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Abstract: Copy number variations (CNVs) are a major source of genetic variation

in humans. In large-scale genome-wide association studies (GWAS), CNVs have

been detected from the intensity data generated by SNP genotyping arrays and

then tested for association. This strategy lacks statistical power for detecting as-

sociations with short CNVs. In this article, we propose methods for testing the

association for each probe, based on a Hidden Markov Model that leverages infor-

mation from nearby probes in the same CNV region. Our methods do not require

specifying CNV regions, are convenient for genome-wide scan data, and work for

both population-based and family-based studies. Through simulation studies, we

found that loss of efficiency due to CNV calling uncertainty was very small even for

short CNVs covering as few as four probes in case-control studies. The efficiency

loss was larger for short CNVs in family studies. We applied our methods to a

large family-based GWAS of autism in 831 trios, and identified a genomic region

on chromosome 17q22 harboring deletions that may contribute to the disease risk.

Our methods are computationally efficient, requiring only two hours to analyze the

genome-wide intensity data of all trios using a single Linux core.

Key words and phrases: Copy number variation, family-based study, genome-wide

association study, Hidden Markov Model, TDT.

1. Introduction

Copy number variations (CNVs) are pervasive in the human genome and

have been reported to be associated with many complex diseases in genome-wide

association studies (GWAS) based on SNP arrays. Unlike GWAS SNP analysis,

where no causality can be inferred, detected rare CNVs are very likely to be

causal. Identifying disease-causing rare CNVs helps to elucidate the etiology

of complex diseases and may ultimately contribute to molecular diagnosis and

treatment.

CNVs are associated with a disease if cases are more likely to carry a CNV in

case-control studies (Figure 1A and 1B) or if the CNV carried by parents is more

likely to be transmitted to affected offspring in family-based studies (Figure 1C).

Most CNV analyses in GWAS have been based on a two-stage strategy: (1) detect

CNVs for each subject using CNV detection packages (see e.g., Olshen et al.

http://dx.doi.org/10.5705/ss.2012.071s
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Figure 1. CNVs are associated with the disease in case-control studies and
family studies. A: CNVs have the same boundary in case-control studies. B.
CNVs overlap but do not have the same boundary. C: The mother carries
a deletion. If the deletion is associated with disease status, it is more likely
to be transmitted to the affected offsprings.

(2004), Wang et al. (2007), Colella et al. (2007), Korn et al. (2008) Wang et al.

(2009), Zhang et al (2010), Jeng, Cai, and Li (2010), Shi and Li (2012)) and

(2) perform probe-wise or segment-wise association tests to identify candidate

susceptibility CNV regions. This strategy has proven successful for detecting

long CNVs associated with diseases. However, the majority of germline CNVs

are short and covered by only a few probes in current genotyping platforms.

Hence, associations of short CNVs with diseases cannot be detected with good

power.

A second strategy is to directly test the association without calling CNVs

from the intensity data. For example, Ionita-Laza et al. (2008) proposed a

method for nuclear families that tested the association with each probe using

its Log R Ratio (LRR) as a CNV surrogate. Eleftherohorinou et al. (2011) pro-

posed a similar strategy for detecting CNV associations for quantitative traits

in nuclear families. Barnes et al. (2008) developed a likelihood framework to

test associations for case-control studies in given CNV regions. These methods

work well only for known CNV regions but may miss rare, undocumented CNVs,

which are of primary interest in GWAS. Also, they may lose power when the

CNVs do not completely overlap. In addition, these methods may further lose

power because they do not utilize the B-Allele Frequency (BAF).

In this article, we develop methods for detecting CNV associations in both

case-control and family-based studies. Our methods integrate intensity informa-

tion from probes in a CNV region using a Hidden Markov Model (HMM). Our

methods do not require the specification of CNV regions, and therefore are con-

venient to use in GWAS. We demonstrate through extensive simulations that,

under realistic parameter settings in case-control studies, our methods have high
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relative efficiency even for short CNVs covering as few as four probes while main-

taining expected type-I error rates. Relative efficiency is lower in family-based

studies than case-control studies. Type-I error rates are robust to misspecifica-

tion of model parameters in both case-control studies and family-based studies.

Finally, we applied our methods to a GWAS of autism based on nuclear fami-

lies and identified one promising genomic regions harboring deletions that may

contribute to the risk of autism.

