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Abstract: Inter-rater reliability is usually assessed by means of the intraclass corre-

lation coefficient. Using two-way analysis of variance to model raters and subjects

as random effects, we derive group sequential testing procedures for the design and

analysis of reliability studies in which multiple raters evaluate multiple subjects.

Compared with the conventional fixed sample procedures, the group sequential test

has smaller average sample number. The performance of the proposed technique

is examined using simulation studies and critical values are tabulated for a range

of two-stage design parameters. The methods are exemplified using data from the

Physician Reliability Study for diagnosis of endometriosis.
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1. Introduction

Inter-rater reliability studies are conducted to investigate the reproducibility

and level of agreement on assessments among different raters. The analysis of

reliability is a common feature in research and practice since most measurements

involve measurement errors, particularly those made by humans. Measurement

error can seriously affect statistical analysis and interpretation; it therefore be-

comes important to assess the amount of such error by calculating a reliability

index (Shrout and Fleiss (1979)).

Inter-rater reliability refers to the reproducibility of the raters when repeated

at random on the same subject or specimen under the same condition by the same

rater or different ones, either simultaneously or at several time points. A common

measure of the reliability of measurements is the so-called intraclass correlation

coefficient, with larger values indicating higher level of consistency.

There are various versions for intraclass correlation coefficient derived from

different statistical models. Shrout and Fleiss (1979) proposed a set of guidelines

for choosing the appropriate model in reliability studies. In actual inter-rater

reliability studies, multiple raters usually evaluate multiple subjects and the two-

way analysis of variance (ANOVA) model is considered to be the appropriate
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analytical model. Moreover, when raters can be considered as random sample

from the target population of raters, the two-way random effects model can be

applied (Fleiss (1999); Zou and McDermott (1999); Cappelleri and Ting (2003);

Tian and Cappelleri (2003)).

For fixed sample design, there are two main approaches available to deter-

mine the sample size. One approach is to find the size such that the power of

statistical test is met (Donner and Eliasziw (1987); Walter, Eliasziw, and Donner

(1998)) while the other is to assure the precision of estimation (Shoukri, Asyali,

and Walter (2003); Bonett (2002); Saito et al. (2006)).

Sequential methods were introduced in response to demands for more efficient

testing of anti-aircraft gunnery during World War II, culminating in Wald’s de-

velopment of the sequential probability ratio test which had an immediate impact

on weapons testing (Wald (1947); Siegmund (1985); Lai (2004)). Gradually, in

studies involving human subjects, specialized statistical methods were called for

to balance the ethical and financial advantages of stopping a study early against

the risk of an incorrect conclusion (Jennison and Turnbull (2000)). Armitage

(1954, 1958) and Bross (1952, 1958) introduced the use of sequential methods in

the medical field. However, the early development for group sequential methods

came from Pocock (1977), O’Brien and Fleming (1979), and Lan and DeMets

(1983).

Motivated by the idea of sequential testing that is widely used in clinical

trials, it is natural to adopt and extend these sequential testing methods in the

design and analysis of reliability studies to reduce the sample size and study cost.

In reliability studies evaluating the measurement error by applying the one-way

ANOVA model, the multistage group sequential designs were proposed. Under

one-way ANOVA, the sums of squares in the estimation of the intraclass correla-

tion coefficient possess independent increments, thus simplifying the calculation

of stopping boundaries (Liu, Schisterman, and Wu (2006)).

In this paper, we develop multistage testing procedures using two-way

ANOVA for hypotheses concerning the intraclass correlation coefficient in a inter-

rater reliability study. In Section 2, we state the hypotheses of interest, intro-

duce the structure and assumption of the two-way ANOVA models, and propose

simulation designs for the one-stage problem for sample size and power calcula-

tion. In Section 3, we develop methods to determine critical values, sample size,

and power using Lan and DeMets’s (1983) error spending approach. Realizing

that the between-rater sum of squares violates the independent increments as-

sumption, we develop simulation techniques to effectively calculate the critical

values. The performance of the proposed methods is examined in Section 4 us-

ing simulation studies, and critical values are tabulated for a range of two-stage

design parameters. In Section 5, we exemplify the methods using data from the
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Physician Reliability Study for diagnosis of endometriosis. Finally, summary and

discussion are given in Section 6.

