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Abstract: Long range dependence in stationary processes of increments corresponds

to the situations where the variance of cumulative sums is dominated by the accu-

mulation of the covariances between increments. The Hurst parameter, the expo-

nent of the standard deviation of the sum as a function of the number of increments

involved, is a characteristic of long range dependence. Models of long range depen-

dence, models that involve an Hurst parameter 0.5 < H < 1, are frequently used

to model the incoming workload in computer networks and communication.

Consider a Gaussian arrival process with long range dependence, a buffer, and

a departure process bounded by the bandwidth. This paper present an analytical

approximations of the probability of a buffer overflow within a given time interval.

The analysis uses and demonstrates a measure-transformation technique.

Key words and phrases: Cusum, likelihood-ratio identity, long-range dependence,

maxima of a random field, overshoot correction.

1. Introduction

Joint work with David Siegmund has shaped my academic career. I am proud

to be able to participate in the celebration of his achievements and contribute to

this special issue in his honor. This paper demonstrates a technique that David

and I have developed to analyze the tail distribution of the maxima of a random

field. This technique involves a representation that clarifies the relations between

global variability of the field and local fluctuations, including the effect of the

“Overshoot” correction. In order not to repeat our previous works, this technique

is demonstrated in the context of a model that involves long-range dependence

between increments of the random field.

Specifically, we consider the distribution of overflows in a fluid or commu-

nication model. The components of the model are a random input process, a

buffer, and a bounded output process. The concern is the distribution of buffer

overflows. One can formulate the model in terms of the increments of the input

process Xt, the bandwidth of the output process r, and the accumulation in the
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buffer of inputs waiting to be transmitted St. The accumulation in the buffer, in

discrete time, is a reflective process that satisfies the recursion

St+1 = (St +Xt+1 − r)+ .

Consider the time interval (0,m]. An overflows takes place over this interval

if the event A = {max0<t≤m St ≥ x} occurs, where x is the size of the buffer. The

event under consideration is closely related to the Cusum statistic that is used

in monitoring processes, for example in change-point detection. Indeed, when

S0 = 0 the event may be written in a form

A =
{

max
0≤s<t≤m

t∑
i=s+1

(Xi − r) ≥ x
}
,

that involves maximization over the entire collection of partial sums. This event

corresponds to the maximal Cusum statistic exceeding the threshold x over the

given interval.

Our goal in this paper is to demonstrate a measure-transformation technique

for the development of an analytical approximations to the probability of an

overflow. Emphasis is given to the details specific to the application of the

technique. The application of other techniques that are required in order to

complete the analysis of the problem will only be briefly mentioned.

The characteristic feature of the distribution of overflows in many fluid and

communication applications is the long-range dependence between the increments

of the input process. This long-range dependence is expressed in the fact that

the variance of a sum of random elements is dominated by the contribution of

covariances between elements that are far from each other. Consequently, the

variance is not proportional to the number of elements involved in the sum but,

instead, diverges to infinity like the number of elements to the power 2H, for

some 1/2 < H < 1. The parameter H is called the Hurst parameter and is a

characterization of the long-range dependence.

In the current paper we consider the case where the increments of the input

process form a stationary Gaussian process. The covariance structure between

the increments of the input process reflect a long-range dependence with Hurst

parameter H; an example is the process of increments of a fractional Brownian

motion.

The results in this paper may be compared to the results of Heath, Resnick,

and Samorodnitsky (1997). They considered a similar model with a different

input process. Specifically, they dealt with the situation where the input process

is a single On-Off process, with heavy tailed On period, or a sum of finitely many

such processes. The input process in the model we consider can be viewed as a
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limit case that involves input composed of a sum of infinitely many independent

On-Off processes (Taqqu, Willinger, and Sherman (1997)). A more direct anal-

ysis of a model that involves the sum of a large number of On-Off processes is

presented in Chapter 9 of Yakir (2013).

Results parallel to the results of this paper were obtained in Piterbarg (2001).

He considered as input the fractional Brownian motion in continuous time and

produced an expression for the tail of the distribution that involves the square

of the Pickands constant. Below we remark on the connection between our rep-

resentation and the representation that uses the Pickands constant.

We give a formal statement of the result in terms of the centered process of

input increments and in terms of the drift µ, which is the difference between r

and the expectation of an input increment. Misusing the notation somewhat, we

denote henceforth the process of centered input increments by X.

