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Abstract: We consider the problem of sequentially testing a simple null hypothesis,

H0, versus a composite alternative hypothesis, H1, that consists of a finite set of

densities. We study sequential tests that are based on thresholding of mixture-

based likelihood ratio statistics and weighted generalized likelihood ratio statistics.

It is shown that both sequential tests have several asymptotic optimality proper-

ties as error probabilities go to zero. First, for any weights, they minimize the

expected sample size within a constant term under every scenario in H1 and at

least to first order under H0. Second, for appropriate weights that are specified

up to a prior distribution, they minimize a weighted expected sample size in H1

within an asymptotically negligible term. Third, for a particular prior distribution,

they are almost minimax with respect to the expected Kullback–Leibler divergence

until stopping. Furthermore, based on high-order asymptotic expansions for the

operating characteristics, we propose prior distributions that lead to a robust be-

havior. Finally, based on asymptotic analysis as well as on simulation experiments,

we argue that both tests have the same performance when they are designed with

the same weights.

Key words and phrases: Asymptotic optimality, generalized likelihood ratio, mini-

max sequential tests, mixture-based tests.

1. Introduction

Let {Xt}t∈N be a sequence of independent and identically distributed (i.i.d.)

random vectors with values in Rd, d ∈ N = {1, 2, . . . }, and common density f

with respect to some non-degenerate, σ-finite measure ν(dx). We consider the

problem of sequentially testing H0 : f ∈ A0 versus H1 : f ∈ A1, where A0 and

A1 are two disjoint sets of densities with common support. That is, we assume

that observations are acquired in a sequential manner and the goal is to select

the correct hypothesis as soon as possible.

Let {Ft} be the observed filtration, Ft = σ(X1, . . . , Xt). A sequential test

δ = (T, dT ) is a pair that consists of an {Ft}-stopping time, T , and an FT -

measurable (terminal) decision rule, dT = dT (X1, . . . , XT ) ∈ {0, 1}, that specifies
which hypothesis is to be accepted once observations have stopped. In particular,

Hj is accepted if dT = j, that is, {dT = j} = {T < ∞, δ accepts Hj}, j = 0, 1.
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The ideal sequential test has the smallest possible expected sample size under

both H0 and H1, while controlling error probabilities below given tolerance levels.

Thus, if Pf is the underlying probability measure when X1 has density f and Ef

is the corresponding expectation, δo = (T o, doT o) ∈ Cα,β is an optimal sequential

test if

Ef [T
o] = inf

δ∈Cα,β

Ef [T ] ∀ f ∈ A0 ∪ A1,

where Cα,β is the class of sequential tests whose maximal type-I and type-II error

probabilities are bounded above by α and β respectively,

Cα,β =
{
δ : sup

f∈A0

Pf (dT = 1) ≤ α and sup
f∈A1

Pf (dT = 0) ≤ β
}
.

Wald and Wolfowitz (1948) proved that an optimal sequential test exists when

both hypotheses are simple, A0 = {f0} and A1 = {f1}, and is given by the

Sequential Probability Ratio Test (SPRT) that was proposed by Wald (1944) in

his seminal work on Sequential Analysis:

S = inf{t ∈ N : Λ1
t /∈ (A−1, B)} , dS = 1l{Λ1

S≥B}, (1.1)

where A,B > 1 are constant thresholds, selected so that P0(dS = 1) = α and

P1(dS = 0) = β, and {Λ1
t } is the likelihood ratio statistic

Λ1
t =

t∏
n=1

f1(Xn)

f0(Xn)
, t ∈ N. (1.2)

In the case of composite hypotheses, it has only been possible to find sequen-

tial tests that are optimal in an asymptotic sense. More specifically, we say that

δ0 ∈ Cα,β is uniformly (first-order) asymptotically optimal if

Ef [T
0] = inf

δ∈Cα,β

Ef [T ] (1 + o(1)) ∀ f ∈ A0 ∪ A1,

as α, β → 0. When, in particular, A0 and A1 can be embedded in an exponential

family {fθ, θ ∈ Θ} and Θ1 is a subset of the natural parameter space Θ such that

θ0 /∈ Θ1 and

A0 = {fθ0} and A1 = {fθ, θ ∈ Θ1}, (1.3)

it is well known (see, for example, Lorden (1973); Pollak and Siegmund (1975))

that the sequential test (1.1) is uniformly asymptotically optimal if Λ1
t is replaced

either by the generalized likelihood-ratio (GLR) statistic, supθ∈Θ Λθ
t , or by a

mixture-based likelihood ratio statistic,
∫
Θ Λθ

t w(θ) dθ, where w(·) is some proba-

bility density function on Θ (weight function) and Λθ
t is defined as in (1.2) with f1

replaced by fθ. However, apart from certain tractable cases, these statistics are



ALMOST OPTIMAL SEQUENTIAL TESTS 1719

not in general recursive and, as a result, they cannot be easily implemented on-

line. Moreover, their computation at each step may be approximate, since it often

requires discretization of the parameter space. These problems can be overcome

if one uses the adaptive likelihood-ratio statistic, Λt = Λt−1(fθ∗t (Xt)/f0(Xt)),

where θ∗t is an estimator of θ that depends on the first t− 1 observations. How-

ever, this approach, initially developed by Robbins and Siegmund (1970, 1974) for

power one tests and later extended by Pavlov (1990) and Dragalin and Novikov

(1999) for multihypothesis sequential tests, generally leads to less efficient se-

quential tests, since one-stage delayed estimators use less information than the

global MLE that is employed by the GLR statistic. Sequential testing of compos-

ite hypotheses in a Bayesian formulation with a small cost of observations was

considered by Schwarz (1962); Kiefer and Sacks (1963); Chernoff (1972); Lorden

(1967); Lai (1988), among others.

In the present paper, we consider the problem of sequential testing a simple

null hypothesis against a discrete alternative consisting of a finite set of densities,

A0 = {f0} and A1 = {f1, . . . , fK}, (1.4)

where K is a positive integer. This hypothesis testing problem has two main

motivations. First, it serves as an approximation to the continuous-parameter

testing problem (1.3), in which Θ1 is replaced by a finite subset {θ1, . . . , θK} of Θ1

so that fj = fθj , j = 0, 1, . . . ,K. This implies a loss of efficiency under Pθ when

θ /∈ {θ1, . . . , θK}, but it leads to sequential tests that are easily implementable

on-line.

Moreover, the hypothesis testing problem (1.4) applies to multisample slip-

page problems, which have a wide range of applications (see, e.g., Chernoff (1972);

Tartakovsky et al. (2006, 2003)). As an example, consider the setup in which K

sensors monitor different areas, a signal may be present in at most one of these

areas and the goal is to detect signal presence without identifying its location.