2. Hypotheses and Fixed Sample Design

The intraclass correlation coefficient ρ is commonly used to assess inter-

rater reliability. The designs developed in this paper are based on testing a null

hypothesis H0 : ρ ≤ ρ0 that the true intraclass correlation coefficient is less

than some uninteresting level ρ0. We require that under the null hypothesis the

probability of concluding that the rating is sufficiently promising be less than

α, the level of significance of the test. We also require that under a specified

alternative hypothesis H1 : ρ ≥ ρ1, the probability of rejecting the rating should

be less than β. If the null hypothesis is not rejected, then we may conclude

that the raters are not well trained or that the variable to be measured possesses

unacceptable measurement errors.

2.1. Two-way random effects ANOVA model

Consider a random sample of n subjects for which a continuous variable y

is measured independently by d raters randomly selected from a population of

raters. Three sources of variation usually occur from such a design: subjects,

raters, and random errors. Higher inter-rater reliability is achieved if the vari-

ations from random errors and raters are relatively smaller than the variation

from subjects.

Denote by yij the measurement made on the ith subject by the jth rater,

i = 1, . . . , n and j = 1, . . . , d. Then the two-way ANOVA model is

yij = µ+ si + rj + ϵij , (2.1)

where µ is the grand mean of all measurements. The subject effect si, the rater

effect rj , and the random error ϵij are assumed to be independent and normally

distributed with mean 0 and variances σ2
s , σ

2
r and σ2

ϵ , measuring the magnitude of

the variation from the three resources, respectively. Note that these assumptions

lead to Var(yij) = σ2
s + σ2

r + σ2
ϵ , Cov(yij , yi′j) = σ2

r if i ̸= i′, Cov(yij , yij′) = σ2
s

if j ̸= j′, and Cov(yij , yi′j′) = 0 if i ̸= i′ and j ̸= j′. The vector including

measurements from all subjects yT
1×nd = (y11, · · · , y1d, · · · , yn1, · · · , ynd) is then

distributed as Nnd(u, Σ),

u = µ1nd, Σ = σ2
ϵ In ⊗ Id + σ2

sIn ⊗ Jd + σ2
rJn ⊗ Id, (2.2)

where, throughout, the superscription T stands for the transpose of a matrix

or vector, 1m is the vector of order m with all elements 1, In is the identity

matrix or unit matrix of size n, and ⊗ is the Kronecker product of two matrices
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(Rao (1973)), and Jn×m is the n×m matrix with all elements 1, with a simpler

notation Jn(=Jn×n) being used instead if m = n.

2.2. Point estimation of intraclass correlation coefficient

The intraclass correlation coefficient in a two-way ANOVA model is given by

ρ =
σ2
s

σ2
s + σ2

r + σ2
ϵ

. (2.3)

It provides a measure for the overall consistency among measurements from

the same subject. The index reduces to the intraclass correlation coefficient in

a one-way ANOVA model, if there is no variation among raters. Furthermore,

it can be shown that ρ is the correlation coefficient between two measurements

yij1 and yij2 on the same subject i by two different raters j1 and j2. Thus, larger

values of ρ indicate higher coherence among measurements on the same subject

by different raters. Perfect consistency among these measurements occurs with

ρ = 1 when subjects are the only source of variation, in which case σr = σϵ = 0.

A low reliability may indicate that the raters are not well trained or that the

variable to be measured possesses unacceptable measurement errors.

Consider the sums of squares

SSsubject =

n∑
i=1

d∑
j=1

(Ȳi. − Ȳ..)
2,

SSrater =
n∑

i=1

d∑
j=1

(Ȳ.j − Ȳ..)
2,

SSerror =

n∑
i=1

d∑
j=1

(Yij − Ȳi. − Ȳ.j + Ȳ..)
2 ,

where

Ȳ.. =

∑n
i=1

∑d
j=1 yij

nd
, Ȳi. =

∑d
j=1 yij

d
, and Ȳ.j =

∑n
i=1 yij
n

.

