, q)
)
,

where

A(k, p, q) = E
[(Y + p)q(Y + p− 1)!(Y + p− λ)+

λY+p+1
eλI(1− p ≤ Y ≤ k − 1)

]
,

B(k, q) =
kq(k − 1)!(k − λ)+

λk+1
eλP (Y ≥ k).

Using (4.4), B(k, q) is bounded by

B(k, q) ≤ kq

λ

(k − λ)+
k

k + 1

k − λ+ 1
≤ kq

λ
.

The relevant special cases of the quantities A(k, p, q) are

A(k, 1, 0) =

k−1∑
w=0

(w + 1− λ)+
λ2

≤
(k + 1− λ)2+

2λ2
,

A(k, 0, 1) =

k−1∑
w=1

(w − λ)+
λ

≤
(k − λ)2+

2λ
,

A(k, 0, 2) =
k−1∑
w=1

w(w − λ)+
λ

=
k−1∑
w=1

[
(w − λ)+ +

(w − λ)2+
λ

]
≤

(k − λ)2+
2

+
(k − λ)3+

3λ
.

Combining these bounds and observing that (k − λ)+ ≤ C(λ+ (k − λ)2+) yields

the desired result.

We first prove Theorem 3, which is easier than Theorem 1.

Proof of Theorem 3. For fixed integer k ≥ λ, let h(w) = I{w ≥ k}. Observe

that by (2.6), for general f ,

E(λf(W + 1)−Wf(W )) = λE(f(W + 1)− f(W s)). (4.15)

In particular, for f := fh,

Eh(W )− Eh(Y ) = λE(f(W + 1)− f(W s)) := H1 +H2, (4.16)
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where

H1 = λE
[
(f(W + 1)− f(W + 2))I{∆ = −1}

]
,

H2 = λE
[
(f(W + 1)− f(W ))I{∆ = 1}

]
.

Using (2.10), the definition of ηk in (4.8), and the properties of fh, H1 is bounded

by

|H1| ≤ λδ1E
[
|f(W + 1)− f(W + 2)|(I(W + 1 ≥ k) + I(W + 1 ≤ k − 1))

]
≤ λδ1

CP (W ≥ k − 1)

k
+ λδ1P (Y ≥ k)E

[
I(W + 1 ≤ k − 1)g1(W + 1)

]
≤ λδ1

CP (W ≥ k − 1)

k
+ λδ1P (Y ≥ k)Eg1((W + 1) ∧ (k − 1))

≤ CP (Y ≥ k)δ1(ηk + 1) + CP (Y ≥ k)δ1(1 +
(k − λ)2

λ
)(ηk + 1),

where we used (4.9), (4.3) and (4.12).

Similarly,

|H2| ≤ λδ2E
[
W |f(W )− f(W + 1)|(I(W ≥ k) + I(W ≤ k − 1))

]
≤ Cλδ2P (W ≥ k) + λδ2P (Y ≥ k)E

[
I(W ≤ k − 1)Wg1(W )

]
≤ Cλδ2P (W ≥ k) + λδ2P (Y ≥ k)E

[
(W ∧ (k − 1))g1(W ∧ (k − 1))

]
≤ CP (Y ≥ k)λδ2ηk + CP (Y ≥ k)δ2(λ+ (k − λ)2)(ηk + 1).

by (4.8) and (4.13). Therefore,∣∣∣P (W ≥ k)

P (Y ≥ k)
− 1

∣∣∣ ≤ C(ηk + 1)(δ1 + δ2λ)(1 + ξ2). (4.17)

Since the right-hand side here is increasing in k, we have

ηk − 1 ≤ C(ηk + 1)(δ1 + δ2λ)(1 + ξ2). (4.18)

The bound in (2.11) is proved by solving this recursive inequality.