Assume that the centered process X is stationary with a variance-covariance

matrix Σ. Given an interval t = (t1, t2], denote by Y (t) =
∑t2

i=t1+1Xi the partial

sum associated with that interval. Observe that

Var (Y (t)) = 1′tΣ1t := g(|t|) ,

where 1t is the indicator of the interval t and |t| = 1′t1t is the number of points

in the interval. We assume that, as t → ∞, g(|t|) = v2|t|2H +o
(
|t|4H−2

)
for some

0.5 < H < 1 and some constant v2. Moreover, we also assume that the derivative

of the function g satisfies g′(|t|) = 2Hv2|t|2H−1 + o
(
|t|2H−1

)
.

Let T be a collection of time intervals. Of primary interest is the event of

an overflow associated with the collection T . Denote this event by

A =
{
max
t∈T

[Y (t)− µ|t|] ≥ x
}
. (1.1)

The main result in this paper corresponds to the situation where the value of x

is large, with the cardinality of the set T polynomial in x and T is composed of

a grid of intervals. Specifically, let δ > 0 be given. Take

T =
{
t = (t1, t2] : t1 = ⌊j1δx2−1/H⌋, t2 = ⌊j2δx2−1/H⌋, 0 ≤ j1 ≤ j2 ≤

m

δx2−1/H

}
.

The requirement that the cardinality of T is polynomial in x implies that m is

polynomial in x. The statement of the main result involves a bounded functional

of the standard fractional Brownian motion {Wt : −∞ < t < ∞}:

λSPRT = E
[maxi e

σWδi−0.5σ2|δi|2H∑
i e

σWδi−0.5σ2|δi|2H

]
, (1.2)

for σ2 = µ4H
/
{v2H4H(1−H)2−4H}.
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Theorem 1. Let Y be a centered Gaussian process with stationary increments

and let µ > 0 be given. Assume that Var (Y (t)) = v2|t|2H + o
(
|t|4H−2

)
and

∂Var (Y (t))/∂|t| = 2Hv2|t|2H−1 + o
(
|t|2H−1

)
. Let A be the event at (1.1) for a

grid T that depends on a fixed δ > 0. Then, for m, a high enough power of x,

x5−2/H−2H

m
e

x2(1−H)µ2H

2v2H2H (1−H)2(1−H) P(A) −→
x→∞

[λSPRT

δ

]2 v2H2H+1/2

µ2H+1(1−H)2H−1/2
, (1.3)

where λSPRT is at (1.2).

Examination of the statement of the theorem reveals that, since m is polyno-

mial in x and the leading term in the approximation is converging exponentially

fast to zero, the probability of the event A converges to zero. Larger values of

m can be dealt with via a Poisson approximation. A Poisson statement can be

formulated either through the concept of ϵ-upcrossing in the spirit of Chapter 13

of Leadbetter, Lindgren, and Rootzen (1983). Alternatively, one can divide to-

tal time to subintervals of length m and use the method of Arratia, Goldstein,

and Gordon (1989) in order to show that the limit distribution of the number of

intervals with an overflow is asymptotically Poisson.

The ratio λSPRT/(δσ
1/H2−1/(2H)) converges, as δ → 0, to a finite functional of

the standard fractional Brownian motion defined over the real line. This function

produces an alternative representation of the classical Pickands constant. This

constant is typically expressed as the limit of the maximal exponentiated process:

limT→∞(1/T )E
[
max0≤t≤T exp{

√
2Wt − t2H}

]
. The numerical evaluation of the

classical representation is notoriously difficult; the alternative representation is

a numerically much more stable method of evaluation (See Dieker and Yakir

(2012)).

In the rest of the paper we provide a proof of Theorem 1. Before turning to

the details of the proof it may be useful to have an outline. Broadly speaking,

the analysis is composed of four steps.

A crude approximation. In Theorem 1 the cardinality of the index set T is

polynomially large and the marginal probabilities are exponentially small.

If the statistics that are maximized in the definition of the set A are not

too correlated, in a sense that is made clearer below, then a first order

approximation of the probability is obtained in terms of the sum of the

marginal probabilities. This first order approximation can be used in order

to identify the value(s) in T that maximize the marginal probabilities and

the part of the index set that makes a non-negligible contribution to the

probability. The maximizer value(s) may be used in order to identify the

large deviation rate of the probability (the term in the exponent) and the

region that contain non-negligible marginal probabilities may serve for a



TAIL APPROXIMATION IN LONG RANGE DEPENDENCE 1661

first localization of the computation. We consider the crude approximation

in Section 2.