Here (Rao (1973)) SSsubject, SSrater, and SSerror are independent and can be

written as

SSsubject=̃(dσ2
s + σ2

ϵ )V1, SSrater=̃(nσ2
r + σ2

ϵ )V2, SSerror=̃σ2
ϵV3, (2.4)

where V1, V2, and V3 are independent chi-square variables with degrees of freedom

n−1, d−1, and (n−1)(d−1), respectively, and =̃ means that its two sides have

the same distribution.
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Take MSsubject as SSsubject divided by the degrees of freedom of its corre-

sponding χ2-distribution, and similarly define MSrater and MSerror. Then

E(MSsubject) = dσ2
s + σ2

ϵ , E(MSrater) = nσ2
r + σ2

ϵ , E(MSerror) = σ2
ϵ ,

yielding unbiased estimators of σ2
s , σ

2
r and σ2

ϵ as

σ̂2
s =

(MSsubject −MSerror)

d
, σ̂2

r =
(MSrater −MSerror)

n
, σ̂2

ϵ = MSerror. (2.5)

An estimator of the intraclass correlation coefficient ρ can be obtained by

substituting the variance estimators, so

ρ̂ =
σ̂2
s

σ̂2
s + σ̂2

r + σ̂2
ϵ

=
n(d− 1)S − n

n(d− 1)S + d(n− 1)R+ (nd− n− d)
, (2.6)

where

R =
SSrater

SSerror
=̃
(nω + 1)V2

V3
∼ nω + 1

n− 1
Fd−1,(n−1)(d−1), (2.7)

S =
SSsubject

SSerror
=̃
dρ(ω + 1) + (1− ρ)

1− ρ

V1

V3

∼ dρ(ω + 1) + (1− ρ)

(d− 1)(1− ρ)
Fn−1,(n−1)(d−1), (2.8)

where ω = σ2
r/σ

2
ϵ and Fa,b is the central F-distribution with degrees of freedom

a and b. We refer to ρ̂ as the sample intraclass correlation coefficient.

2.3. Calculation of operating characteristics

The two-way ANOVA model reduces to the popular one-way ANOVA model

if σ2
r = 0, that is, if there is no variations among raters. In this case, observations

from the same subject are treated as interchangeable repeated measurements, and

observations from different subjects are independent. For the one-way ANOVA

model, the sample intraclass correlation coefficient is a function of an F-statistic,

and methods are directly available for computing the powers and sample sizes of

the test based on the F-statistic; see, among others, Donner and Eliasziw (1987),

Walter, Eliasziw, and Donner (1998), and Liu, Schisterman, and Wu (2006).

For the two-way ANOVA model observations from different subjects but

the same rater are not independent, and methods for power and sample size

calculations based on one-way ANOVA are not applicable because the sample

intraclass correlation coefficient involves correlated F-statistics, S and R in (2.6),

arising from the rater effects. Kraemer (1976) considered reliability in a two-way

ANOVA model; however, the intraclass correlation coefficient there differed from

the traditional one in that the rater variability was excluded.
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For a pre-specified significance level α, the fixed sample size design rejects

the null hypothesis H0 : ρ ≤ ρ0 if the sample intraclass correlation coefficient

exceeds some critical value 0 < c < 1. The power function of the test

Ψ(ρ;ω) = Pρ (ρ̂ > c) (2.9)

depends, in addition to ρ, on n, d, and the variance ratio ω. It can be shown (see

Appendix) that, for given n, d, ω, Ψ is an increasing function in ρ, implying that

we can control the type I error rate at the nominal level α by setting Ψ = α for

ρ = ρ0, and set the power to be 1− β at ρ1 for ρ ≥ ρ1.

To deal with the nuisance parameter ω, we can take the conventional ap-

proach of finding 0 < c < 1 such that supω Ψ(ρ0;ω) = α. Similarly, given the

power 1− β at an alternative value ρ = ρ1, the sample size n can be determined

from infω Ψ(ρ1;ω) = 1− β.

Allowing the nuisance parameter ω to change freely in the entire range [0,∞]

often results in a very conservative test for values of ω encountered in practice.