2. Methods

2.1. Characteristics of the intensity data for CNV inferences

CNVs are inferred from the raw intensity measurements obtained from the

genotyping array. Each DNA sample is preprocessed and then genotyped at

M SNP probes. For each probe, we denote the two alleles as A and B. Each

probe has two measurements derived from the raw intensity data: the Log R

Ratio (LRR) and the B Allele Frequency (BAF). The LRR measures the total

intensity of the fluorescence used to label the probe in the assay; LRR is then an

approximation of the total amount of DNA. The BAF measures the proportion

of the DNA attributable to the B allele. For example, for a probe with copy

number (CN) 3, the four possible genotypes AAA, AAB, ABB, and BBB have

BAFs close to 0, 1/3, 2/3 and 1, respectively. BAFs are truncated to [0,1]. The

distributions of LRRs and BAFs are illustrated in Figure 2. For convenience,

we use Ω to represent all parameters characterizing these distributions. In this

paper, we assume that Ω is known.

2.2. Testing association with CNVs in case-control studies

Consider a set of N subjects genotyped at M markers on one chromosome.

For the ith subject, let Yi ∈ {0, 1} denote the binary disease status. Let Xit

denote the LRR, Bit the BAF and Cit the CN at the tth probe. Here, Cit ∈
{0, 1, 2, 3, 4} : Cit = 2 suggests copy normal; Cit = 0, 1 denote deletions; Cit = 3, 4

denote duplications. Let Oit = (Xit, Bit) and Oi = (Oi1, . . . , OiM ). Hence, Oi

denotes all observed information for the subject. Given Cit, Xit and Bit are

independent,

P{Oit = (Xit, Bit)|Cit} = P{Xit|Cit}P{Bit|Cit}. (2.1)

In Appendix A, we describe the computation of P{Xit|Cit} and P{Bit|Cit}.
We develop a score statistic to test if the CNV status at probe t is associated

with the disease status. We assume that

P (Yi = 1|Cit = c)

P (Yi = 0|Cit = c)
= eα+βS(c). (2.2)



1466 JIANXIN SHI AND PENG LI

Figure 2. A: The distribution of LRRs for probes with different copy num-
bers. Estimated from the intensity data of long, experimentally validated
CNVs in Autism Genetic Resource Exchange (www.agre.org) Consortium.
Note that the distributions of CN1, CN2, and CN3 at each probe are not
well separated. Figures B-F illustrate the distribution of BAFs for different
copy numbers and genotypes.

Here S(c) is the score assigned to each CNV status c, which makes our framework

flexible enough to test different CNV effects. We take ptc = P{Cit = c|Yi = 0}
to be the CNV frequencies in the control population. Then

P{Cit = c|Yi = 1} =
eβS(c)ptc∑
c′ e

βS(c′)ptc′
. (2.3)

The retrospective likelihood is P{Oi|Yi} =
∑

c P{Oi|Cit = c, Yi}P{Cit = c|Yi}.
We assume that the intensity data Oi and Yi are independent given Cit, a rea-

sonable assumption if the cases and controls are genotyped using the same geno-

typing platform and balanced in plates. Otherwise, parameters Ω should be

estimated separately. Under this assumption,

P{Oi|Yi} =
∑
c

P{Oi|Cit = c}P{Cit = c|Yi}. (2.4)

We define

Titc = P{Oi|Cit = c}. (2.5)

This probability effectively captures all available information in the nearby probes

for inferring Cit. In Section 2.3., we compute Titc based on a HMM.
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Let Pt = (pt0, . . . , pt4). Take l(β, Pt) =
∑N

i=1 logP{Oi|Yi} as the retrospec-

tive log likelihood function summarizing all subjects. Combining (2.3), (2.4), and

(2.5) gives:

l(β, Pt) =

N∑
i=1

{
log

4∑
c=0

eβYiS(c)ptcTitc − log

4∑
c=0

eβYiS(c)ptc

}
. (2.6)

Interests center on testing H0 : β = 0, that the copy number score S(c) at probe

t is not associated with the disease status. In Appendix B, we derive a score

statistic Zt. The nuisance parameters Pt are estimated using the EM algorithm

under H0.

We define ∆ to be the set of probes with estimated CNV (deletion, dupli-

cation or both) frequencies between 0.01 and 0.05. We only test the association

for probes in ∆, because rarer CNVs are not powered and more common CNVs

are tagged by common SNPs. Let Zmax = maxt∈∆ |Zt|. The genome-wide sig-

nificance is approximated by permutations. In practice, restricting analysis to ∆

excludes 90% to 95% probes and hence substantially reduces the multiple test-

ing burden. The high correlation among the score statistics in the same CNV

region further reduces multiple testing burden, which will be evaluated using

simulations.