A measure transformation. The idea behind this step is to represent the

problem of computing the probability of a maximum as a sum of expec-

tations; each of the elements in the sum is approximated in a subsequent

step and the approximations are summed up in the last step in order to pro-

duce the final approximation. The representation as a sum of expectations

is obtained via a measure transformation likelihood-ratio identity. Each

random variable in the event A is associated with a likelihood ratio and a

weighted sum of all likelihood ratios is used in the identity. The measure

transformation is carried out in Section 3.

An approximation. Each of the expectations in the representation is a function

of a “global” term and a “local” random field. The former is associated with

the specific log-likelihood ratio and the latter corresponds to the difference

between other log-likelihood ratios and the specific one. The approximation

identifies the asymptotic distribution of the local field and the asymptotic

independence between it and the global term. The limit is given in terms

of a bounded functional of the limit of the local field and in terms of the

density of the global element. In particular, this analysis of the local field

sheds light on the statement that the index set is not too dense. The local

field should be such that the resulting functional is strictly positive. The

approximation is discussed in Section 4.

Integration. In the final step the expectations in the sum are replaced by their

approximations. The sum may be approximated using integration in order

to produce the final approximation of the probability. This step is carried

out in Section 5.

2. A Crude Approximation

In the crude approximation step we consider only the marginal probabilities.

The first task is to identify the large deviation rate of the access accumulation.

Consider the case where the cardinality of the collection T is small in comparison

to the reciprocal of the marginal probability of an overflow. In such a case the

large deviation rate is determined by the largest marginal probability P(Y (t) −
µ|t| ≥ x), where the maximum is taken over all t ∈ T . In particular, if T is

dense enough, the rate may be approximated by the maximum of the marginal

probabilities over the continuum of intervals t.
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The marginal probability in the normal case is

P(Y (t)− µ|t| ≥ x) = Φ̄
( x+ µ|t|
[g(|t|)]1/2

)
∼ Φ̄

(x|t|−H + µ|t|1−H

v

)
,

where Φ̄ is the survival function of the standard normal distribution. The

marginal probability is maximized when the function

x|t|−H + µ|t|1−H (2.1)

is minimized. Taking a derivative with respect to |t| we get that the first deriva-

tive is zero when |t̂| = Hx/[(1−H)µ], the derivative is negative to the left of this

solution and positive to the right of it. Therefore, the given value of |t̂| is indeed
the minimum. As a result, the maximum value of the marginal probability is

max
t∈T

P(Y (t)− µ|t| ≥ x) ∼ Φ̄
(x|t̂|−H + µ|t̂|1−H

v

)
= Φ̄

( x1−HµH

vHH(1−H)1−H

)
≈ exp

{
− x2(1−H)µ(H)

(1−H)

}
,

where

µ(H) =
µ2H

2v2H2H(1−H)1−2H
. (2.2)

It follows that if the cardinality of T is polynomial in x then

x−2(1−H) log P
(
max
t∈T

{Y (t)− µ|t|} ≥ x
)
−→
x→∞

− µ(H)

1−H
(2.3)

since the probability on the left-hand side is bounded from below by the maximal

marginal probability and bounded from above by the same probability times the

cardinality of T . (When T is continuous an approximation by a discrete subset

is required; in the Gaussian setting this can be carried out using Fernique’s

Inequality.)

It is interesting to compare the given rate to the rate obtained in the case

H = 1/2 that is associated with short-range dependence. Then we get that the

exponent of x is equal to 2(1 − H) = 1, and the constant that multiplies x is

equal to −µ(H)/(1 − H) = −2µ/v2, which corresponds to the result that one

obtains for the case of independent increments.

In order to identify intervals that make a non-negligible contribution one can

examine the marginal probabilities. The intervals of length Hx/[(1−H)µ] form a

ridge in the surface of marginal survival functions. A first order approximation of

the probability of interest is the integral of the marginal probabilities; this integral

is dominated by the probabilities in the vicinity of the ridge. The first localization
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step involves the identification of the relevant neighborhood about the ridge,

eliminating the need to consider intervals that make a negligible contribution to

the probability of an overflow.