Very often, data from other similar studies can provide an empirical estimate

of ω, thus making it possible to have an upper bound ω1 for ω. Taking these

arguments into account, we propose to determine the critical value and sample

size via the equations

Ψ(ρ0;ω1) = α, Ψ(ρ1;ω1) = 1− β. (2.10)

2.4. A simulation procedure

Exact calculation of the operating characteristics of the test statistic ρ̂ ap-

pears to be complicated because it involves the joint distribution of two correlated

F-statistics S and R in (2.6). As ρ̂ is a function of three independent χ2 ran-

dom variables, we propose to calculate the operating characteristics based on

independently generating large numbers of replicates of the χ2 variables.

Specifically, for a given set (n, d, ω, ρ, c), the power Ψ(ρ;ω) is computed as the

proportion of simulated values of ρ̂ that are larger than c. To generate a random

value ρ̂ from a simulation, we generate a random observation of (V1, V2, V3), which

then yields random values of R and S according to (2.7) and (2.8). Substituting

these values in (2.6) then yields the simulated value of ρ̂.

Using this approach, we can find the critical value and sample size that

satisfy the error requirements (2.10). Note that the sample size is taken as the

smallest n that meets the error requirements.

Setting n = 104, d = 4, α = 0.05, ρ0 = 0.5 and ω1 = 0.5, we found

c = 0.6173, using the approach. For ω ≤ ω1, Figure 1 plots the type I error

Ψ(ρ0;ω) and Figure 2 plots the power Ψ(ρ1;ω) at ρ1 = 0.7 and 0.8, both versus
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Figure 1. Type I Error Versus Variance Ratio-10,000 runs.

Figure 2.

ω. Although no analytic proof is available, it appears from the figures that, as

ω increases, the type I error increases and the power decreases (for alternative

values of ρ sufficiently away from the null value ρ0). Thus for ω ≤ ω1, (2.10)

implies

Ψ(ρ0;ω) ≤ α, Ψ(ρ1;ω) ≥ 1− β.

3. Multistage Group Sequential Testing and Simulation Technique

Sequential statistical methods were originally developed for economic bene-
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fits. In any experiment or survey in which data accumulate steadily over a period

of time, it is natural to monitor results as they occur with a view to taking such

action as early termination or a modification of the study design. The many

reasons for conducting interim analyses of accumulating data can be loosely cat-

egorized in three classes: ethical, administrative, and economic (Jennison and

Turnbull (2000)).

For example (Rothstein (1990)), in job performance rating, such critically

important decisions as pay, promotions, and firing are made on the basis that the

ratings are reliable enough to produce useful and valid performance appraisals.

An interim analysis is needed to ensure that the rating process is being executed

as planned, and that the raters are well trained and satisfy eligibility criteria. An

early examination of interim results can reveal the presence of problems that can

be remedied before too much expense is incurred. Early stopping ensures that

resources are not wasted. Sequential methods typically lead to savings in sample

size, time, and cost when compared with standard fixed sample procedures.

3.1. Group sequential test

Suppose the subjects are taken into groups. Denote by nk the number of

subjects in the kth group, and let Nk = n1 + n2 + · · · + nk. Denote by ρ̂k the

estimate of the intraclass correlation coefficient ρ computed from data observed

up to the kth group. Let K be the prespecified maximum number of interim

analyses planned for the study. A K-stage testing procedure for H0 is carried

out as follows. At each stage k = 1, . . . ,K − 1, with critical value ck, stop if

ρ̂i ≤ ci, i ≤ k − 1, ρ̂k > ck, (3.1)

and reject H0. Otherwise, d measurements are taken from the raters for each

of the nk+1 subjects in the (k + 1)th group, and ρ̂k+1 is computed based on all

available data up to the (k + 1)th stage. If the test has not stopped, stop at

the Kth stage and reject H0 if ρ̂K > cK . Here ck, k = 1, . . . ,K, are the critical

values that satisfy the error requirements.

The power function of the group sequential test is

K∑
k=1

Pρ(ρ̂i ≤ ci, i ≤ k − 1, ρ̂k > ck), (3.2)

which depends on the variance ratio ω.

The design approach considered here is to specify the parameters ρ0, ρ1, α,

and β, along with the nuisance parameter ω, and then determine the critical

values and sample sizes that have power α at ρ0 and 1− β at ρ1. To determine
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sample sizes and critical values for testing the null hypothesis H0, we employ the

Lan and DeMets error spending approach (Lan and DeMets (1983)).