If additionally the sensors are statistically independent and sensor i takes i.i.d.

observations {Xi
t}t∈N with density gi1 (resp. gi0) when signal is present (resp. ab-

sent), this problem turns out to be a special case of (1.4) withXt = (X1
t , . . . , X

K
t )

and

f0(Xt) =
K∏
j=1

gj0(X
j
t ) , fi(Xt) = gi1(X

i
t)

K∏
j=1

j ̸=i

gj0(X
j
t ), 1 ≤ i ≤ K. (1.5)

In order to describe the main contributions of this paper, we need some

additional terminology and notation. We say that q = (q1, . . . , qK) is a weight if
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qi > 0 for every 1 ≤ i ≤ K. For any weight q, we set

Λt(q) =
K∑
i=1

qi Λi
t, Λ̂t(q) = max

1≤i≤K
{qi Λi

t}, (1.6)

where Λi
t is defined as in (1.2) with f1 replaced by fi. Introduce two sequential

tests for problem (1.4):

M = inf{t : Λt(q1) ≥ B or Λt(q0) ≤ A−1}, dM = 1l{ΛM (q1)≥B},

N = inf{t : Λ̂t(q1) ≥ B or Λ̂t(q0) ≤ A−1}, dN = 1l{Λ̂N (q1)≥B},

where q0 and q1 are arbitrary weights. We call δmi = (M,dM ) the Mixture

Likelihood Ratio Test (MiLRT) and δgl = (N, dN ) the Weighted Generalized

Likelihood Ratio Test (WGLRT).

Tartakovsky et al. (2003) studied the GLRT, that is, the WGLRT with uni-

form weights, qi0 = qi1 = 1, 1 ≤ i ≤ K, in the multisample (multichannel) setup

(1.5) and established its asymptotic optimality. More specifically, it was shown

that the GLRT is second-order asymptotically optimal, in the sense that it at-

tains infδ∈Cα,β
Ei[T ] within an O(1) term for every 1 ≤ i ≤ K, where O(1) is

asymptotically bounded as α, β → 0. Moreover, it was shown that, in the special

case of completely asymmetric channels, the GLRT also attains infδ∈Cα,β
E0[T ]

within an O(1) term. (Here and in what follows we denote by Pj the underly-

ing probability measure when X1 has density fj and by Ej the corresponding

expectation, j = 0, 1, . . . ,K.)

In the present work, we establish this uniform, second-order asymptotic op-

timality property for both the MiLRT and the WGLRT with arbitrary weights

q0 and q1 in the more general setup of (1.4). However, the main question we

want to answer is how to select the weights in order to obtain further “benefits”.

In this direction, we show that if p = (p1, . . . , pK) is an arbitrary probability

mass function, which can be interpreted as a prior distribution on H1, and q0,

q1 are selected so that qi0 = piLi and qi1 = pi/Li, 1 ≤ i ≤ K, then both tests

attain infδ∈Cα,β
Ep[T ] within an o(1) term, where Ep is expectation with respect

to the weighted probability measure Pp =
∑k

i=1 piPi, whereas the L-numbers

{Li}, formally introduced in (2.1), provide overshoot corrections that allow us to

achieve this refined asymptotic optimality property.

In addition, we find a prior distribution p̂ which makes both tests almost

minimax with respect to the expected Kullback–Leibler (KL) divergence until

stopping: they attain infδ∈Cα,β
max1≤i≤K (Ii Ei[T ]) within an o(1) term, where

Ii is the KL information number (see (2.2)). In this way, we generalize the

corresponding result in Fellouris and Tartakovsky (2012), where this minimax
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problem was considered in the context of open-ended, mixture-based sequential

tests.

Furthermore, using high-order asymptotic expansions for the operating char-

acteristics of both tests, we show that selecting pi to be proportional to Ii or Li

leads to a much more robust behavior than the one induced by p̂. Finally, based

on these asymptotic expansions as well as on Monte Carlo simulations, we argue

that both the WGLRT and the MiLRT have essentially the same performance

when they are designed with the same weights.

The remainder of the paper is organized as follows. In Section 2, we introduce

notation, in Section 3 we obtain asymptotic approximations to the operating

characteristics of the two tests, whereas in Section 4 we establish their asymptotic

optimality properties. In Section 5, we compare different specifications for p, and

in Section 6 we compare the tests using Monte Carlo simulations. We conclude

in Section 7.

2. Notation

For every 1 ≤ i ≤ K, we set Zi
t = log Λi

t, where Λi
t is given by (1.2) with f1

replaced by fi. We denote by δi = (Si, dSi) the SPRT for testing f0 against fi,

which is defined as in (1.1) with Λ1
t replaced by Λi

t.

We quantify the “distance” between fi and f0 using the L-number

Li = exp

{
−

∞∑
n=1

n−1
[
P0(Z

i
n > 0) + Pi(Z

i
n ≤ 0)

]}
, (2.1)

as well as the KL information numbers Ii = Ei[Z
i
1] and Ii0 = E0[−Zi

1],

Ii =

∫
log
( fi(x)
f0(x)

)
f1(x) ν(dx), Ii0 =

∫
log
(f0(x)
fi(x)

)
f0(x) ν(dx). (2.2)

Without loss of generality, we assume that f1, . . . , fK are ordered with respect

to their KL divergence from f0 so that

I0 = min
1≤i≤K

Ii0 = I10 = · · · = Ir0 < Ir+1
0 ≤ · · · ≤ IK0 . (2.3)

Note that r = 1 corresponds to the asymmetric situation in which I0 is attained

by a unique index i = 1. On the other hand, r = K corresponds to the completely

symmetric situation in which Ii0 is the same for every 1 ≤ i ≤ K. The latter

case occurs, for example, in the multisample slippage problem (1.5) when the

densities do not depend on the population (or sensor in a multisensor context).

In order to avoid trivial cases, we assume that fi and f0 do not coincide

almost everywhere, which implies that Ii, I
i
0 > 0 for every 1 ≤ i ≤ K. We also
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assume throughout the paper that Zi
1 is non-arithmetic under P0 and Pi and that

Ii, I
i
0 < ∞ for every 1 ≤ i ≤ K. Then, if we define the first hitting times

τ ic = inf{t : Zi
t ≥ c}, σi

c = inf{t : Zi
t ≤ −c}, c > 0,

it is well known that the overshoots Zi
τ ic

− c and |Zi
σi
c
+ c| have well defined

asymptotic distributions under Pi and P0 respectively,

Hi(x) = lim
c→∞

Pi(Z
i
τ ic
− c ≤ x), Hi

0(x) = lim
c→∞

P0(|Zi
σi
c
+ c| ≤ x), x > 0.