Proof of Theorem 1. From (4.5) and the definition of the neighborhood Bi,

we have

P (W ≥ k)− P (Y ≥ k)

=
∑
i∈J

EXi[f(Vi + 1)− f(W )] +
∑
i∈J

piE[f(W + 1)− f(Vi + 1)]

=:H3 +H4,

where Vi :=
∑

j /∈Bi
Xj .
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We bound H4 first. Write {Xk : k ∈ Bi} = {Xij : 1 ≤ j ≤ |Bi|}, where |Bi|
is the cardinality of Bi and Xi,|Bi| := Xi. Let

Vij := Vi +

j−1∑
l=1

Xil + 1.

From the definition, if Xij = 1, then W ≥ Vij . By the definitions of p̃,m and the

properties of f ,

|H4| ≤
∑
i∈J

piE
{ |Bi|∑

j=1

Xij

∣∣f(Vij)− f(Vij + 1)
∣∣[I(Vij ≥ k) + I(Vij ≤ k − 1)

]}
≤ p̃E

{∑
i∈J

|Bi|∑
j=1

Xij

[CI(Vij ≥ k)

Vij
+ P (Y ≥ k)g1(Vij)I(Vij ≤ k − 1)

]}

≤ p̃E
{∑

i∈J

|Bi|∑
j=1

Xij

[CmI(W ≥ k)

W

+P (Y ≥ k)g1(W ∧ (k − 1))I(W ≤ k +m)
]}

≤mp̃
{
CmP (W ≥ k)

+P (Y ≥ k)E
[
WI(k ≤ W ≤ k +m)g1(k − 1)

]
+P (Y ≥ k)E

[
(W ∧ (k − 1))g1(W ∧ (k − 1))

]}
.

By (4.8), (4.10), (4.4) and (4.13),

|H4| ≤ CP (Y ≥ k)m2p̃(ηk + 1)
[
1 +

(k − λ)2

λ

]
.

Let c1 ≥ 1 be an absolute constant to be chosen later such that c1km < θ. We

have

|H3| ≤
∑
i∈J

E
{
Xi

|Bi|−1∑
j=1

Xij

∣∣f(Vij)− f(Vij + 1)
∣∣

×
[
I(W ≤ c1km) + I(c1km < W ≤ θ) + I(W > θ)

]}
=:H3,1 +H3,2 +H3,3.

By (2.3), H3,1 can be bounded similarly as for |H4| as

H3,1 ≤
∑
i∈J

E
{
Xi

|Bi|−1∑
j=1

Xij

[CI(Vij ≥ k)

Vij
I(W ≤ c1km)
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+P (Y ≥ k)g1(Vij)I(Vij ≤ k − 1)
]}

≤
∑
i∈J

E
{
Xi

|Bi|−1∑
j=1

Xij

[CmI(W ≥ k)

W
I(W ≤ c1km)

+P (Y ≥ k)g1(W ∧ (k − 1))I(W ≤ k +m)
]}

≤ CmδE
[
WI(k ≤ W ≤ c1km)

]
+δP (Y ≥ k)E

[
W 2I(k ≤ W ≤ k +m)g1(k − 1)

]
+δP (Y ≥ k)E

[
W 2I(1 ≤ W ≤ k − 1)g1(W )

]
≤ CP (Y ≥ k)(ηk + 1)δm2(λ+ (k − λ)2 +

(k − λ)3

λ
),

where we used (4.14) in the last inequality. Similarly,

H3,2 ≤ CmδEWI(c1km < W ≤ θ)

+CP (Y ≥ k)(ηk + 1)δm2(λ+ (k − λ)2 +
(k − λ)3

λ
).

From (4.20) of Lemma 6, proved later, there exists an absolute positive constant

C such that for c1 > C and k < θ/Cm,

CmδEWI(c1km < W ≤ θ) ≤ CmδE[WI(W > c1km)]

≤ Cm2δP (Y ≥ k).