We focus on two-stage designs that are more appealing in terms of complexity

of computation and potential applications to a reliability study. However, the

simulation approach to a two-stage test can be straightforwardly extended to

more stages.

3.2. Two-stage design

In a two-stage study, the null hypothesis H0 is rejected if (i) at the first stage

ρ̂1 > c1 or (ii) ρ̂1 ≤ c1 at the first stage and ρ̂2 > c2 at the second. Suppose that

the type I error to spend at the first stage is α1. We have

Pρ0(ρ̂1 > c1) = α1, (3.3)

Pρ0(ρ̂1 ≤ c1, ρ̂2 > c2) = α− α1. (3.4)

(The errors spent at each stage then add up to the total error of α.) The require-

ment that the power at ρ1 be 1− β yields

Pρ1(ρ̂1 > c1) + Pρ1(ρ̂1 ≤ c1, ρ̂2 > c2) = 1− β. (3.5)

These three equations determine the critical values and the sample size as-

suming the allocation ratio, n1/N2, of subjects to the first group is specified.

The critical value c1 for the first stage and the first summand of (3.5) can be

determined by the approach proposed in Section 2 for a fixed sample size test.

Computation of (3.4) and the second summand in (3.5) involves the joint

distribution of ρ̂1 and ρ̂2 or, equivalently, the joint distribution of two correlated

χ2-statistics (apart from proper constants),

(SSsubject(2), SSsubject(1)), (SSerror(2), SSerror(1)), (SSrater(2), SSrater(1)).

For the one-way ANOVA model, Liu, Schisterman, and Wu (2006) showed

that the independence between subjects warrants that the sums of squares in-

volved in estimation of the intraclass correlation coefficient can be decomposed

into independent increments. This independent-increment property substantially

simplifies the simulation for calculation of critical values and power of the test.

For the two-way ANOVAmodel, the between-subject sum of squares SSsubject

and the within sum of squares SSerror have independent increments: SSsubject(1),

SSsubject(2)− SSsubject(1), SSerror(1), and SSerror(2)− SSerror(1) are mutually

independent. The four increments have the same distributions as (dσ2
s + σ2

ϵ )U1,

(dσ2
s + σ2

ϵ )U2, σ
2
ϵU3, and σ2

ϵU4, respectively, where U1, U2, U3 and U4 are inde-

pendent chi-square random variables with degrees of freedom n1 − 1, N2 − n1,

(n1 − 1)(d− 1), and (N2 − n1)(d− 1), respectively. These sums of squares at the
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second stage can be expressed as functions of independent chi-square variables,

similar to the one-way ANOVA model in Liu, Schisterman, and Wu (2006).

A major complication arises from calculation of the between-rater sum of

squares SSrater(2). Because observations from different subjects made by the

same rater are not independent, the between-rater sums of squares do not have

the independent increments property; see the Appendix. Therefore, unlike the

other two sums of squares, SSrater(1) and SSrater(2) cannot be generated us-

ing independent chi-square variables. We propose a more efficient method for

simulation based on two independent multivariate distributions .

3.3. Simulation technique for two-stage design

With specified parameters the probabilities in (3.3)−(3.5) can be estimated

by simulating a large number of realizations of the sums of squares. The proba-

bility P (ρ̂1 > c1) can be derived using simulation techniques described in Section

2.4. To compute the probability P (ρ̂1 ≤ c1, ρ̂2 > c2), we first simulate a large

number of observations of U = (U1, U2, U3, U4), defined as before. For each sim-

ulation, the between-subject and within sum of squares are

SSsubject(1) = (dσ2
s + σ2

ϵ )U1, SSsubject(2) = (dσ2
s + σ2

ϵ )U1 + (dσ2
s + σ2

ϵ )U2,

SSerror(1) = σ2
ϵU3, SSerror(2) = σ2

ϵU3 + σ2
ϵU4.

Empirical values of SSrater(1) and SSrate(2) can be generated from two indepen-

dent multivariate normal variables. Details are given in the Appendix.