We examine the rate of decrease of the marginal probabilities as a function

of the deviation of the length of the interval from the maximizing length. The

ratio between a marginal probability and the maximal marginal probability is

dominated by the difference between the terms that go into the exponent. The

first derivative of the function (2.1) that was used in order to find the maximizing

interval length vanishes at the maximizer. The second derivative, evaluated at

the maximizer, is

H(H + 1)x

|t̂|H+2
− (1−H)Hµ

|t̂|H+1
=

[µ(1−H)]H+2

[Hx]H+1
,

and a Taylor expansion produces

x|t|−H + µ|t|1−H

v
≈ x1−HµH

vHH(1−H)1−H
+

(|t| − |t̂|)2

2

[µ(1−H)]H+2

v[Hx]H+1
.

Taking the square of the approximation, divided by 2, the leading terms give

(x|t|−H + µ|t|1−H)2

2v2
≈ x2(1−H)µ(H)

(1−H)
+
( |t| − |t̂|

xH

)2µ2(H+1)(1−H)2H+1

2v2H2H+1
.

It follows that the only intervals that contribute non-negligibly to the approxi-

mation are those with lengths in the range |t̂| ± O(xH). Henceforth, we restrict

T to such intervals.

When independent increments are involved, intervals of length x/µ±O
(
x1/2

)
are of interest. This agrees with the current analysis when H = 1/2.

3. A Measure Transformation

The next step uses a likelihood-ratio identity that substitutes the compu-

tation of the probability of a rare event by a computation of an expectation

of an appropriate function of likelihood ratios over an event that is much more

likely to occur. This substitution is produced via a replacement of the underlying

probability measure by an alternative one.

The original distribution P of the process of increments X is Gaussian with

mean 0 and covariance matrix Σ. For a given interval t and for some scalar θ

we consider an alternative distribution Pt that keeps the covariance structure

unchanged, but replaces the mean vector by the vector θΣ1t. The log-likelihood

ratio between the new and the old distributions is

ℓt = θ1′tX − θ2

2
1′tΣ1t = θY (t)− θ2

2
g(|t|) .
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In order to select the value of θ, note that Et[Y (t)] = θg(|t|). For the

maximizer |t̂| = Hx/[(1−H)µ] we have that the expected value is x+ µ|t̂| iff

θ =
x+ µ|t̂|
g(|t̂|)

=
x1−2Hµ2H

v2H2H(1−H)1−2H
= 2µ(H)x1−2H .

In the sequel we use this value of θ, it depends on x but is independent of t.

The event A can be rewritten in terms of the given log-likelihood ratios as

A =
{
max
t∈T

[ℓt +
θ2g(|t|)

2
− θµ|t|] ≥ θx

}
=

{
max
t∈T

[ℓt + k(|t|)] ≥ θx
}
,

where

k(|t|) = θ2g(|t|)
2

− θµ|t| .

A different representation of the probability of the event may be obtained

via a measure transformation. The likelihood ratio that we use for this transfor-

mation is
∑

t∈T exp{ℓt + k(|t|)} divided by the cardinality of T . The resulting

likelihood ratio gives

P(A) =
1

|T |
∑
t∈T

ek(|t|)Et

[ 1

(1/|T |)
∑

s∈T eℓs+k(|s|) ;A
]

=
∑
t∈T

ek(|t|)Et

[ e−(ℓt+k(|t|))∑
s∈T eℓs−ℓt+k(|s|)−k(|t|) ;A

]
(3.1)

=
∑
t∈T

ek(|t|)−θxEt

[Mt

St
e−(ℓt+k(|t|)−θx+mt); ℓt + k(|t|)− θx+mt ≥ 0

]
,

for

St =
∑
s∈T

eℓs−ℓt+k(|s|)−k(|t|) , Mt = max
s∈T

eℓs−ℓt+k(|s|)−k(|t|)

and mt = logMt.

The probability of interest is now represented as a weighted sum of expec-

tations, the sum extending over all intervals t that are included in the set T .

The weights are of the form exp{k(|t|) − θx}. The term that is multiplied by

a weight is an expectation computed under the tilted distribution associated

with the interval t. The expectation involves a functional of the random vari-

able ℓ̃ = ℓt + k(|t|) − θx, which we call the global term, and of the random field

{ℓs − ℓt + k(|s|)− k(|t|) : s ∈ T}, which we call the local field.