Comment: The framework can be applied to other genotyping platforms, e.g.

array-comparative genomic hybridization (aCGH) with only non-polymorphic

probes and genotyping platforms with both polymorphic and non-polymorphic

probes. Because non-polymorphic probes do not have BAFs, (2.1) reduces to

P{Xit|Cit}.

2.3. Compute Titc based on a Hidden Markov Model

We choose to use a HMM to integrate the intensity of probes in the neigh-

borhood to maximize the power. This is particularly convenient because of no

requirement for specifying CNV regions. The settings of HMM are similar to

most HMMs designed for CNV analysis (e.g., Wang et al. (2007), Colella et al.

(2007)).

At probe t, the hidden state is Cit. The emission probability P{Oit|Cit} is

computed in (2.1). The transition probability

at,kj = P{Ci,t+1 = j|Ci,t = k} =

{
Akj(1− e−λdt) if k ̸= j;

1−
∑

l ̸=k at,kl if k = j,

is assumed to depend on the physical distance dt, a constant λ and the base-

line transition probability matrix A. Both λ and A can be estimated based on

Hapmap samples genotyped using the same genotyping platform because the
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CNV status of these samples have been accurately inferred by deep sequencing

and experimentally validated.

Note that Titc = P{Oi|Cit = c} can be written as Titc = P{Oi1, . . . , Oi,t−1|
Cit = c}P{Oit|Cit = c}P{Oi,t+1, . . . , Oi,M |Cit = c}. Let T+

itc = P{Oi,t+1, . . .,

Oi,M |Cit = c} and T−
itc = P{Oi1, . . . , Oi,t−1|Cit = c}. Then, T+

itc can be computed

efficiently using the backward algorithm in HMM by the induction rule

T+
itc =

4∑
j=0

at,cjP{Oi,t+1|Ci,t+1 = j}T+
i,t+1,j . (2.7)

The initial condition is TiMc = 1 for all c. Similarly, T−
itc can be computed by

reversing the index of the Markov chain. We only need to compute Titc once.

2.4. Testing associations of CNVs in nuclear families

Consider a genetic study with N complete nuclear families genotyped at

M SNP probes. Family i has ni affected offsprings. For the jth subject in

the ith family, let Oij denote the intensity at all probes and Cijt be the copy

number at probe t. Here, j ∈ {f,m} indexes parents and j ∈ {1, . . . , ni} indexes

offsprings. If the CNV status is known for each subject, the associations can

be tested using the transmission disequilibrium test (TDT; Spielman, McGinnis,

and Ewens (1993)) or FBAT (Laird, Horvath, and Xu (2000)).

Ideally, one shall make full use of family information to jointly call CNVs

(Wang et al. (2008)) and then perform TDT or FBAT. However, the sensitivity

of detecting a CNV transmitted from a parent to an offspring is higher than a

CNV not transmitted. This unequal sensitivity creates a substantial bias in TDT,

particularly for short CNVs with great calling uncertainty (simulation results not

shown). A second option is to develop a statistic based on a likelihood function

conditioning on the phenotype of the offsprings and the intensity data of the

parents, following the argument of Schaid (1996), and Laird, Horvath, and Xu

(2000). However, the score statistic based on this strategy is again biased under

H0 (simulations results not shown) due to the fact that the transmitted CNVs

have higher posterior probabilities than untransmitted CNVs.

Hence, we discarded family information when inferring CNV status and de-

rived a FBAT-type statistic (Laird, Horvath, and Xu (2000); Laird and Lange

(2006)) V =
∑N

i=1

∑ni
j=1 vijt with

vijt = E[S(Cijt)|Oij ]− E[S(Cijt)|Oim,Oif ]. (2.8)

Here Oim and Oif are the intensities of parents. The variance of V is empirically

estimated by V ar(V )=
∑N

i=1

∑ni
j=1 v

2
ijt. The normalized statistic V/V ar(V )1/2∼

N(0, 1) under H0.
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Table 1. Parameters characterizing the distribution of LRRs and BAFs.