With each simulated value of SSsubject(1), SSsugject(2), SSerror(1), SSerror(2),

SSrater(1), and SSrater(2), we compute ρ̂1 and ρ̂2. The probability is then esti-

mated as the proportion of {(ρ̂1, ρ̂2) : ρ̂1 ≤ c1, ρ̂2 > c2} .

Remark 1. Although the probabilities can be estimated by simulating N2-

variate multivariate normal distributions under model (2.1), our experiences show

that the proposed simulation approach based on independent chi-square and mul-

tivariate normal variables is much more time-efficient.

4. Simulation Results

To set up the simulation, set n1 = N2/2. The error spending function of

Kim and DeMets (1987) with α1 = α/2 is applied to allocate the error. The

values of design parameters considered were α = (0.025, 0.05), ρ0 = (0.5, 0.6),

and 1 − β = (0.8, 0.9) at ρ1 = (0.7, 0.8, 0.9). Here, according to Landis and

Koch (1977), the chosen null values indicate moderate consistency in measure-

ments. We considered the numbers of raters (4, 6, 8), and the values of ω to be

(0.1, 0.5, 1, 10). For each set of design parameters (α, β, ρ0, ρ1, ω), we searched a
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Table 1. Sample size tabulation for a number of two-stage designs.
d = 4, ω = 0.5, α1 = α/2, n1 + n2 = N2 (10,000 replicates)

α β n1 n2 c1 c2 ASN fixed size
ρ0 = 0.5, ρ1 = 0.7
0.05 0.1 57 57 0.6526 0.6191 70.56 104
0.025 0.1 86 86 0.6548 0.6258 104.80 164
0.05 0.2 27 27 0.6866 0.6432 38.68 50
0.025 0.2 39 38 0.6904 0.6513 54.88 72
ρ0 = 0.5, ρ1 = 0.8
0.05 0.1 11 10 0.7502 0.6886 14.35 20
0.025 0.1 14 14 0.7606 0.6999 18.73 25
0.05 0.2 7 7 0.7892 0.7151 10.56 13
0.025 0.2 9 9 0.7928 0.7284 13.47 17
ρ0 = 0.6, ρ1 = 0.8
0.05 0.1 28 28 0.7639 0.7257 36.11 53
0.025 0.1 38 38 0.7687 0.7328 48.96 72
0.05 0.2 16 15 0.7902 0.7469 22.99 30
0.025 0.2 23 22 0.7940 0.7528 32.92 41
ρ0 = 0.6, ρ1 = 0.9
0.05 0.1 6 6 0.8526 0.7962 7.98 11
0.025 0.1 7 7 0.8668 0.8090 9.59 13
0.05 0.2 4 4 0.8868 0.8238 6.03 7
0.025 0.2 5 5 0.8909 0.8295 7.54 9

potential range of (c1, c2, N2) to find a combination that meets the error require-

ments.

For each (c1, c2, N2), c1 could be derived using the simulation techniques de-

scribed in Section 2.4. A total ofm = 10, 000 random vectors U = (U1, U2, U3, U4)

were generated. Simultaneously, two samples each with m = 10, 000 observations

were drawn from independent multivariate normal variables as defined in the Ap-

pendix. The empirical probabilities in (3.3), (3.4) , and (3.5) were computed as

the proportion that fell into the rejection regions. The combination that satis-

fied the error requirements was thus the desired solution to the design. To help

narrow the search range, we first limited the values of c2 and N2 close to those

required in a fixed sample design computed by methods mentioned in Section

2.4, and then gradually expanded the range until a solution is found.

Table 1 presents the simulation results of critical values and sample size

required, for a selected range of designs. For each design, the final critical value

c2 is smaller than the interim critical value c1, partly reflecting the increase

of sample size. The Average Sample Number (ASN) under the alternative is

smaller than the fixed sample size. Note that for a two-stage design the ASN at

ρ is ASN = n1P (ρ̂1 > c) +N2P (ρ̂1 ≤ c1).
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All simulations were conducted using the R software. Codes are available

from the authors upon request.