The subsequent step in the analysis is carried out via a local approximation

of each of the expectations in the sum. The final formula for the asymptotic eval-

uation of the probability results from the summation of the local approximations.

We take a closer look at the global terms and the local random fields:
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An element of the local process takes the form wt(s) = ℓs−ℓt+k(|s|)−k(|t|).
From the definition of the terms involved we get that

wt(s) = θ[1s − 1t]
′X − (|s| − |t|)θµ .

The distribution of this local process is determined by the expectation, the vari-

ance, and the covariance between the elements of the process, all computed under

the tilted Pt-distribution.

The Pt-expectation of an element is

Et[wt(s)] = θ2[1s − 1t]
′Σ1t − (|s| − |t|)θµ.

The evaluation of this expectation calls for the investigation, as a function in s,

of the term [1s − 1t]
′Σ1t. However,

[1s − 1t]
′Σ1t =

1

2

{
1′sΣ1s − 1′tΣ1t − (1s − 1t)

′Σ(1s − 1t)
}
.

Consequently,

Et[wt(s)] = −θ2

2
(1s − 1t)

′Σ(1s − 1t) +
θ2

2

[
g(|s|)− g(|t|)− (|s| − |t|)θµ .

Moreover, up to a o
(
x2H−1

)
term,

θ

2
[g(|s|)− g(|t|)] = v2|t|2H−1θ

2
|t|
[( |s|

|t|

)2H
− 1

]
=

(
1− |t| − |t̂|

|t̂|

)2H−1
× µ|t|

2H

[(
1 +

|s| − |t|
|t|

)2H
− 1

]
=

(
1− |t| − |t̂|

|t̂|

)2H−1
×

(
1 +

|s̃| − |t|
|t|

)2H−1
× (|s| − |t|)µ

= (|s| − |t|)µ+O
(∣∣|t| − |s|

∣∣x−(1−H)
)
.

This last follows from the fact that length |s̃| belongs to the interval of lengths

that are between |s| and |t| and all the lengths are |t̂| ±O(xH).

One concludes that

Et[wt(s)] = −θ2

2
(1s − 1t)

′Σ(1s − 1t) +O
(∣∣|t| − |s|

∣∣x−H
)
+ o(1) . (3.2)

Comparing the first term in the expectation to the O(·) term, the latter, in the

worst case scenario, is of the order of the square root of the former.

The variance is

Var t[wt(s)] = θ2[1s − 1t]
′Σ[1s − 1t] , (3.3)
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which is essentially equal to the absolute value of twice the expectation, and the

covariance is

Cov t[wt(r), wt(s)] = θ2[1r − 1t]
′Σ[1s − 1t] . (3.4)

For a given t ∈ T , The global term corresponds to the random variable

ℓ̃ = ℓt + k(|t|)− θx. The Pt-distribution of this term is normal. The expectation

is Et(ℓ̃) = θ2g(|t|) − θµ|t| − θx; it vanishes for all t such that |t| = |t̂| and is of

order O(x1−H) for lengths in the relevant range.

The variance is Var t(ℓ̃) = θ2g(|t|), so the standard deviation is

θ[g(|t|)]1/2 = x1−Hv(
t

x
)H2µ(H) + o(1) = x1−H µH

vHH(1−H)1−H
+ o(1) . (3.5)

4. A Second Localization

In this step we replace each of the expectations in the sum (3.1) by an

approximation. The approximation is of the form of a product between a density

and an expectation of the ratio of two terms. The density corresponds to the

density of the global term evaluated at zero. The two terms that appear in

the ratio are the asymptotic versions of the sum element St and the maximum

element Mt that appear in (3.1).

To proceed, we cite a result that states sufficient conditions for the approx-

imation to hold and check that these conditions are met here. Theorem 5.1 of

Siegmund, Yakir, and Zhang (2010) considers a triangular array in which κ is the

primary index. It denotes by ℓ̃κ the global element, a random variable that is

closely related to the global log-likelihood ratio, and considers Mκ and Sκ. a pair

of random variables, measurable with respect to the collection of observations

that form a local field.

The theorem has the limit, as κ → ∞, of the term

κ1/2E
[
(Mκ/Sκ) exp[−(ℓ̃κ + logMκ)]; ℓ̃κ + logMκ ≥ 0

]
.