Consequently, we can define the Laplace transforms

γi =

∫ ∞

0
e−xHi(dx), γi0 =

∫ ∞

0
e−xHi

0(dx)

that connect the KL-numbers with the L-numbers as follows: Li = γi Ii = γi0 I
i
0

(see, e.g., Theorem 5 in Lorden (1977)). If, additionally, Ei[(Z
i
1)

2],E0[(Z
i
1)

2] < ∞,

then Hi and Hi
0 have finite means (average limiting overshoots),

κi =

∫ ∞

0
xHi(dx), κi0 =

∫ ∞

0
xHi

0(dx),

and we have the following asymptotic approximations to the expected sample

sizes of the SPRT δi = (Si, dSi) under Pi and P0:

Ei[S
i] =

1

Ii
(| logα|+ κi + log γi) + o(1), (2.4)

E0[S
i] =

1

Ii0

(
| log β|+ κi0 + log γi0

)
+ o(1), (2.5)

as α, β → 0 so that α| log β|+ β| logα| → 0.

3. Asymptotic Approximations for Operating Characteristics

In order to obtain asymptotic inequalities and approximations for the error

probabilities and the expected sample sizes of the MiLRT and the WGLRT, we

rely on the following decompositions for Zt(q) = log Λt(q) and Ẑt(q) = log Λ̂t(q),

Zt(q) = Zi
t + log qi + Y i

t (q), t ∈ N, (3.1)

Ẑt(q) = Zi
t + log qi + Ŷ i

t (q), t ∈ N, (3.2)

where

Y i
t (q) = log

(
1 +

K∑
j=1

j ̸=i

qj

qi
Λj
t

Λi
t

)
, t ∈ N, (3.3)
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Ŷ i
t (q) = log

(
max

{
1, max

1≤j ̸=i≤K

qj

qi
Λj
t

Λi
t

})
, t ∈ N. (3.4)

From the Strong Law of Large Numbers (SLLN) it follows that, for every j ̸= i,

Pi(Λ
j
t/Λ

i
t → 0) = 1. This implies that Y i(q) and Ŷ i(q) also converge to 0 Pi-a.s.,

and, consequently, they are slowly changing under Pi (for a precise definition of

“slowly changing” we refer to Siegmund (1985), page 190). Since Zi
t is a random

walk under Pi, from this observation and decompositions (3.1)–(3.2) it follows

that Z(q) and Ẑ(q) are perturbed random walks under Pi.

Similarly, the SLLN implies that, in the special case where r = 1, P0(Λ
j
t/Λ

1
t →

0) = 1 for every j > 1. Therefore, Y 1(q) and Ŷ 1(q) also converge to 0 P0-a.s.

and from (3.1)–(3.2) with i = 1 it follows that Z(q) and Ẑ(q) are perturbed

random walks under P0 when r = 1.

These properties allow us to apply nonlinear renewal theory for perturbed

random walks (see Woodroofe (1976, 1982); Lai and Siegmund (1977, 1979);

Siegmund (1985)) in order to obtain asymptotic approximations for the expected

sample sizes of the tests δmi and δgl under Pi for every 1 ≤ i ≤ K, as well as

under P0 when r = 1. An asymptotic approximation for E0[N ] when r > 1 can be

obtained based on nonlinear renewal theory of Zhang (1988) using the following

representation for N0
A:

N0
A = inf

{
t : ℓ0t ≥ logA+ max

1≤i≤K
(log qi0 + ℓit)

}
, (3.5)

where

ℓjt =

t∑
n=1

log fj(Xn), t ∈ N. (3.6)

For the latter approximation we also need some additional notation. For any

1 ≤ i ≤ K, we set µi = E0[log fi(X1)], so that Ii0 = E0[log f0(X1)]−µi. Moreover,

we set µ = max1≤i≤K µi, so that I0 = E0[log f0(X1)] − µ, we define the r-

dimensional random vector

W = (log f1(X1)− µ, . . . , log fr(X1)− µ), (3.7)

and we denote by Σ its covariance matrix under P0. Finally, we set

dr =
hr

2
√
I0
, hr =

∫
Rr

( max
1≤i≤r

xi)ϕΣ(x) dx, (3.8)

where ϕΣ is the density of an r-dimensional zero-mean Gaussian random vector

with covariance matrix Σ.
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3.1. Asymptotic bounds for the error probabilities

Define the overshoots associated with the MiLRT and the WGLRT,

η = [ZM (q1)− logB] 1l{dM=1} − [ZM (q0) + logA] 1l{dM=0}, (3.9)

η̂ = [ẐN (q1)− logB] 1l{dN=1} − [ẐN (q0) + logA] 1l{dN=0}, (3.10)

which play an important role in the asymptotic analysis of the operating char-

acteristics. Observe also that the tests δmi and δgl can be equivalently defined

as

M = min{M0
A,M

1
B}, dM = 1l{M1

B≤M0
A}, (3.11)

N = min{N0
A, N

1
B}, dN = 1l{N1

B≤N0
A}, (3.12)

where

M1
B = inf

{
t : Λt(q1) ≥ B

}
, M0

A = inf
{
t : Λt(q0) ≤ A−1

}
,

N1
B = inf

{
t : Λ̂t(q1) ≥ B

}
, N0

A = inf
{
t : Λ̂t(q0) ≤ A−1

}
are the corresponding one-sided stopping times.

Lemma 1. For any 1 ≤ i ≤ K,

Ei[e
−η 1l{dM=1}] → γi, Ei[e

−η̂ 1l{dN=1}] → γi as A,B → ∞. (3.13)

If additionally r = 1, then

E0[e
−η 1l{dM=0}] → γ10 , E0[e

−η̂ 1l{dN=0}] → γ10 as A,B → ∞. (3.14)

Proof. We only prove the first assertions in (3.13) and (3.14), since the others

can be proven in an identical way.

Since M = M1
B = inf{t : Zt(q1) ≥ logB} and η = ZM1

B
(q1) − logB on

{dM = 1} = {M1
B ≤ M0

A}, and {Zt(q1) = Zi
t + log qi1 + Y i

t (q1)} is a per-

turbed random walk under Pi, from nonlinear renewal theory (see, e.g., Theorem

9.12 in Siegmund (1985)) it follows that η converges in distribution to Hi un-

der Pi on {dM = 1}. Therefore, the Bounded Convergence Theorem yields

Ei[e
−η 1l{dM=1}] → γi.

Since M = M0
A = inf{t : −Zt(q0) ≥ logA} and η = |ZM0

A
(q0) + logA|

on {dM = 0} = {M1
B > M0

A}, and {−Zt(q0) = −Z1
t − log q10 − Y 1

t (q0)} is a

perturbed random walk under P0 when r = 1, the same argument applies to

show that E0[e
−η 1l{dM=0}] → γ10 .

In what follows, we set |q1| =
∑K

j=1 q
j
1.