5. Example

We illustrate the proposed group sequential testing procedure on data from

a study on endometriosis diagnosis. Endometriosis is a gynecological medical

condition occurring in roughly 5%–10% of women. Despite its relatively high

prevalence, substantive and methodological challenges exist, including diagnostic

proficiency. The Physician Reliability Study (Schliep et al. (2012)) addressed this

issue by examining agreement in diagnosing endometriosis and its association

with both rater- and subject-specific information.

We used the review results of four experts who independently examined study

subjects’ intraoperative photos for signs of endometriosis or other gynecologic

pathology. The specific outcome we used was the Revised American Society

for Reproductive Medicine’s classification that ranges from 1 to 150 with higher

scores corresponding to severe symptoms of endometriosis.

The interim analysis was conducted based on the first 24 (about half of the 47

samples that have complete ratings) subjects’ scores from the four experts. The

interim error α1 was set to α/2 based on an error spending function of Kim and

DeMets (1987). Thus, n1 = 24, N2 = 47, and α1 = α/2 = 0.025. The null value

is ρ0 = 0.4, and the variance ratio ω is 0.013 based on the real data. With these

design parameters, we applied the simulation approach of Section 3.3, and found

c1 = 0.5953 and c2 = 0.5359. The power of the test at ρ1 = 0.55, 0.60, 0.65 was

0.6088, 0.8150, and 0.9548, respectively. The average sample size (ASN) at these

alternative values was 40, 36, and 30, respectively, reflecting the cost-effective

nature of the design.

We then applied the test based on the scores on the first 24 subjects in the

endometriosis study. The sample intraclass correlation coefficient computed at

the first stage was ρ̂1 = 0.6077. We then could terminate the test at the first

stage and reject the null hypothesis because the test statistic ρ̂1 exceeded the

critical value c1. Early evidence is that the four experts demonstrated quite

satisfactory agreement in their scoring.

6. Discussion

In this paper, we develop multistage testing procedures using two-way

ANOVA for hypothesis concerning the intraclass correlation coefficient in a inter-

rater reliability study. The designs are proposed to determine critical values,

sample size, and power using Lan and DeMets’s error spending function. To our

best knowledge there have been no exact tests available for the intraclass correla-

tion coefficient based on two-way ANOVA framework due to the involvement of



SEQUENTIAL TESTING OF MEASUREMENT ERRORS 1755

two correlated F statistics. Realizing that the between-rater sum of squares vio-

lates the independent increments assumption, we develop simulation techniques

to effectively calculate the operating characteristics of the sequential test. The

performance of the proposed methods is examined using simulation studies and

critical values are tabulated for a range of two-stage design parameters.

The operating characteristics of the test are affected substantially by the

variance ratio ω. Our proposed approach requires an upper bound of ω be spec-

ified.

The methods discussed in this paper could be applied to the field of Genetics

in the sense of the heritability analysis that estimates the relative contributions

of differences in genetic and non-genetic factors to the total phenotypic variance

in a population. Future research is needed to develop and compare various group

sequential designs, and to propose methods for inference following the sequential

testing such as the point and interval estimation of the intraclass correlation

coefficient.
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Appendix A: Increments of Sums of Squares

Recall that (Rao (1973)) if y has a multivariate normal distribution with

a mean vector u and a positive definite variance-covariance matrix ∆, then an

necessary and sufficient condition that (y − u)TA(y − u) has a χ2 distribution

is that A∆A = A in which case the degrees of freedom is the rank of A∆.

Furthermore, (y − u)TA(y − u) and (y − u)TB(y − u) are independent if and

only if A∆B =0.

1. Independent Increments of Two-stage SSsubject

Put all the measurements from the group of d raters on N2 subjects to-

gether in a vector y = (y
T

1 ,y
T

2 )
T , where y1 = (y11, y12, · · · , yn1 d)

T represents

the measurements from the first stage and y2 = (y(n1+1) 1, y(n1+1) 2, · · · , yN2 d)
T

the measurements taken after the first stage. Then y has a multivariate normal

distribution with mean vector u = µ1N2 and variance-covariance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,
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where

Σ11 = σ2
ϵ In1 ⊗ Id + σ2

sIn1 ⊗ Jd + σ2
rJn1 ⊗ Id,

Σ12 = σ2
rJn1×n2 ⊗ Id, Σ21 = σ2

rJn2×n1 ⊗ Id,

Σ22 = σ2
ϵ In2 ⊗ Id + σ2

sIn2 ⊗ Jd + σ2
rJn2 ⊗ Id.