The approximation that leads to the limit results from replacement of the quanti-

ties Mκ and Sκ by local versions that depend on only a finite number of elements

from the local field and are almost independent of ℓ̃κ. A local approximation is

applied to ℓ̃κ, and further approximations are applied to the localized version of

Mκ/Sκ. Together these yield the desired limit.

We consider an appropriately selected sequence of σ-fields F̂κ, κ = 1, 2, . . ..

Let M̂κ and Ŝκ be approximations of Mκ and Sκ, respectively, which are measur-

able with respect to F̂κ. Given ϵ > 0 and for all large κ, we list a set of conditions

that imply the second localization step that is summarized in Theorem 2:
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Condition 1. Both 0 < Mκ ≤ Sκ < ∞ and 0 < M̂κ ≤ Ŝκ < ∞ hold with

probability one.

Condition 2. E
[
M̂κ/Ŝκ

]
converges to E

[
M̂/Ŝ

]
and

∣∣E[M̂/Ŝ
]
−E[M/S]

∣∣ ≤ ϵ2,

for an appropriate E[M/S].

Condition 3. There exist µ ∈ R and σ ∈ R+ such that for every 0 < ϵ3, δ, for

any event E ∈ F̂κ having boundary measure 0, and for all large enough κ,

sup
|v|≤ϵκ1/2

∣∣∣κ1/2P(ℓ̃κ ∈ v + (0, δ], E
)
− δ

σ
ϕ
(µ
σ

)
P(E)

∣∣∣ ≤ ϵ3 .

Condition 4. For an event A let νκ(A|F̂κ) = sup
{
P(A|F̂κ, ℓ̃κ) : |ℓ̃k| ≤ ϵκ1/2

}
,

where the sup is taken over the indicated values of ℓ̃κ. For any ϵ4 > 0 and

for all large enough κ,

E
[
νκ
(
{| logMκ − log M̂κ| > ϵ} ∪ {|Ŝκ/Sκ − 1| > ϵ}

∣∣F̂κ

)]
< ϵ4 . (4.1)

Condition 5. The probabilities P
(
| logMκ| > ϵκ1/2

)
, P

(
| log M̂κ| > ϵκ1/2

)
, and

P
(
logMκ − log M̂κ < −ϵ

)
are all o(κ−1/2).

Theorem 2. If Conditions 1−5 hold, then

lim
κ→∞

κ1/2E
[
(Mκ/Sκ)e

−(ℓ̃κ+logMκ); ℓ̃κ + logMκ ≥ 0
]
= σ−1ϕ

(µ
σ

)
E[

M
S

] .

The proof of Theorem 2 can be found in Siegmund, Yakir, and Zhang (2010).

In the rest of this section we validate each one of the conditions for the current

problem.

For Conditions 1 one may fix t = (⌊j1δx2−1/H⌋, ⌊j2δx2−1/H⌋) ∈ T . Consider

a finite sub-collection of intervals Tt ⊂ T given by

Tt = {(s1, s2] : s1 = ⌊i1δx2−1/H⌋, s2 = ⌊i2δx2−1/H⌋, |i1 − j1| ∨ |i2 − j2| ≤ c} ,

for some large enough but fixed c.

TakeMκ = Mt and Sκ = St. Let F̂κ be the σ-field generated by the collection

{ℓs − ℓt : s ∈ Tt}. Let

Ŝκ =
∑
s∈Tt

eℓs−ℓt+k(|s|)−k(|t|) , M̂κ = max
s∈Tt

eℓs−ℓt+k(|s|)−k(|t|).

Condition 1 follows from the fact that a sum of a sequence of non-negative random

variables dominates the maximal element in the sequence.
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The ratio M̂κ/Ŝκ is a bounded functional of the elements that produce F̂κ.

The expectations of these elements are given in (3.2), the variances are given

in (3.3) and the covariance between two elements are presented in (3.4).