ALMOST OPTIMAL SEQUENTIAL TESTS 1725

Theorem 1. (a) For any A,B > 1,

P0(dM = 1) ≤ |q1|
B

, P0(dN = 1) ≤ |q1|
B

, (3.15)

Pi(dM = 0) ≤ 1

Aqi0
, Pi(dN = 0) ≤ 1

Aqi0
, 1 ≤ i ≤ K. (3.16)

(b) As A,B → ∞,

P0(dM = 1) =
1

B

( K∑
j=1

qj1 γj

)
(1 + o(1)), (3.17)

P0(dN = 1) ≤ 1

B

( K∑
j=1

qj1 γj

)
(1 + o(1)). (3.18)

If additionally r = 1, then for every 1 ≤ i ≤ K

Pi(dM = 0) ≤ γ10
qi0A

(1 + o(1)), Pi(dN = 0) ≤ γ10
qi0A

(1 + o(1)). (3.19)

Proof. Let Pq1 = 1
|q1|

∑K
i=1 q

i
1 Pi and let Eq1 denote expectation with respect

to Pq1 . Since

dPq1

dP0

∣∣∣
Ft

=
1

|q1|

K∑
i=1

qi1Λ
i
t =

1

|q1|
eZt(q1),

changing the measure P0 7→ Pq1 we obtain

P0(dM = 1) = |q1| Eq1 [e−ZM (q1) 1l{dM=1}]

=
K∑
i=1

qi1 Ei[e
−ZM (q1) 1l{dM=1}] =

1

B

K∑
i=1

qi1 Ei[e
−η 1l{dM=1}], (3.20)

where the last equality follows from the fact that ZM (q1) = logB + η on {dM =

1}. Since η is positive, the first inequality in (3.15) follows from (3.20), whereas

(3.17) follows from (3.13). A similar argument as the one that led to (3.20), along

with the fact that Zt(q1) ≥ Ẑt(q1), yields

P0(dN = 1) =

K∑
i=1

qi1 Ei[e
−ZN (q1) 1l{dN=1}]

≤
K∑
i=1

qi1 Ei[e
−ẐN (q1) 1l{dN=1}] ≤

1

B

K∑
i=1

qi1 Ei[e
−η̂ 1l{dN=1}]. (3.21)



1726 GEORGIOS FELLOURIS AND ALEXANDER G. TARTAKOVSKY

The last inequality and the fact that η̂ is positive imply the second inequality in

(3.15), whereas (3.18) follows from (3.13).

Finally, changing the measure Pi 7→ P0, we obtain

Pi(dM = 0) = E0[e
Zi
M 1l{dM=0}]. (3.22)

Since Zi
M = ZM (q0) − log qi0 − Y i

M (q0) (recall (3.1)), ZM (q0) = − logA − η on

{dM = 0} (recall (3.9)), and Y i
M (q0) ≥ 0, it follows that Zi

M ≤ − log(Aqi0) − η

on {dM = 0} and, consequently, (3.22) becomes

Pi(dM = 0) ≤ 1

Aqi0
E0[e

−η 1l{dM=0}].

Since η is positive, we obtain the first inequality in (3.16), whereas from (3.14)

we obtain the first inequality in (3.19). The remaining inequalities in (3.16) and

(3.19) can be shown in a similar way.

From Theorem 1(a) it is clear that when A,B are selected according to

Aβ(q0) =
1

βmin1≤i≤K qi0
, Bα(q1) =

|q1|
α

, (3.23)

then δmi, δgl ∈ Cα,β. Moreover, from Theorem 1(b) it follows that we can obtain

sharper inequalities if we correct for the overshoots selecting A and B as

Aβ(q0) =
γ10

βmin1≤i≤K qi0
, Bα(q1) =

∑K
j=1 q

j
1γj

α
. (3.24)

Indeed, with this selection of the thresholds we have P0(dM = 1) = α(1 + o(1)),

P0(dN = 1) ≤ α(1 + o(1)) and, if additionally r = 1, max1≤i≤K Pi(dM = 0) ≤
β(1 + o(1)) and max1≤i≤K Pi(dN = 0) ≤ β(1 + o(1)).

3.2. Asymptotic approximations to expected sample sizes

In the rest of the paper, we need the following assumptions:

(A1) Ei[(Z
i
1)

2] < ∞ and E0[(Z
i
1)

2] < ∞, 1 ≤ i ≤ K.

(A2) α, β → 0 so that | logα|/| log β| → k, where k ∈ (0,∞).

(A3) For T = M or T = N , A and B are selected so that as α, β → 0

k0 α (1 + o(1)) ≤ P0(dT = 1) ≤ α (1 + o(1)), (3.25)

k1 β (1 + o(1)) ≤ max
1≤i≤K

Pi(dT = 0) ≤ β (1 + o(1)) (3.26)

or, equivalently,

| logα|+ o(1) ≤ | logP0(dT = 1)| ≤ | logα|+ | log k0|+ o(1), (3.27)
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| log β|+ o(1) ≤ | log max
1≤i≤K

Pi(dT = 0)| ≤ | log β|+ | log k1|+ o(1), (3.28)

where k0, k1 ∈ (0, 1) are fixed constants, not necessarily the same for δmi and δgl.

The second moment condition (A1) on the log-likelihood ratio Zi
1 is required

even for the asymptotic approximations (2.4)–(2.5) to the performance of the

SPRT for testing f0 against fi. Assumption (A2) concerns the relative rates at

which α and β go to 0 and requires that α should not go to 0 exponentially faster

than β, and vice versa. Note, however, that α can still be much smaller than

β (or vice versa), as may be natural in many applications. Assumption (A3)

requires that the thresholds for both the MiLRT and the WGLRT are designed

so that the probabilities of type-I and type-II error are asymptotically bounded

by (and at the same time not much smaller than) α and β, respectively. As we

show in the next lemma, (A3) connects the thresholds A and B with the desired

error probabilities α and β.

Lemma 2. If (A3) holds, then logB = | logα|+O(1) and logA = | log β|+O(1).

Proof. It follows from (3.15) that logB ≤ | logP0(dM = 1)| + |q1|, whereas
from (A3), and in particular (3.27), it follows that | logP0(dM = 1)| ≤ | logα|+
| log k0|+ o(1), which proves logB = | logα|+O(1). The second relationship can

be shown in a similar way.

Theorem 2. If (A1)–(A3) hold, then

(a) for every 1 ≤ i ≤ K,

Ii Ei[M ] = logB + κi − log qi1 + o(1), (3.29)

Ii Ei[N ] = logB + κi − log qi1 + o(1); (3.30)

(b) for r = 1,

I0 E0[M ] = logA+ κ10 + log q10 + o(1), (3.31)

I0 E0[N ] = logA+ κ10 + log q10 + o(1); (3.32)

(c) for r > 1,

I0 E0[M ] = logA+ 2 dr
√

logA+O(1), (3.33)

I0 E0[N ] = logA+ 2 dr
√

logA+O(1), (3.34)

where dr is defined in (3.8).

Proof. (a) Asymptotic approximations (3.29) and (3.30) can be relatively eas-

ily established using nonlinear renewal theory. Specifically, starting from (3.1)

and applying the Nonlinear Renewal Theorem (see Theorem 9.28 in Siegmund

(1985)), it can be shown (as in Theorem 2.1 of Fellouris and Tartakovsky (2012))

that Ii Ei[M
1
B] is equal to the right-hand side of (3.29) as B → ∞. Therefore,
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to prove (3.29) it suffices to show that Ei[M
1
B − M ] = o(1) as A,B → ∞ or,

equivalently, as α, β → 0. To this end, note that

0 ≤ M1
B −M = [M1

B −M0
A] 1l{dM=0} ≤ M1

B 1l{dM=0}.