Mean of LRRs SD of LRRs SD of BAFs
(µ0, µ1, µ2, µ3, µ4) (σ0, σ1, σ2, σ3, σ4) (η1, η2)

Ωa (-3,-0.45,0,0.30,0.5) (1,0.26,0.16,0.19,0.22) (0.02,0.05)
Ωb (-3,-0.36,0,0.25,0.5) (1,0.26,0.16,0.19,0.22) (0.02,0.05)
Ωc (-3,-0.54,0,0.36,0.5) (1,0.26,0.16,0.19,0.22) (0.02,0.05)

a estimated from the long, experimentally validated CNVs.
b a set of parameters with weaker signal-to-noise ratio.
c a set of parameters with stronger signal-to-noise ratio.

To compute the conditional expectations in (2.8), we need to compute the

conditional distributions

P{Cijt|Oij} ∝ P{Oij |Cijt}P{Cijt},

P{Cijt|Oim,Oif} =
∑

Cift,Cimt

P{Cijt|Cift, Cimt}P{Cift|Oif}P{Cimt|Oim},

where Cift, Cimt are the parental CNV statuses. Again, P{Oij |Cijt} is computed

using HMM. The population CNV frequencies P{Cijt} are computed based on

the parents using the EM algorithm under H0. Also, P{Cijt|Cift, Cimt} is deter-

mined by the Mendel’s rule.

We will show in simulations that this test has correct type-I error rates and

reasonably high relative efficiency in realistic parameters settings. One can ex-

tend this approach to incomplete nuclear families, quantitative traits or pedigrees

with phenotyped parents (Laird and Lange (2006)).

3. Results

3.1. Simulations for case-control studies

We performed simulations using autosomal SNPs that were present on both

the Illumina HumanHap550 SNP array and the Hapmap II SNP list. For com-

putational efficiency, we randomly chose segments covering 30 SNPs and put

simulated CNVs in the middle of the segments. Because the whole chromo-

some can be naturally partitioned into independent segments with short CNVs,

chromosome-wide or genome-wide characteristics of the test statistics can be eas-

ily obtained from segment-based simulations. For each subject, we first simulated

CNV status for each SNP and then simulated LRR and BAF using parameters Ω

(Table 1), that were estimated based on the intensity data from experimentally

validated long CNVs. Each simulation had 1,000 cases and 1,000 controls. CNV

frequencies were 0.025 for either deletions or duplications in the controls.

First, we performed 100,000 simulations to evaluate the probe-wise type-I

error rates. Because we used a prespecified set of parameters Ω when testing
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Table 2. Probe-wise type-I error rates of the score statistic for case-control
studies, estimated based 100,000 simulations, α=0.001. Each simulation has
1,000 cases and 1,000 controls. Population frequency of CNV=0.025. The
score statistics use parameter Ω as default. Intensity data are simulated
using Ω, Ω1, and Ω2 to investigate whether type-I error rates are robust to
Ω. CN1 represents deletions with one copy. CN3 represents duplications
with three copies.

Ω Ω Ω1 Ω1 Ω2 Ω2

#probes CN1 CN3 CN1 CN3 CN1 CN3
4 0.0008 0.0006 0.0008 0.0092 0.0008 0.0006
5 0.0008 0.0008 0.0008 0.0096 0.0008 0.0008
6 0.0008 0.0009 0.0009 0.0097 0.0008 0.0009
8 0.0009 0.0009 0.0008 0.0093 0.0009 0.0008

associations, we investigated whether the type-I error rates were inflated if Ω

was misspecified. To achieve this goal, we simulated more (less) noisy intensity

data using Ω1(Ω2), and ran our algorithm using Ω as default. See Table 1 for

the specification of Ω,Ω1, and Ω2. The results in (Table 2) suggest that the

statistic has the expected type-I error rates when parameters are misspecified.

We then investigated the relative efficiency (RE) of the statistic. Let Z0 be

the statistic assuming known CNV status. Here RE = (E(Zt)/E(Z0))
2 evaluated

at H1, where Zt is the score statistic at probe t. Thus, 1 − RE measures the

loss of the effective sample size due to CNV calling uncertainty. Figure 3A and

3B are the results for duplications and deletions, respectively. RE is higher for

longer CNVs. Surprisingly, Zt achieves a very high RE even for CNVs covering

as few as four probes, suggesting that power loss due to CNV calling uncertainty

is minimal.

Next, we performed simulations to approximate the region-wide p-value

P0(maxt |Zt| > 3.29). We found that cor(Zt, Zt+1) ≈ 0.99 in CNV regions,

suggesting that the Bonferroni correction was conservative. In fact, even for

CNVs with eight probes, the region-wide p-value was only slightly larger than

the probe-wise p-value (Table 3).