Write

U1 =
SSsubject(1)

dσ2
s + σ2

ϵ

= y
T
S1y,

U2 =
SSsubject(2)− SSsubject(1)

dσ2
s + σ2

ϵ

= yT [S2 − S1]y,

where

S1 =

(
S(n1) 0

0 0

)
, S2 = S(N2)

with

S(n) =
1

d(dσ2
s + σ2

ϵ )

[
(In − 1

n
Jn×n)⊗ Jd×d

]
.

It follows from straightforward matrix manipulations that uT S1= 0, uT S2=

0, and S1Σ[S2-S1]=0. Therefore U1 = yTS1y = (y − u)TS1(y − u) and U2 =

yT [S2 − S1]y = (y− u)T [S2 − S1](y− u) are independent.

2. Independent Increments of Two-stage SSerror

Write

U3 =
1

σ2
ϵ

SSerror(1) =
(
y

T

1 y
T

2

)
E1

(
y1

y2

)
,

U4 =
1

σ2
ϵ

[SSerror(2)− SSerror(1)] =
(
y

T

1 y
T

2

)
[E2 −E1]

(
y1

y2

)
,

where

E1 =

(
E(n1) 0

0 0

)
, E2 = E(N2)

with

E(n) =
1

σ2
ϵ

[
(In − 1

n
Jn×n)⊗ (Id −

1

d
Jd×d)

]
.

Then SSerror(2) − SSerror(1) and SSerror(1) are independent since uT E1= 0,

uTE2= 0 and E1Σ[E2-E1]=0.
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3. Dependent Increments of Two-stage SSrater

Write

SSrater(1) =
(
y

T

1 y
T

2

)
R1

(
y1

y2

)
,

[SSrater(2)− SSrater(1)] =
(
y

T

1 y
T

2

)
[R2 −R1]

(
y1

y2

)
,

where

R1 =

(
R(n1) 0

0 0

)
, R2 = R(N2)

with

R(n) =
1

n

[
Jn ⊗ (Id −

1

d
Jd)

]
.

We can show that uT R1= 0 and uT R2= 0, yielding

SSrater(1) = yTR1y = (y− u)TR1(y− u),

[SSrater(2)− SSrater(1)] = yT [R2 −R1]y = (y− u)T [R2 −R1](y− u).

However, the increments are not independent since R1Σ[R2-R1 ]̸=0.

4. Simulation Technique for SSrater

Define Z = y2−Σ21Σ
−1
11 y1. Then Z is distributed as multivariate normal dis-

tribution with mean vector µ
(
1n2 − Σ21Σ

−1
11 1n1

)
and variance-covariance matrix

Σ22 − Σ21Σ
−1
11 Σ12.

Random observations of SSrater(1) can be generated from y1. To simulate

SSrater(2), we can generate Z independently of y1 and then calculate y2 =

Z+Σ21Σ
−1
11 y1. This then gives

SSrater(2) =
1

N2
y

T
[JN2 ⊗ (Id −

1

d
Jd×d)]y,

where yT = (yT
1 ,y

T
2 ).

Appendix B: Stochastic Ordering of ρ̂

It follows from (6)−(8) that ρ̂ has the same distribution as W (ρ, ω) = D1/D2

where

D1 =
nd(d− 1)ρF1

1− ρ
ω +

n(d− 1)(dρ+ 1− ρ)F1

1− ρ
− n,

D2 =
[nd(d− 1)ρF1

1− ρ
+ nd(n− 1)F2

]
ω +

n(d− 1)(dρ+ 1− ρ)F1

1− ρ

+d(n− 1)F2 + (nd− n− d),
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where F1 = V1/V3 and F2 = V2/V3.

Checking the derivative of W with respect to ρ, we can show that W is an

increasing function of ρ. Hence, for ρ1 < ρ2, W (ρ1, ω) > c implies W (ρ2, ω) > c.

Therefore Pρ1(ρ̂ > c) = P (W (ρ1, ω) > c) ≤ P (W (ρ2, ω) > c) = Pρ2(ρ̂ > c).
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