Applying the Cauchy–Schwartz inequality, we obtain

Ei[M
1
B 1l{dM=0}] ≤

√
Ei[(M1

B)
2] Pi(dM = 0). (3.35)

From (3.1) and (3.3) it is clear that Zt(q1) ≥ Zi
t + log qi1, t ∈ N, thus

M1
B ≤ inf{t : Zi

t ≥ log(B/qi1)}.

Consequently, from Theorem 8.1 in Gut (2008) it follows that, since (A1) holds,

(Ii)
2 Ei[(M

1
B)

2] ≤ (log(B/qi1))
2(1 + o(1)).

From the latter inequality and Lemma 2 we conclude that

Ei[(M
1
B)

2] = O((logB)2) = O(| logα|2).

Moreover, since (A3) implies Pi(dM = 0) ≤ β(1 + o(1)), (3.35) gives

Ei[M
1
B 1l{dM=0}] = O(| logα|2β),

and from (A2) we conclude that the upper bound goes to 0. This completes the

proof of (3.29). The proof of (3.30) is analogous.

(b) From (3.1) and the Nonlinear Renewal Theorem it follows that I0 E0[M
0
A]

is equal to the right-hand side of (3.31) as A → ∞. Then, as in (a), we can show

that E0[M
0
A −M ] = o(1). The proof of (3.32) follows similar steps.

(c) In order to prove (3.34), we start from (3.5) and apply the nonlinear

renewal theory of Zhang (1988). As a result, it can be shown (analogously to

Lemma 2.1 of Dragalin (1999)) that I0 E0[N
0
A] is equal to the right-hand side of

(3.34). Thus, it suffices to show that E0[N
0
A] = E0[N ] + o(1), which can be done

as in (a) and (b).

Remark 1. The asymptotic approximation (3.34) can be further improved (up

to the negligible term o(1)), if stronger integrability conditions are postulated

on the vector W defined in (3.7). Specifically, if in addition we assume the

third moment condition E0[||W ||3] < ∞ as well as the Cramér-type condition

lim sup||t||→∞ E0[e
j<t,W>] < 1, where j is the imaginary unit, t = (t1, . . . , tr) and

< t,W >=
∑r

l=1 tlWl, then

I0 E0[N ] = logA+ 2 dr
√

logA+ d2r +
h2r
2I0

+ κ10

+

∫
Rr

{
max
1≤i≤r

(xi)
[
P(x) + λ(q0)Σ

−1x′
] }

ϕΣ(x) dx+ o(1),
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where λ(q0) = (log q10, . . . , log q
r
0) and P is a third-degree polynomial whose co-

efficients depend on the P0-cumulants of W (see Bhattacharya and Rao (1986)).

This approximation can be derived similarly to Theorem 3.3 of Dragalin et al.

(2000) based on the nonlinear renewal theory of Zhang (1988).

Corollary 1. Suppose that (A1)–(A3) hold and that A and B are selected so

that P0(dM = 1) ∼ α and P0(dN = 1) ∼ α. Then,

Ii Ei[M ] = | logα|+ log
( K∑
j=1

qj1γj

)
+ κi − log qi1 + o(1), (3.36)

Ii Ei[N ] ≤ | logα|+ log
( K∑
j=1

qj1γj

)
+ κi − log qi1 + o(1). (3.37)

Proof. From (3.17)–(3.18) it follows that

logB = | logP0(dM = 1)|+ log
( K∑
j=1

qj1γj

)
+ o(1),

logB ≤ | logP0(dN = 1)|+ log
( K∑
j=1

qj1γj

)
+ o(1).

Moreover, setting k0 = 1 in (3.27), we obtain

| logP0(dM = 1)| = | logα|+ o(1) and | logP0(dN = 1)| = | logα|+ o(1).

From these two relationships and Theorem 2(a) we obtain the desired result.

4. Asymptotic Optimality Properties

In this section, we establish the asymptotic optimality properties of the

MiLRT and the WGLRT.

4.1. Uniform asymptotic optimality

We start by showing that both tests minimize the expected sample size within

an O(1) term under Pi, for every 1 ≤ i ≤ K, and at least to first order under P0.

Theorem 3. If (A1)–(A3) hold and A,B are selected so that δmi ∈ Cα,β, then

Ei[M ] = inf
δ∈Cα,β

Ei[T ] +O(1), 1 ≤ i ≤ K, (4.1)

E0[M ] =

{
infδ∈Cα,β

E0[T ] +O(1), if r = 1,

infδ∈Cα,β
E0[T ] (1 + o(1)), if r > 1,

(4.2)

and similar results hold for δgl.
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Proof. From (2.4) it is clear that

Ii inf
δ∈Cα,β

Ei[T ] ≥ | logα|+O(1), (4.3)

whereas from Theorem 2(a) and Lemma 2 it follows that

Ii Ei[M ] = logB +O(1) = | logα|+O(1),

which proves (4.1). From (2.5) and the fact that I0 = min1≤i≤K Ii0 it is clear that

inf
δ∈Cα,β

E0[T ] ≥
| log β|
I0

+O(1). (4.4)

Then, from Theorem 2(b) and Lemma 2 it follows that

I0 E0[M ] =

{
logA+O(1) = | log β|+O(1), if r = 1,

logA (1 + o(1)) = | log β| (1 + o(1)), if r > 1,
(4.5)

which implies (4.2).

4.2. Almost optimality

In what follows, we denote by δ∗mi(p) = (M∗(p), dM∗(p)) and δ∗gl(p) =

(N∗(p), dN∗(p)) the MiLRT and the WGLRT with weights

qi1 =
pi
Li

and qi0 = pi Li, 1 ≤ i ≤ K, (4.6)

where p = (p1, . . . , pK), pi > 0 for every 1 ≤ i ≤ K, and
∑K

i=1 pi = 1. Then,

from Corollary 1 and the fact that Li = γiIi, 1 ≤ i ≤ K, it follows that if B is

selected so that P0(dM∗(p) = 1) ∼ α and P0(dN∗(p) = 1) ∼ α, then

Ei[M
∗(p)] =

1

Ii

[
| logα|+ κi + log γi + Ci(p)

]
+ o(1), (4.7)

Ei[N
∗(p)] ≤ 1

Ii

[
| logα|+ κi + log γi + Ci(p)

]
+ o(1), (4.8)

where

Ci(p) = log
( K∑
j=1

pj
Ij

)
− log

pi
Ii
, 1 ≤ i ≤ K. (4.9)

The next theorem states that δ∗mi(p) and δ∗gl(p) attain infδ∈Cα,β
Ep[T ] asymp-

totically within an o(1) term, where Ep is expectation with respect to the weighted

probability measure Pp =
∑K

i=1 pi Pi.
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Theorem 4. Suppose that (A1)–(A3) hold and α, β → 0 so that | logα| ∼ | log β|.
Then

inf
δ∈Cα,β

Ep[T ] =
K∑
i=1

pi
Ii

[
| logα|+ κi + log γi + Ci(p)

]
+ o(1). (4.10)

If, additionally, A and B are selected so that δ∗mi(p) and δ∗gl(p) belong to Cα,β
and P0(dM∗(p) = 1) ∼ α and P0(dN∗(p) = 1) ∼ α, then

inf
δ∈Cα,β

Ep[T ] = Ep[M∗(p)] + o(1),

inf
δ∈Cα,β

Ep[T ] = Ep[N∗(p)] + o(1).