Finally, we compared the performance of our approach with CNVTools

(Barnes et al. (2008)) , the most widely-used algorithm for detecting CNV as-

sociations in case-control GWAS. To use CNVTools, one has to specify a re-

gion that may harbor recurrent CNVs. Once a genomic region is specified, CN-

VTools tests the CNV association by performing principal component analysis

(PCA) on the LRR of all probes in the region fitting a latent variable model

to the PCA scores under H0 and H1, and deriving a likelihood ratio statis-

tic. We performed simulations under two realistic situations: subjects had ei-

ther CNVs with identical boundaries (Figure 1A) or overlapping CNVs but with
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Figure 3. Shown in panels A and B are the relative efficiency of the score
test in case-control studies for CNVs covering K probes. CNV frequency is
2.5% in controls. Figures C and D compare the power of our method based
on HMM and CNVTools for detecting associations of CNVs with identical
boundaries (see Figure 1A). Results are based on 1,000 simulations, α =
0.0001. Figures E and F are the results of power comparison for overlapping
CNVs with different boundaries (see Figure 1B).
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Table 3. Probe-wise type-I error rate P0{|Zt| > 3.29} and region-wise
type-I error rate P0{maxt |Zt| > 3.29} estimated based 100,000 simulations
of datasets with 1,000 cases and 1,000 controls. Population frequency of
CNV=0.025.

P0{|Zt| > 3.29} P0{maxt |Zt| > 3.29}
#probes CN1 CN3 CN1 CN3

4 0.0008 0.0006 0.0010 0.0009
5 0.0008 0.0008 0.0012 0.0012
6 0.0008 0.0009 0.0013 0.0014
8 0.0009 0.0009 0.0015 0.0014

variable boundaries (Figure 1B). For our score statistics, an association was de-

tected if maxt Zt > U0, where U0 was chosen to have region-wide p = 0.0001

(P0(maxt |Zt| > U0) = 0.0001) based on 100,000 simulations. CNVTools de-

tected an association if its p < 0.0001. We estimated the power using 1,000

simulations for each setting. We found that CNVTools did not converge in about

15%-20% of simulations because the PCA scores were not sufficiently separated

to fit a latent variable model. Thus, the power with CNVTools was based on

the simulations successfully analyzed by CNVTools. The simulation results are

in Figure 3. Both methods have similar performance for detecting deletion asso-

ciations. However, our method is more powerful when detecting the associations

with short duplications. This is expected because our method used BAF infor-

mation, which is particularly informative for inferring duplications, while that

CNVTools cannot.

3.2. Simulations for family-based studies

For each nuclear family, we simulated the CNV status for four parental haplo-

types and then randomly transmitted a haplotype to each offspring. Given CNV

status, we simulated LRRs and BAFs according to Ω. We performed 10,000

simulations to evaluate the type-I error rates. For each simulation, there were

1,000 affected offspring in total. Our family-based statistic controlled the type-I

error rates in all scenarios and was robust to misspecification of Ω. Results are

reported in Supplementary Table 1. Figures 4A−D show the RE for CNVs cov-

ering different numbers of probes in families with one or two offspring. The RE

is sufficiently high for detecting deletions although it is slightly lower than that

in case-control studies. However, the RE is low for detecting short duplications.

3.3. Application to autism genome-wide association data

We applied our family-based statistic to a GWAS of autism spectrum disor-

ders (ASDs) performed by the Autism Genome Project (AGP) Consortium. The
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Figure 4. Shown in figures A and B are the relative efficiencies for studies
based on trios. Each study has 1,000 trios. Population CNV frequency is
2.5%. Figure C and D show the relative efficiencies for nuclear families with
two affected offsprings.

study has about 1,400 trios, each of which has an affected offspring. All subjects

were genotyped using Illumina 1M genotyping arrays with 1,068,909 probes. We

obtained the intensity data from dbgap (http://www.ncbi.nlm.nih.gov) and

extracted LRRs and BAFs using GenomeStudio. Subjects were removed if their

genome-wide LRR standard deviations were larger than 0.30. The LRRs were

adjusted for GC content. For each subject, the LRRs were normalized to have

median zero and standard deviation 0.16. After quality control, we analyzed 831

complete trios.