For Condition 2 consider the limit distribution of the elements in the local

field. Start with the variance. The variance is a function of the difference 1s−1t,

which indicates the symmetric difference between the interval s and the interval t

(with either a negative or a positive sign). This symmetric difference is associated

with two sub-intervals, one with s1 and t1 as endpoints and one with s2 and t2
as endpoints. In general, the bi-linear form [1s − 1t]

′Σ[1s − 1t] contains three

elements, two are themselves bi-linear forms, one for each sub-interval, and a

mixed term that involves the two intervals and is multiplied by 2. This mixed

term is vanishing in the limit. This fact and the divergence properties of the

function g combine to produce

lim
x→∞

Var t[wt(s)] = σ2
δ

{
|i1 − j1|2H + |i2 − j2|2H

}
,

for σ2
δ = 4v2[µ(H)]2δ2H . A similar argument gives, for the covariance,

lim
x→∞

Cov t[wt(r), wt(s)] = σ2
δ

{
R(h1 − j1, i1 − j1) +R(h2 − j2, i2 − j2)

}
,

where

R(h, i) =
1

2

{
|h|2H + |i|2H − |h− i|2H

}
,

multiplied by the sign of (h · i).
Here R is the covariance function of a self-similar two-sided process with

increments of unit variance. It follows that the limiting covariance structure

of the elements of the field F̂κ corresponds to a sum of two independent self-

similar processes, one associated with the left endpoints of the interval about t1
and the other with the right endpoints about t2. The standard deviation of the

increments of these processes is σδ.

Consider the limit of the expectations. Consult (3.2)where the first term

converges to minus one half of the variance. The second term is bounded by

a constant times x2−1/H−H and converges to zero since 2 − 1/H − H < 0, for

0.5 < H < 1. It follows that the limit expectation of a partial sum that involves

i− j increments in either of the self-similar processes is −0.5σ2
δ |i− j|2H .

The term E
[
M̂/Ŝ

]
is the expectation of the ratio between the maximum and

the sum of the exponentiated limit field. This limit field can be represented as a

sum of two independent and identically distributed processes, one indexed by i1
and the other by i2. The result is that the ratio is equal to the product of two

ratios, one for each process. A corollary of independence is that the expectation

of the product of ratios is the product of the expectations, namely the square of

a single expectation.
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Denote by λSPRT the expectation of such a ratio applied to an infinite double

ended process,

λSPRT = E
[maxi e

σδWi−0.5σ2
δ |i|

2H∑
i e

σδWi−0.5σ2
δ |i|2H

]
,

for σ2
δ = 4v2[µ(H)]2δ2H and for {Wi : −∞ < i < ∞} a standard fractional

Brownian motion. This term is the term that appears in (1.2). Notice that this

term is the limit, as c → ∞, of parallel terms that are defined by restricting the

maximization and summation to a range of radius c about the origin.

The term E
[
M/S

]
= [λSPRT]

2 corresponds to the limit of E
[
M̂/Ŝ

]
, as c → ∞,

for c the quantity that bounds the number of terms the produce the local random

field.

For Condition 3 take ℓ̃κ = ℓ̃ = ℓt + k(|t|) − θx. This random variable has a

Normal distribution. The expectation is of the order of magnitude x1−H and the

standard deviation is given in (3.5). Let E be an event that is defined in terms

of the local process. Clearly,

P
(
ℓ̃κ ∈ v + (0, δ], E

)
=

∫ v+δ

v
P
(
E
∣∣ℓ̃κ = u

)
P(ℓ̃κ = u)du .

Let κ = x2(1−H). From the definition of the expectation and the standard devi-

ation of ℓ̃ we get that
√
κP(ℓ̃ = u) is

[
vHH (1−H)1−H

µH

]
ϕ
( Et[ℓ̃]

[Var t(ℓ̃)]1/2

)
.

Consequently, in order to show that Condition 3 holds with

σ =
µH

vHH(1−H)1−H
, (4.2)

µ

σ
=

Et[ℓ̃]

[Var t(ℓ̃)]1/2
, (4.3)

it is sufficient to demonstrate that the conditional expectation vector and joint

covariance matrix of the the elements of the local field F̂κ, given ℓ̃ = u, converges

to the marginal expectation vector and marginal joint covariance matrix. This

convergence should hold uniformly in u, for |u| ≤ ϵκ1/2.

Consider the conditional distribution of the vector {wt(s)}, given ℓ̃ = u.
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Here

Cov t[wt(s), ℓ̃] = θ2[1s − 1t]
′Σ1t ,

Et[wt(s)|ℓ̃ = u] = Et[wt(s)]− θ2[1s − 1t]
′Σ1t

Et(ℓ̃)− u

Var t(ℓ̃)
,

Cov t[wt(r), wt(s)|ℓ̃ = u] = Cov t[wt(r), wt(s)]

− θ4

Var t(ℓ̃)
([1s − 1t]

′Σ1t)([1r − 1t]
′Σ1t) .