To prove this theorem, we formulate our sequential testing problem as a

Bayesian sequential decision problem with K + 1 states, H0 : f = f0 and Hi
1 :

f = fi, 1 ≤ i ≤ K, and two possible actions upon stopping, selecting either H0 or

H1 = ∪iH
i
1. Let c denote the sampling cost per observation and let w1 (resp. w0)

be the loss associated with accepting H0 (resp. H1) when the correct hypothesis

is H1 (resp. H0). Define Pπ = π P0+(1−π)Pp, which means that π = Pπ(H0) is

the prior probability of H0 and pi = Pπ(Hi
1|H1) is the prior probability of f = fi

given that H1 is correct.

The integrated risk of a sequential test δ = (T, dT ) is the sum R(δ) =

Rc(T )+Rs(dT ), where Rc(T ) is the integrated risk due to sampling and Rs(dT )

is the integrated risk due to a wrong decision upon stopping,

Rc(T ) = cEπ[T ] = c
[
π E0[T ] + (1− π)Ep[T ]

]
,

Rs(dT ) = Eπ[w0 1l{dT=1}|H0] +Eπ[w1 1l{dT=0}|H1]

= π w0 P0(dT = 1) + (1− π)w1 P
p(dT = 0).

The Bayesian sequential decision problem is to find an optimal (Bayes) sequential

test that attains the Bayes risk, R∗ = infδ R(δ). It is well known that the

solution to this problem does not have a simple structure (see, e.g., Chow et

al. (1971)). However, from the seminal work of Lorden (1977) on finite-state

sequential decision making it follows that δ∗mi(p) and δ∗gl(p) are almost Bayes

when their thresholds A and B are chosen as

Ac =
1− π

π

w1

c
and Bc =

π

1− π

w0

c
. (4.11)

More specifically, denote by δ∗mi,c(p) = (M∗
c (p), dM∗

c (p)) and δ∗gl,c(p) = (N∗
c (p),

dN∗
c (p)) the sequential tests δ∗mi(p) and δ∗gl(p) whose thresholds are given by Ac
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and Bc. Under the integrability condition (A1), it follows from Lorden (1977)

that

R(δ∗mi,c(p))−R∗ = o(c) and R(δ∗gl,c(p))−R∗ = o(c). (4.12)

The proof of Theorem 4 relies on this third-order Bayesian asymptotic optimality

property.

Proof. In order to lighten the notation, we omit the dependence on the prior

distribution p and write simply δ∗mi = (M∗, dM∗) and δ∗mi,c = (M∗
c , dM∗

c
), and

similarly for the WGLRT.

From Corollary 1 it is clear that the right-hand side in (4.10) is attained

by δ∗mi and δ∗gl when their thresholds are selected so that P0(dM∗ = 1) ∼ α and

P0(dN∗ = 1) ∼ α. If additionally δ∗mi, δ
∗
gl ∈ Cα,β, then infδ∈Cα,β

Ep[T ] is attained

by these two tests to within an o(1) term. Thus it suffices to establish (4.10).

Consider the class of sequential tests

Cpα,β = {δ = (T, dT ) : P0(dT = 1) ≤ α and Pp(dT = 0) ≤ β}.

Since Cα,β ⊂ Cpα,β, we have infδ∈Cα,β
Ep[T ] ≥ inf

δ∈Cpα,β

Ep[T ]. Thus, it suffices to

show that

inf
δ∈Cpα,β

Ep[T ] =
K∑
i=1

pi
Ii

[
| logα|+ κi + log γi + Ci(p)

]
+ o(1). (4.13)

Consider now the sequential test δ∗mi,c = (M∗
c , dM∗

c
) with thresholds Ac and Bc

selected so that P0(dM∗
c
= 1) = α and Pp(dM∗

c
= 0) = β. From Corollary 1 it

is clear that Ep[M∗
c ] is equal to the right-hand side in (4.13) as c → 0, which

means that it suffices to show that

inf
δ∈Cpα,β

Ep[T ] = Ep[M∗
c ] + o(1),

where o(1) is an asymptotically negligible term as c → 0. More specifically, if δ

is an arbitrary sequential test in Cpα,β, we need to show that, for sufficiently small

c, |Ep[T ]− Ep[M∗
c ]| is bounded above by an arbitrarily small, but fixed number.

We observe that

Rs(dT ) = π w0 P0(dT = 1) + (1− π)w1 P
p(dT = 0)

≤ π w0 α+ (1− π)w1 β = Rs(dM∗
c
), (4.14)

where the inequality is due to δ ∈ Cpα,β and the second equality follows from the

assumption that P0(dM∗
c
= 1) = α and Pp(M∗

c = 0) = β.
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From (3.15)–(3.16) and the definition of Ac and Bc in (4.11) we have

Rs(dM∗
c
) = π w0 P0(dM∗

c
= 1) + (1− π)w1 P

p(dM∗
c
= 0)

≤ π w0
|q1|
Bc

+ (1− π)w1

K∑
i=1

pi
1

Acqi0

≤ |q1|(1− π)c+
K∑
i=1

pi
πc

qi0
≤ (Q− 1)c, (4.15)

where Q > 1 is some constant that does not depend on c or π.

Fix ϵ > 0 and introduce the sequential test

Tϵc = min{M∗
ϵc, T} , dTϵc = dT 1l{T≤M∗

ϵc} + dM∗
ϵc
1l{T>M∗

ϵc}.

Obviously,

Rs(dTϵc) ≤ Rs(dT ) +Rs(dM∗
ϵc
) ≤ Rs(dM∗

c
) +Rs(dM∗

ϵc
)

≤ Rs(dM∗
c
) + (Q− 1)c ϵ, (4.16)

where the second inequality is due to (4.14) and the third is due to (4.15).