We implemented our algorithms using C++. We first partitioned the whole

genome into short segments, each of which had 2,000 probes. After genome par-

tition and data normalization, analyzing the association for all segments took

less than two hours using a single core in a Linux server. We only analyzed

probes with estimated frequencies of CNVs (including both deletions and dupli-

cation) between 0.01 and 0.05. In total, 105,000 probes were tested for associa-

http://www.ncbi.nlm.nih.gov
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Figure 5. Shown are the p-values for probes on chromosome 17q22. Within
this region, the estimated frequencies of deletions range from 0.01 to 0.05.

tion. Singled-sided p-values were calculated. The Manhattan plot is presented

in Supplementary Figure 1. One region located between 48cM and 49 cM on

chromosome 17q22 showed strong associations with multiple consecutive probes

(Figure 5). The strongest p-value in this region was 1.06 × 10−6, close to the

threshold 5 × 10−7 = 0.05/105000 based on the Bonferroni correction. Because

our statistics are highly correlated in the same CNV regions, the Bonferroni cor-

rection is very conservative. Lab validation and further replication studies in

independent samples are recommended to investigate this region.

4. Discussion

Detecting CNV associations from GWAS is statistically challenging but sci-

entifically important. We have developed methods for both case-control and

family-based studies. The features of our methods include integrating both

LRRs and BAFs, efficiently integrating information from nearby probes, ery fast

computation and without the need to specify CNV regions. Simulation studies

demonstrated that our approach had a better power to detect association with

short duplications compared to CNVTools in case-control studies. Our methods

may prove useful for analyzing existing GWAS of complex diseases.

Perhaps surprising, the power loss in case-control studies due to calling un-

certainty was very small even for short CNVs. However, the power loss was larger

in family-based studies, and the loss could be substantial for short duplications

because of greater calling uncertainty. Hence, it would be valuable to develop

more powerful methods for testing CNVs in family-based studies by appropri-

ately integrating family information while maintaining correct type-I error rates.

Another limitation is that we have assumed homogenous data quality for the
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purpose of theoretical investigation. With data, one has to correct artifacts due

to GC content, batch effect, and potential differential genotyping bias.

For case-controls studies, we used the retrospective likelihood framework.

Compared with the prospective likelihood methods, this method is expected to

be more powerful when assuming Hardy-Weinberg equilibrium (HWE)(see e.g.,

Epstein and Satten (2003) Chatterjee et al. (2009)). However, type-I error rates

may be inflated if HWE fails. It would be interesting to investigate the power

gain and the robustness of type-I error rates for CNV association testing assuming

HWE.
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Appendix

Appendix A

For probe t, given Cit, we assume that the LRR follows a mixture distribution

P{Xit|Cit = c} ∼ (1− π)N(µc, σ
2
c ) + πU [−R0, R0], (A.1)

where π represents the level of the background noise. Let genotype Git be the

number of the B allele with value ranging from 0 to Cit. The conditional distri-

bution P (Bit = b|Cit = c,Git = g) is given in Figure 2. Furthermore, we assume

that the B allele has a frequency ft in the population. Hence, assuming HWE

for the SNP, we have

P (Bit=b|Cit=c)=

c∑
g=0

c!

(g!(c−g)!)
fg
t (1−ft)

c−gP (Bit=b|Cit=c,Git=g). (A.2)

Appendix B

Based on (2.6), we have

∂l

∂β

∣∣∣
β=0

=

N∑
i=1

(∑4
c=0 ptcTitcYiS(c)∑4

c=0 ptcTitc

−
4∑

c=0

ptcYiS(c)
)
. (B.1)

http://biowulf.nih.gov
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The nuisance parameters Pt = (pt0, . . . , pt4) are estimated using the EM algo-

rithm under H0.When β=0, the likelihood (2.6) reduces to
∑N

i=1log
∑4

c=0ptcTitc.

Let p̂jtc be the estimate at step j. Then, the updating rule is

p̂j+1
tc =

1

N

N∑
i=1

p̂jtcTitc∑4
c=0 p̂

j
tcTitc

.

Because
∑4

c=0 ptc = 1, we reparameterize (pt0, . . . , pt4) as pt0 = 1/(1 +∑4
j=0 e

uj ) and ptk = euk/(1 +
∑4

j=0 e
uj ) for k = 1, . . . , 4. Here, u1, . . . , u4 ∈

(−∞,∞). Given P̂t, uj is determined. We then compute the empirical Fisher’s

information matrix H(β, u1, . . . , u4) evaluated at β = 0 and P̂t. The score statis-

tic is then

Zt =
∂l

∂β

∣∣∣
β=0

/[H−1]
1
2
11.
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