Clearly, the local random field is asymptotically independent of the event {ℓ̃ = u}
provided that θ2[1s − 1t]

′Σ1t/[Var t(ℓ̃)]
1/2 → 0, for all s in the index set of the

local field. However, the numerator is O(x3−2H−1/H) and the denominator is

Θ(x1−H). Condition 3 then follows from the fact that 2−H − 1/H < 0.

The conditional density of the local random field, conditional on ℓ̃ = u, is

bounded away from zero uniformly in |u| ≤ ϵκ1/2 and over an event of probability

larger than 1−ϵ4. Therefore, in order to prove Condition 4 it is sufficient to show

that:

sup
|u|≤ϵκ1/2

Pt

(
wt(s) > f1(|t△ s|)

∣∣ℓ̃ = u
)
≤ exp{−f2(|t△ s|)} ,

for t△ s the symmetric difference between the intervals and for some diverging

functions fj such that
∑∞

i=1 e
fj(i) < ∞, j = 1, 2. However, if we take

f1(|t△ s|) = −0.5(1− ϵ)Et[wt(s)] , f2(|t△ s|) = (1− ϵ)
(Et[wt(s)])

2

8Var t[wt(s)]

then the result follows.

Clearly, Mκ ≥ M̂κ ≥ 1. Consequently, for Condition 5 it is sufficient to prove

that

Pt

(
logMκ > ϵ

√
κ
)
= Pt

(
Mκ > eϵ

√
κ
)
≤

∑
s∈T

Pt

(
wt(s) ≥ ϵ

√
κ
)
.

The probabilities in the sum are of the form of a normal survival function, com-

puted at the point (ϵx1−H−Et[wt(s)])/(Var t[wt(s)])
1/2. Consequently, the prob-

abilities converge to zero at a rate faster than polynomial. If m is not diverging

too fast we get that the sum of all probabilities is still o
(
κ−1/2

)
.

5. Integration

The final step in the approximation of the probability of an overflow results

from replacing the expectations in the representation (3.1) by their approxima-

tions that are produced in the second localization. The resulting sum is then

approximated by an integral.
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We identify the exponent that is produced from the combination of the

weights and the normal density in the second localization limit. The exponent

of the weights are of the form k(|t|)− θx. The second approximation contributes

to the exponent the square of the expectation of the global term ℓ̃, divided by

twice its variance. Consequently, the exponent following the second localization

is of the form

k(|t|)− θx− [Et(ℓ̃)]
2

2Var t(ℓ̃)
= k(|t|)− θx− (θ2g(|t|)/2 + k(|t|)− θx)2

2θ2g(t)

= −(θ2g(|t|)/2− k(|t|) + θx)2

2θ2g(t)

= −(µ|t|+ x)2

2g(t)
≈ −(µ|t|1−H + x|t|−H)2

2v2
.

The discussion that led to the first localization may be applied to this term.

Introducing this to (3.1) gives

P(A) =
∑
t∈T

ek(|t|)−θxEt

[Mt

St
e−(ℓt+k(|t|)−θx+mt); ℓt + k(|t|)− θx+mt ≥ 0

]
≈ e

−x2(1−H)µ(H)
(1−H) [λSPRT]

2 1√
2πx1−Hσ

∑
t∈T

e
−
(

|t|−|t̂|
xH

)2 µ2(H+1)(1−H)2H+1

2v2H2H+1

≈ e
−x2(1−H)µ(H)

(1−H) [λSPRT]
2 σ̃

x1−Hσ

m/[δx2−1/H ]∑
i=1

∑
|j−ĵ|≤c/σ̃

exp
{
− (j−ĵ)2

2σ̃2

}
√
2πσ̃

≈ me
−x2(1−H)

µ(H)
(1−H)

x5−2/H−2H

[λSPRT

δ

]2 v2H2H+1/2

µ2H+1(1−H)2H−1/2
,

where c is large constant that depends on the definition of T after the first

localization step,

1

σ̃
= δx2−1/H−H µH+1(1−H)H+1/2

vHH+1/2

and σ is given in (4.2). The last approximation is appropriate for large values of

c.

IfH = 1/2 the power of x is zero and the last constant is of the form v2/[2µ2].
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