Since M∗
c is almost Bayes (recall (4.12)), for sufficiently small c,

Rc(M
∗
c ) +Rs(dM∗

c
) ≤ Rc(Tϵc) +Rs(dTϵc) + c ϵ. (4.17)

From (4.16) we obtain Rc(M
∗
c ) ≤ Rc(Tϵc) +Qc ϵ and, consequently,

π E0[M
∗
c ] + (1− π)Ep[M∗

c ] ≤ π E0[Tϵc] + (1− π) Ep[Tϵc] +Qϵ

≤ π E0[M
∗
ϵc] + (1− π) Ep[T ] +Qϵ, (4.18)

where the second inequality follows from the definition of Tϵc. Rearranging terms,

we obtain from (4.18) that

Ep[M∗
c ]− Ep[T ] ≤ π

1− π

(
E0[M

∗
ϵc]− E0[M

∗
c ]
)
+

Qϵ

1− π
. (4.19)

Since the last inequality holds for any π ∈ (0, 1), we can set π = ϵ/(1+ ϵ), which

implies Bc = ϵw0/c and Ac = w1/(ϵ c), whereas (4.19) becomes

Ep[M∗
c ]− Ep[T ] ≤ ϵ (E0[M

∗
ϵc]− E0[M

∗
c ]) +Qϵ(1 + ϵ). (4.20)

But from (3.31) and (3.34) it follows that, as c → 0,

I0 (E0[M
∗
ϵc]− E0[M

∗
c ]) = O(logAϵc − logAc)

and, from (4.11), we have logAϵc−logAc=| log ϵ|+O(1) as c → 0, which completes

the proof.
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Remark 2. With a similar argument as the one used in the proof of Theorem 4

it can be shown that if P0(dM∗(p) = 1) = α and Pp(dM∗(p) = 0) = β, then

inf
δ∈Cα,β

E0[T ] ≥ inf
δ∈Cpα,β

E0[T ] = E0[M
∗(p)] + o(1),

and similarly for δgl. However, the right-hand side in this asymptotic lower bound

is generally not attained by δ∗mi(p) or δ∗gl(p) when their thresholds are selected

so that δmi, δgl ∈ Cα,β .

Remark 3. While we have no rigorous proof, we believe that the assertions

of Theorem 4 (as well as of Theorem 5 below) hold true in the more general

case where α and β approach zero in such a way that the ratio logα/ log β is

bounded away from zero and infinity, which allows one to cover the asymptotically

asymmetric case as well.

4.3. Almost minimaxity

For any stopping time T and 1 ≤ i ≤ K, we set Ii(T ) = IiEi[T ]. Without

loss of generality, we restrict ourselves to Pi-integrable stopping times. Thus,

from Wald’s identity it follows that Ii(T ) = Ei[Z
i
T ], that is, Ii(T ) is the expected

KL divergence between Pi and P0 that has been accumulated up to time T .

Let p̂ = (p̂1, . . . , p̂K) denote the prior distribution for which

p̂i =
Lie

κi∑K
j=1 Lj eκj

, 1 ≤ i ≤ K. (4.21)

Then, from (3.29)–(3.30) it follows that p̂ (almost) equalizes the KL divergence

that is accumulated by both the MiLRT and the WGLRT until stopping, in the

sense that Ii(M∗(p̂)) and Ii(N∗(p̂)) are independent of i up to an o(1) term.

Indeed,

Ii(M∗(p̂)) = logB + log
( K∑
j=1

eLj κj

)
+ o(1), (4.22)

Ii(N∗(p̂)) = logB + log
( K∑
j=1

eLj κj

)
+ o(1), (4.23)

where only negligible terms o(1) may depend on i. If additionally B is selected

so that P(dM∗(p̂) = 1) ∼ α and P(dN∗(p̂) = 1) ∼ α, then (3.36)–(3.37) imply

that for every 1 ≤ i ≤ K,

Ii(M∗(p̂)) = | logα|+ log
( K∑
j=1

γje
κj

)
+ o(1), (4.24)
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Ii(N∗(p̂)) ≤ | logα|+ log
( K∑
j=1

γje
κj

)
+ o(1). (4.25)

Consequently, if we denote by Î(T ) = max1≤i≤K Ii(T ) the maximal expected

KL divergence until stopping, we have

Î(M∗(p̂)) = | logα|+ log
( K∑
j=1

γje
κj

)
+ o(1), (4.26)

Î(N∗(p̂)) ≤ | logα|+ log
( K∑
j=1

γje
κj

)
+ o(1). (4.27)

In the following theorem we show that δmi(p̂) and δgl(p̂) are almost minimax

in this KL sense.

Theorem 5. Suppose that (A1)–(A3) hold and α, β → 0 so that | logα| ∼ | log β|.
Then,

inf
δ∈Cα,β

Î[T ] = | logα|+ log
( K∑
j=1

γje
κj

)
+ o(1). (4.28)

If, additionally, the thresholds A and B are selected so that δmi(p̂), δgl(p̂) ∈ Cα,β
and P(dM∗(p̂) = 1) ∼ α and P(dN∗(p̂) = 1) ∼ α, then

inf
δ∈Cα,β

Î(T ) = Î[M∗(p̂)] + o(1), (4.29)

inf
δ∈Cα,β

Î(T ) = Î[N∗(p̂)] + o(1). (4.30)

Proof. If A and B are selected so that δmi(p̂) ∈ Cα,β and P(dM∗(p̂) = 1) ∼ α,

then it follows from Theorem 4 that

K∑
i=1

p̂i Ei[M
∗(p̂)] + o(1) ≤ inf

δ∈Cα,β

K∑
i=1

p̂i Ei[T ] = inf
δ∈Cα,β

K∑
i=1

p̂i
Ii

Ii(T )

≤
( K∑
i=1

p̂i
Ii

)
inf

δ∈Cα,β

Î(T ), (4.31)

whereas from (4.24) and (4.26) we have

K∑
i=1

p̂iEi[M
∗(p̂)] =

( K∑
i=1

p̂i
Ii

) [
| logα|+ log

( K∑
j=1

γje
κj

)
+ o(1)

]
(4.32)
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=
( K∑
i=1

p̂i
Ii

)
Î(M∗(p̂)) + o(1). (4.33)

From (4.31) and (4.32) we obtain (4.28), and from (4.31) and (4.33) we obtain

(4.29). Finally, from (4.27) and (4.28) we obtain (4.30).

5. How to Select p

In this section, we consider the specification of the prior distribution p that

determines the weights q0 and q1 of the MiLRT and the WGLRT, when these

are selected according to (4.6). In order to do so, we quantify the resulting

performance loss for the MiLRT (and similarly for the WGLRT) under Pi using

the measure

Ji(p) =
Ei[M

∗(p)]− Ei[S
i]

Ei[Si]
, 1 ≤ i ≤ K,

where Si is the SPRT for testing f0 against fi with type-I and type-II error prob-

abilities α and β, respectively. Thus, Ji(p) represents the additional expected

sample size due to the uncertainty in the alternative hypothesis divided by the

smallest possible expected sample size that is required for testing f0 against fi.