By (4.20) and the upper bound |f(w)− f(w + 1)| ≤ 1 ∧ 1
λ for all integers w ≥ 1

(see, for example, Barbour, Holst, and Janson (1992)),

H3,3 ≤ P (Y ≥ k)(1 ∧ 1

λ
)m2 exp(−cθ

m
).

Therefore,

|H3| ≤ CP (Y ≥ k)(ηk + 1)δm2(λ+ (k − λ)2 +
(k − λ)3

λ
)

+P (Y ≥ k)(1 ∧ 1

λ
)m2 exp(−cθ

m
).

From the bounds on |H3| and |H4|, we have

|P (W ≥ k)

P (Y ≥ k)
− 1| ≤ C(ηk + 1)m2

{ p̃

λ
(λ+ (k − λ)2) + δ(λ+ (k − λ)2 +

(k − λ)3

λ
)
}

+(1 ∧ 1

λ
)m2 exp(−Cθ).
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Since the right-hand side of this bound is increasing in k, we have

ηk − 1 ≤ C(ηk + 1)m2
{ p̃

λ
(λ+ (k − λ)2) + δ(λ+ (k − λ)2 +

(k − λ)3

λ
)
}

+(1 ∧ 1

λ
)m2 exp(−cθ

m
).

Solving the above inequality yields Theorem 1.

For the next lemma, we need a Bennett-Hoeffding inequality. Let {ξi, 1 ≤
i ≤ n} be independent random variables. Assume that Eξi ≤ 0, ξi ≤ a(a > 0)

for each 1 ≤ i ≤ n, and
∑n

i=1Eξ2i ≤ B2
n. Then for x > 0

P (

n∑
i=1

ξi ≥ x) ≤ exp(−B2
n

a2
{(1 + ax

B2
n

) log(1 +
ax

B2
n

)− ax

B2
n

}).

In particular, for x > 4B2
n/a

P (

n∑
i=1

ξi ≥ x) ≤ exp(− x

2a
log(1 +

ax

B2
n

)). (4.19)

Lemma 6. Let W be defined as in Theorem 1. Then there exists an absolute

constant C such that for θ > Ckm, we have

EWI(W > x) ≤ Cm exp(− x

8m
log(1 +

x

2mλ
)). (4.20)

Proof. We follow the proof of Lemma 8.2 in Shao and Zhou (2012). Separate J
into Jl, 1 ≤ l ≤ m, such that for each l, Xi, i ∈ Jl are independent. This can be

done by coloring {Xi : i ∈ J } one by one, and in step j we color Xj such that

it is independent of those {Xi : i < j} with the same color. The total number

of colors used can be controlled by m because of (2.2). Write Wl =
∑

i∈Jl
Xi.

Then for y > 0,

EWI(W > 2ym) = 2ymP (W > 2ym) + 2m

∫ ∞

y
P (W > 2tm)dt

≤ 2E(W − ym)+ + 2

∫ ∞

y

1

t
E(W − tm)+dt

≤ 2
∑

1≤l≤m

E(Wl − y)+ + 2
∑

1≤l≤m

∫ ∞

y

1

t
E(Wl − t)+dt

For s > 5λl := 5
∑

i∈Jl
pi, by (4.19),

P (Wl > s) ≤ exp(−s

4
log(1 +

s

λl
)).
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For t ≥ y > 5λl,

E(Wl − t)+ =

∫ ∞

t
P (Wl > s)ds

≤
∫ ∞

t
exp(−s

4
log(1 +

s

λl
))ds

≤ 4 exp(− t

4
log(1 +

t

λ l
)),∫ ∞

y

1

t
E(Wl − t)+dt ≤ 4

∫ ∞

y

1

t
exp(− t

4
log(1 +

t

λ l
))dt

≤ 16

y
exp(−y

4
log(1 +

y

λ l
)).

Combining these inequalities yields

EWI(W > 2ym) ≤ 8m exp(−y

4
log(1 +

y

λ
))(1 +

4

y
). (4.21)
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