Then, if (A1)–(A3) hold and k0 = 1, from (2.4) and (4.7) it follows that

Ji(p) ≈
Ci(p)

| logα|+ κi + log γi
=

log
[∑K

j=1(pj/Ij)
]
+ log Ii − log pi

| logα|+ κi + log γi
, (5.1)

where by ≈ we mean that the two sides differ by an o(1) term. From this

expression we can see that the magnitude of Ji(p) is mainly determined by K,

the cardinality of A1, and the probability of type-I error, α. In particular, for

every 1 ≤ i ≤ K and p, Ji(p) will be “small” when | logα| is much larger than

logK, which implies that the choice of p may make a difference only when | logα|
is not much larger than logK.

In Figure 1, we compare different priors with respect to this criterion, in

particular p̂, defined in (4.21), as well as pI , pL, and pu defined so that pIi ∝ Ii,

pLi ∝ Li, and pui ∝ 1. We note that pL, pI , and p̂ are ranked in the sense that

Li ≤ Ii ≤ eκiLi, since Li = γiIi and γi ≤ 1 ≤ eκiγi. Thus, pL (resp. p̂) assigns

relatively less (resp. more) weight than pI to a hypothesis as its “signal-to-noise

ratio” increases. We also note that pL and p̂ reduce to pI when there is no

overshoot effect, in which case κi = 0 and γi = 1, whereas all these priors reduce

to pu in the symmetric case where Ii and Hi do not depend on i.

In order to make some concrete comparisons, we focus on the multichannel

setup (1.5), assuming that gi0(x) = g(x; 0) and gi1(x) = g(x; θi) for every 1 ≤ i ≤
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Figure 1. Performance loss for different prior distributions in a multichannel
problem with exponential data.

K = 2, where g(x; θ) = (1 + θ)−1 exp{−x/(1 + θ)}, x > 0, is a density of the

exponential distribution with mean 1 + θ, in which case Ii = θi − log(1 + θi),

κi = θi, γi = (1 + θi)
−1. We also assume that θ1 = 4 and we let θ2 = x vary.

Thus, the signal-to-noise ratio in the first (resp. second) channel is stronger (resp.

weaker) than that in the second (resp. first) channel when x < 4 (resp. x > 4).

In Figure 1, we plot J1(p) and J2(p), the inflicted performance loss when signal

is present in the first and second channel, respectively, as a function of x, for the

above priors. We do so using asymptotic approximation (5.1), in which we set

α = 10−4.

These plots show that p = p̂ (resp. p = pu) leads to a better performance

when signal is present in the channel with stronger (resp. weaker) signal-to-noise

ratio. However, the inflicted performance loss when the signal is present in the

other channel can be very high. On the other hand, p = pI or p = pL lead to a

more robust behavior, since the resulting performance loss is relatively low and

stable for various signal strengths.

Note that this exponential example has practical meaning in radar applica-

tions when detecting a signal (from a target), representing a sequence of slowly

fluctuating pulses in white Gaussian noise after square-law pre-processing (see,

e.g., Tartakovsky (1991)), in which case θ is the signal-to-noise ratio at the output

of the square-law detector.

6. Monte Carlo Simulations

In this section, we present a simulation study to verify the accuracy of the

asymptotic approximations established in Section 4 and compare the MiLRT with

the WGLRT for realistic probabilities of errors. We considered the multichannel
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Table 1. Parameter values in a multichannel problem with exponential data.

θi Ii κi γi qi1 qi0
0.5 0.095 0.5 0.67 0.308 0.013
1 0.584 1 0.4 0.837 0.078
2 0.901 2 0.33 1.380 0.138

Table 2. Type-I error probabilities and the expected sample sizes under Pi, i =

1, 2, 3 for different values of the target probability α when β = 10−2.

α P0(dM∗=1)
α

P0(dN∗=1)
α E1[M

∗] E1[N
∗] E2[M

∗] E2[N
∗] E3[M

∗] E3[N
∗]

10−2 1.051 0.994 59.9 59.4 17.8 19.4 6.2 7.3
10−3 1.033 0.995 84.1 84.1 25.7 27.1 9.0 9.9
10−4 1.025 0.996 108.5 108.3 33.7 34.6 11.7 12.4
10−5 1.017 0.996 132.5 132.3 41.4 42.0 14.3 15.0

setup (1.5) with K = 3 channels, gi0(x) = g(x; 0) and gi1(x) = g(x; θi) for every

1 ≤ i ≤ K, where g(x; θ) = (1 + θ)−1 exp{−x/(1 + θ)}, x > 0, and selected the

parameter values according to Table 1. Since our main emphasis is on the fast

detection of signal, we set β = 10−2 (miss detection probability) and considered

different values of α (false alarm probability). We chose the thresholds A and B

according to (3.24) and selected the weights according to (4.6) with prior p = pI .

In the first three columns of Table 2 we compare the type-I error probabilities

for the two tests, computed based on simulation experiments, against the target

level α. More specifically, these error probabilities were computed using (3.20),

(3.21) and importance sampling, a simulation technique whose application in

Sequential Analysis goes back to Siegmund (1976). These results indicate that

selecting B according to (3.23) leads to type-I error probabilities very close to α

for both tests, even for not too small α. In particular, we see that P0(dM∗ = 1) is

slightly larger than α, which is expected, since (3.23) implies P0(dM∗ = 1) ∼ α,

whereas α is a sharp upper bound for P0(dN∗ = 1), the type-I error probability

of the WGLRT.

In the remaining columns of Table 2, we present the (simulated) expected

sample size under Pi, i = 1, 2, 3, and in Figure 2 we plot these values against

the corresponding (simulated) type-I error probabilities. In these graphs, we

also superimpose asymptotic approximation (3.36) (dashed lines), as well as the

asymptotic performance of the corresponding SPRT (solid lines), given by (2.4).

Triangles correspond to the WGLRT and circles to the MiLRT. From these re-

sults we can see that (3.36) is very accurate for both tests. Also, the two tests

have almost the same performance; in particular, their performance is practi-

cally identical when the signal is present in the channel with the smallest signal

strength. In the other two cases, the MiLRT seems to perform slightly better.
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Figure 2. Simulated expected sample size of MiLRT (circles) and WGLRT
(triangles) under Pi against type-I error probability in logarithmic scale, i = 1, 2, 3.
The dashed line represents asymptotic approximation (3.36) and the solid line
refers to (2.4), the asymptotic performance of the corresponding SPRT.

7. Conclusion

We performed a detailed analysis and optimization of weighted GLR and

mixture-based sequential tests when the null hypothesis is simple and the alterna-

tive hypothesis is composite but discrete. Independently of the choice of weights,

both tests minimize asymptotically, at least to first order and often to second or-

der, the expected sample size under each possible scenario as error probabilities

go to 0. With an appropriate selection of weights, both tests achieve higher-

order asymptotic optimality properties. Specifically, they minimize a weighted

expected sample size, as well as the expected Kullback–Leibler divergence in

the least favorable scenario, to within asymptotically negligible terms as error

probabilities go to zero. Based on simulation experiments, we found that the

two tests perform similarly even for not too small error probabilities. The pro-

posed approach can be extended to sequential testing of multiple hypotheses, a

substantially more complex problem that we plan to consider elsewhere.
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